1
|
Adam I, Riebel K, Stål P, Wood N, Previs MJ, Elemans CPH. Daily vocal exercise is necessary for peak performance singing in a songbird. Nat Commun 2023; 14:7787. [PMID: 38086817 PMCID: PMC10716414 DOI: 10.1038/s41467-023-43592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Vocal signals, including human speech and birdsong, are produced by complicated, precisely coordinated body movements, whose execution is fitness-determining in resource competition and mate choice. While the acquisition and maintenance of motor skills generally requires practice to develop and maintain both motor circuitry and muscle performance, it is unknown whether vocal muscles, like limb muscles, exhibit exercise-induced plasticity. Here, we show that juvenile and adult zebra finches (Taeniopygia castanotis) require daily vocal exercise to first gain and subsequently maintain peak vocal muscle performance. Experimentally preventing male birds from singing alters both vocal muscle physiology and vocal performance within days. Furthermore, we find females prefer song of vocally exercised males in choice experiments. Vocal output thus contains information on recent exercise status, and acts as an honest indicator of past exercise investment in songbirds, and possibly in all vocalising vertebrates.
Collapse
Affiliation(s)
- Iris Adam
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Katharina Riebel
- Institute of Biology, Animal Sciences & Health, Leiden University, Leiden, The Netherlands
| | - Per Stål
- Department of Integrative Medical Biology, Umea University, Umeå, Sweden
| | - Neil Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Monte A, Leitão A, Frankl-Vilches C, Matos RDS, Trappschuh M, da Silva ML, Gahr M. Testosterone treatment unveils testosterone-insensitive song in an early-branched hummingbird. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2023.2181873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Amanda Monte
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Monika Trappschuh
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Maria L. da Silva
- Laboratory of Ornithology and Bioacoustics, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
3
|
Kowarski K, Cerchio S, Whitehead H, Cholewiak D, Moors-Murphy H. Seasonal song ontogeny in western North Atlantic humpback whales: drawing parallels with songbirds. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2122561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Katie Kowarski
- JASCO Applied Sciences, Dartmouth, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Hal Whitehead
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Hilary Moors-Murphy
- Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| |
Collapse
|
4
|
Ter Haar SM, Fernandez AA, Gratier M, Knörnschild M, Levelt C, Moore RK, Vellema M, Wang X, Oller DK. Cross-species parallels in babbling: animals and algorithms. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200239. [PMID: 34482727 PMCID: PMC8419573 DOI: 10.1098/rstb.2020.0239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key feature of vocal ontogeny in a variety of taxa with extensive vocal repertoires is a developmental pattern in which vocal exploration is followed by a period of category formation that results in a mature species-specific repertoire. Vocal development preceding the adult repertoire is often called ‘babbling’, a term used to describe aspects of vocal development in species of vocal-learning birds, some marine mammals, some New World monkeys, some bats and humans. The paper summarizes the results of research on babbling in examples from five taxa and proposes a unifying definition facilitating their comparison. There are notable similarities across these species in the developmental pattern of vocalizations, suggesting that vocal production learning might require babbling. However, the current state of the literature is insufficient to confirm this suggestion. We suggest directions for future research to elucidate this issue, emphasizing the importance of (i) expanding the descriptive data and seeking species with complex mature repertoires where babbling may not occur or may occur only to a minimal extent; (ii) (quasi-)experimental research to tease apart possible mechanisms of acquisition and/or self-organizing development; and (iii) computational modelling as a methodology to test hypotheses about the origins and functions of babbling. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Sita M Ter Haar
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Ahana A Fernandez
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Maya Gratier
- Laboratoire Ethologie, Cognition, Développement, Paris Nanterre University, Nanterre, France
| | - Mirjam Knörnschild
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Animal Behavior Lab, Freie Universität, Berlin, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Claartje Levelt
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Roger K Moore
- Department Computer Science, University of Sheffield, Sheffield, UK
| | - Michiel Vellema
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA.,Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
5
|
Ko MC, Frankl-Vilches C, Bakker A, Gahr M. The Gene Expression Profile of the Song Control Nucleus HVC Shows Sex Specificity, Hormone Responsiveness, and Species Specificity Among Songbirds. Front Neurosci 2021; 15:680530. [PMID: 34135731 PMCID: PMC8200640 DOI: 10.3389/fnins.2021.680530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Singing occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and non-breeding seasons, non-breeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from non-singing to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.
Collapse
Affiliation(s)
- Meng-Ching Ko
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
6
|
Düring DN, Dittrich F, Rocha MD, Tachibana RO, Mori C, Okanoya K, Boehringer R, Ehret B, Grewe BF, Gerber S, Ma S, Rauch M, Paterna JC, Kasper R, Gahr M, Hahnloser RHR. Fast Retrograde Access to Projection Neuron Circuits Underlying Vocal Learning in Songbirds. Cell Rep 2020; 33:108364. [PMID: 33176132 PMCID: PMC8236207 DOI: 10.1016/j.celrep.2020.108364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the structure and function of neural circuits underlying speech and language is a vital step toward better treatments for diseases of these systems. Songbirds, among the few animal orders that share with humans the ability to learn vocalizations from a conspecific, have provided many insights into the neural mechanisms of vocal development. However, research into vocal learning circuits has been hindered by a lack of tools for rapid genetic targeting of specific neuron populations to meet the quick pace of developmental learning. Here, we present a viral tool that enables fast and efficient retrograde access to projection neuron populations. In zebra finches, Bengalese finches, canaries, and mice, we demonstrate fast retrograde labeling of cortical or dopaminergic neurons. We further demonstrate the suitability of our construct for detailed morphological analysis, for in vivo imaging of calcium activity, and for multi-color brainbow labeling. Düring et al. describe a fast and efficient viral vector to dissect structure and function of neural circuits underlying learned vocalizations in songbirds. The AAV variant provides retrograde access to projection neuron circuits, including dopaminergic pathways in songbirds and additionally in mice, and allows for retrograde calcium imaging and multispectral brainbow labeling.
Collapse
Affiliation(s)
- Daniel N Düring
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland; Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Mariana D Rocha
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Chihiro Mori
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Benjamin Ehret
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Stefan Gerber
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Shouwen Ma
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Melanie Rauch
- Viral Vector Facility, Neuroscience Center Zurich, Zurich, Switzerland
| | | | - Robert Kasper
- Imaging Facility at the Max Planck Institute of Neurobiology, Munich, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Richard H R Hahnloser
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Cornez G, Collignon C, Müller W, Cornil CA, Ball GF, Balthazart J. Development of Perineuronal Nets during Ontogeny Correlates with Sensorimotor Vocal Learning in Canaries. eNeuro 2020; 7:ENEURO.0361-19.2020. [PMID: 32169884 PMCID: PMC7160306 DOI: 10.1523/eneuro.0361-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/26/2022] Open
Abstract
Songbirds are a powerful model to study vocal learning given that aspects of the underlying behavioral and neurobiological mechanisms are analogous in many ways to mechanisms involved in speech learning. Perineuronal nets (PNNs) represent one of the mechanisms controlling the closing of sensitive periods for vocal learning in the songbird brain. In zebra finches, PNN develop around parvalbumin (PV)-expressing interneurons in selected song control nuclei during ontogeny and their development is delayed if juveniles are deprived of a tutor. However, song learning in zebra finches takes place during a relatively short period of development, and it is difficult to determine whether PNN development correlates with the end of the sensory or the sensorimotor learning period. Canaries have a longer period of sensorimotor vocal learning, spanning over their first year of life so that it should be easier to test whether PNN development correlates with the end of sensory or sensorimotor vocal learning. Here, we quantified PNN around PV-interneurons in the brain of male canaries from hatching until the first breeding season and analyzed in parallel the development of their song. PNN development around PV-interneurons specifically took place and their number reached its maximum around the end of the sensorimotor learning stage, well after the end of sensory vocal learning, and correlated with song development. This suggests that PNN are specifically involved in the termination of the sensitive period for sensorimotor vocal learning.
Collapse
Affiliation(s)
- Gilles Cornez
- Behavioral Neuroendocrinology Lab, GIGA Neurosciences, University of Liege, Liege 4000, Belgium
| | - Clémentine Collignon
- Behavioral Neuroendocrinology Lab, GIGA Neurosciences, University of Liege, Liege 4000, Belgium
| | - Wendt Müller
- Behavioural Ecology and Ecophysiology Research group, University of Antwerp, Antwerp 2000, Belgium
| | - Charlotte A Cornil
- Behavioral Neuroendocrinology Lab, GIGA Neurosciences, University of Liege, Liege 4000, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, 20742, MD
| | - Jacques Balthazart
- Behavioral Neuroendocrinology Lab, GIGA Neurosciences, University of Liege, Liege 4000, Belgium
| |
Collapse
|
8
|
Cornez G, Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone stimulates perineuronal nets development around parvalbumin cells in the adult canary brain in parallel with song crystallization. Horm Behav 2020; 119:104643. [PMID: 31785283 PMCID: PMC7065963 DOI: 10.1016/j.yhbeh.2019.104643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Perineuronal nets (PNN) of the extracellular matrix are dense aggregations of chondroitin-sulfate proteoglycans that usually surround fast-spiking parvalbumin-expressing inhibitory interneurons (PV). The development of PNN around PV appears specifically at the end of sensitive periods of visual learning and limits the synaptic plasticity in the visual cortex of mammals. Seasonal songbirds display a high level of adult neuroplasticity associated with vocal learning, which is regulated by fluctuations of circulating testosterone concentrations. Seasonal changes in testosterone concentrations and in neuroplasticity are associated with vocal changes between the non-breeding and breeding seasons. Increases in blood testosterone concentrations in the spring lead to the annual crystallization of song so that song becomes more stereotyped. Here we explore whether testosterone also regulates PNN expression in the song control system of male and female canaries. We show that, in both males and females, testosterone increases the number of PNN and of PV neurons in the three main telencephalic song control nuclei HVC, RA (nucleus robustus arcopallialis) and Area X and increases the PNN localization around PV interneurons. Singing activity was recorded in males and quantitative analyses demonstrated that testosterone also increased male singing rate, song duration and song energy while decreasing song entropy. Together, these data suggest that the development of PNN could provide the synaptic stability required to maintain the stability of the testosterone-induced crystallized song. This provides the new evidence for a role of PNN in the regulation of adult seasonal plasticity in seasonal songbirds.
Collapse
Affiliation(s)
- Gilles Cornez
- GIGA Neuroscience, University of Liege, Liege 4000, Belgium
| | | | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
9
|
Ko MC, Van Meir V, Vellema M, Gahr M. Characteristics of song, brain-anatomy and blood androgen levels in spontaneously singing female canaries. Horm Behav 2020; 117:104614. [PMID: 31647922 DOI: 10.1016/j.yhbeh.2019.104614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Females of many northern temperate songbird species sing sporadically. However, detailed descriptions of female song are rare. Here we report a detailed analysis of song in a small number of spontaneously-singing female domesticated canaries (Serinus canaria) under non-breeding, laboratory conditions in a large population of domesticated birds. In-depth analysis showed that these females sang rarely, and the spontaneous songs varied between and within birds over time. Furthermore, spontaneous female songs were distinct from songs of testosterone-induced singing female canaries and from songs of male canaries in both temporal and spectral features. Singing females had significantly elevated plasma androgen levels and a larger size of the major song controlling brain nuclei HVC (used as a proper name) and the robust nucleus of the arcopallium (RA) than non-singing females housed under similar conditions. The sporadically observed production of song and accompanying differences in brain anatomy in female canaries may thus depend on minute intraspecific differences in androgen levels.
Collapse
Affiliation(s)
- Meng-Ching Ko
- Max Planck Institute for Ornithology, Dept. of Behavioural Neurobiology, Eberhard-Gwinner str. 6a, 82319 Seewiesen, Germany.
| | - Vincent Van Meir
- Max Planck Institute for Ornithology, Dept. of Behavioural Neurobiology, Eberhard-Gwinner str. 6a, 82319 Seewiesen, Germany
| | - Michiel Vellema
- Utrecht University, Dept. of Experimental Psychology, Yalelaan 2, 3584, CM, Utrecht, the Netherlands
| | - Manfred Gahr
- Max Planck Institute for Ornithology, Dept. of Behavioural Neurobiology, Eberhard-Gwinner str. 6a, 82319 Seewiesen, Germany
| |
Collapse
|