1
|
Purice MD, Lago‐Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2025; 73:632-656. [PMID: 39415317 PMCID: PMC11784859 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D. Purice
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| | - Inês Lago‐Baldaia
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | | | - Aakanksha Singhvi
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Sheng L, Gao J, Wei Q, Gong Y, Xu ZX. The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila. Cell Rep 2025; 44:115099. [PMID: 39723892 DOI: 10.1016/j.celrep.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan. By integrating multiomics data, we demonstrated that glial Ugt35b plays key roles in regulating glycerolipid and glycerophospholipid metabolism in the brain. Notably, we found that Ugt35b and Lsd-2 are co-expressed in glia and confirmed their protein interaction in vivo. Knockdown of Ugt35b significantly reduced LD formation by downregulating Lsd-2 expression, while overexpression of Lsd-2 partially rescued the shortened lifespan in glial Ugt35b RNAi flies. Our findings reveal the crucial role of glial Ugt35b in regulating LD formation to maintain brain lipid homeostasis and support Drosophila lifespan.
Collapse
Affiliation(s)
- Lihong Sheng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jianpeng Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qingyuan Wei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Xiang Xu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Avila A, Lewandowski AS, Li Y, Gui J, Lee KA, Yang Z, Kim M, Lyles JT, Man K, Sehgal A, Chandler JD, Zhang SL. A carnitine transporter at the blood-brain barrier modulates sleep via glial lipid metabolism in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2421178122. [PMID: 39847335 PMCID: PMC11789159 DOI: 10.1073/pnas.2421178122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in Drosophila. We observed reduced sleep with knockdown of solute carrier CG6126, a carnitine transporter, as determined by isotope flux. Our findings suggest that CG6126 regulation of sleep is through the role of the carnitine shuttle in regulating fatty acid metabolism as lipid droplets accumulate in the brains of CG6126 BBB iKD flies. Knocking down mitochondrial carnitine transferases in non-BBB glial cells mimicked the reduced sleep of the CG6126 BBB iKD flies, while bypassing the necessity of carnitine transport with dietary medium-chain fatty acids or palmitoylcarnitine rescued sleep. We propose that carnitine transport via CG6126 promotes brain fatty acid metabolism necessary for maintaining sleep.
Collapse
Affiliation(s)
- Ashley Avila
- Department of Cell Biology, Emory University, Atlanta, GA30322
| | | | - Yongjun Li
- HHMI, University of Pennsylvania, Philadelphia, PA19104
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jesse Gui
- Department of Cell Biology, Emory University, Atlanta, GA30322
| | - Kaeun A. Lee
- Department of Cell Biology, Emory University, Atlanta, GA30322
| | - Zhenglang Yang
- Department of Cell Biology, Emory University, Atlanta, GA30322
| | - Mari Kim
- Department of Cell Biology, Emory University, Atlanta, GA30322
| | - James T. Lyles
- Department of Pediatrics, Emory University, Atlanta, GA30322
| | - Kai Man
- Department of Cell Biology, Emory University, Atlanta, GA30322
| | - Amita Sehgal
- HHMI, University of Pennsylvania, Philadelphia, PA19104
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Joshua D. Chandler
- Department of Pediatrics, Emory University, Atlanta, GA30322
- Children’s Healthcare of Atlanta, Emory University, Atlanta, GA30322
| | | |
Collapse
|
4
|
Sitaraman D, Vecsey CG, Koochagian C. Activity Monitoring for Analysis of Sleep in Drosophila melanogaster. Cold Spring Harb Protoc 2024; 2024:pdb.top108095. [PMID: 38336390 DOI: 10.1101/pdb.top108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit fly Drosophila melanogaster has emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are. Here, we describe key findings, open questions, and commonly used methods that have been used to inform existing theories and develop new ways of thinking about the function, regulation, and adaptability of sleep behavior.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542, USA
| | | | - Casey Koochagian
- Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
5
|
Chang YC, Peng YJ, Lee JY, Chang KT. Peripheral glia and neurons jointly regulate activity-induced synaptic remodeling at the Drosophila neuromuscular junction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600908. [PMID: 39005352 PMCID: PMC11244886 DOI: 10.1101/2024.06.27.600908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In the nervous system, reliable communication depends on the ability of neurons to adaptively remodel their synaptic structure and function in response to changes in neuronal activity. While neurons are the main drivers of synaptic plasticity, glial cells are increasingly recognized for their roles as active modulators. However, the underlying molecular mechanisms remain unclear. Here, using Drosophila neuromuscular junction as a model system for a tripartite synapse, we show that peripheral glial cells collaborate with neurons at the NMJ to regulate activity-induced synaptic remodeling, in part through a protein called shriveled (Shv). Shv is an activator of integrin signaling previously shown to be released by neurons during intense stimulation at the fly NMJ to regulate activity-induced synaptic remodeling. We demonstrate that Shv is also present in peripheral glia, and glial Shv is both necessary and sufficient for synaptic remodeling. However, unlike neuronal Shv, glial Shv does not activate integrin signaling at the NMJ. Instead, it regulates synaptic plasticity in two ways: 1) maintaining the extracellular balance of neuronal Shv proteins to regulate integrin signaling, and 2) controlling ambient extracellular glutamate concentration to regulate postsynaptic glutamate receptor abundance. Loss of glial cells showed the same phenotype as loss of Shv in glia. Together, these results reveal that neurons and glial cells homeostatically regulate extracellular Shv protein levels to control activity-induced synaptic remodeling. Additionally, peripheral glia maintains postsynaptic glutamate receptor abundance and contribute to activity-induced synaptic remodeling by regulating ambient glutamate concentration at the fly NMJ.
Collapse
|
6
|
Jullian E, Russi M, Turki E, Bouvelot M, Tixier L, Middendorp S, Martin E, Monnier V. Glial overexpression of Tspo extends lifespan and protects against frataxin deficiency in Drosophila. Biochimie 2024; 224:71-79. [PMID: 38750879 DOI: 10.1016/j.biochi.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.
Collapse
Affiliation(s)
- Estelle Jullian
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Maria Russi
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Ema Turki
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Margaux Bouvelot
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Laura Tixier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Sandrine Middendorp
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Elodie Martin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Véronique Monnier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
7
|
O’Hara MK, Saul C, Handa A, Cho B, Zheng X, Sehgal A, Williams JA. The NFκB Dif is required for behavioral and molecular correlates of sleep homeostasis in Drosophila. Sleep 2024; 47:zsae096. [PMID: 38629438 PMCID: PMC11321855 DOI: 10.1093/sleep/zsae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the unique expression pattern of a Dif- GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was reduced in Dif mutants and pan-neuronal overexpression of nur also suppressed the Dif mutant phenotype by significantly increasing sleep and reducing nighttime arousability. Together, these findings indicate that Dif functions from brain to target nemuri and to promote deep sleep.
Collapse
Affiliation(s)
- Michael K O’Hara
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Bumsik Cho
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Amita Sehgal
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie A Williams
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Ringo JM, Segal D. Altered Grooming Cycles in Transgenic Drosophila. Behav Genet 2024; 54:290-301. [PMID: 38536593 DOI: 10.1007/s10519-024-10180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
Head grooming in Drosophila consists of repeated sweeps of the legs across the head, comprising regular cycles. We used the GAL4-UAS system to study the effects of overexpressing shibirets1 and of Adar knockdown via RNA interference, on the period of head-grooming cycles in Drosophila. Overexpressing shibirets1 interferes with synaptic vesicle recycling and thus with cell communication, while Adar knockdown reduces RNA editing of neuronal transcripts for a large number of genes. All transgenic flies and their controls were tested at 22° to avoid temperature effects; in wild type, cycle frequency varied with temperature with a Q10 of 1.3. Two experiments were performed with transgenic shibirets1: (1) each fly was heat-shocked for 10 min at 30° immediately before testing at 22° and (2) flies were not heat shocked. In both experiments, cycle period was increased when shibirets1 was overexpressed in all neurons, but was not increased when shibirets1 was overexpressed in motoneurons alone. We hypothesize that grooming cycles in flies overexpressing shibirets1 are lengthened because of synaptic impairment in neural circuits that control head-grooming cycles. In flies with constitutive, pan-neuronal Adar knockdown, cycle period was more variable within individuals, but mean cycle period was not significantly altered. We conclude that RNA editing is essential for the maintenance of within-individual stereotypy of head-grooming cycles.
Collapse
Affiliation(s)
- John M Ringo
- School of Biology and Ecology, University of Maine, Orono, ME, 04473, USA.
| | - Daniel Segal
- Shmunis School of Biomedicine and Cancer Research, Sagol School of Neuroscience, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
9
|
Haynes PR, Pyfrom ES, Li Y, Stein C, Cuddapah VA, Jacobs JA, Yue Z, Sehgal A. A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat Neurosci 2024; 27:666-678. [PMID: 38360946 PMCID: PMC11001586 DOI: 10.1038/s41593-023-01568-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Sleep is thought to be restorative to brain energy homeostasis, but it is not clear how this is achieved. We show here that Drosophila glia exhibit a daily cycle of glial mitochondrial oxidation and lipid accumulation that is dependent on prior wake and requires the Drosophila APOE orthologs NLaz and GLaz, which mediate neuron-glia lipid transfer. In turn, a full night of sleep is required for glial lipid clearance, mitochondrial oxidative recovery and maximal neuronal mitophagy. Knockdown of neuronal NLaz causes oxidative stress to accumulate in neurons, and the neuronal mitochondrial integrity protein, Drp1, is required for daily glial lipid accumulation. These data suggest that neurons avoid accumulation of oxidative mitochondrial damage during wake by using mitophagy and passing damage to glia in the form of lipids. We propose that a mitochondrial lipid metabolic cycle between neurons and glia reflects a fundamental function of sleep relevant for brain energy homeostasis.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elana S Pyfrom
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongjun Li
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carly Stein
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishnu Anand Cuddapah
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack A Jacobs
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
11
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
12
|
Wang Y, Du W, Hu X, Yu X, Guo C, Jin X, Wang W. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm Sin B 2023; 13:4667-4687. [PMID: 38045038 PMCID: PMC10692395 DOI: 10.1016/j.apsb.2023.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing City, Jiaxing 314000, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xin Yu
- Bengbu Medical College (Department of Neurology, the Second Hospital of Jiaxing City), Jiaxing 233030, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Axelrod S, Li X, Sun Y, Lincoln S, Terceros A, O’Neil J, Wang Z, Nguyen A, Vora A, Spicer C, Shapiro B, Young MW. The Drosophila blood-brain barrier regulates sleep via Moody G protein-coupled receptor signaling. Proc Natl Acad Sci U S A 2023; 120:e2309331120. [PMID: 37831742 PMCID: PMC10589661 DOI: 10.1073/pnas.2309331120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sleep is vital for most animals, yet its mechanism and function remain unclear. We found that permeability of the BBB (blood-brain barrier)-the organ required for the maintenance of homeostatic levels of nutrients, ions, and other molecules in the brain-is modulated by sleep deprivation (SD) and can cell-autonomously effect sleep changes. We observed increased BBB permeability in known sleep mutants as well as in acutely sleep-deprived animals. In addition to molecular tracers, SD-induced BBB changes also increased the penetration of drugs used in the treatment of brain pathologies. After chronic/genetic or acute SD, rebound sleep or administration of the sleeping aid gaboxadol normalized BBB permeability, showing that SD effects on the BBB are reversible. Along with BBB permeability, RNA levels of the BBB master regulator moody are modulated by sleep. Conversely, altering BBB permeability alone through glia-specific modulation of moody, gαo, loco, lachesin, or neuroglian-each a well-studied regulator of BBB function-was sufficient to induce robust sleep phenotypes. These studies demonstrate a tight link between BBB permeability and sleep and indicate a unique role for the BBB in the regulation of sleep.
Collapse
Affiliation(s)
- Sofia Axelrod
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Xiaoling Li
- International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin300308, China
| | - Yingwo Sun
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrea Terceros
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Jenna O’Neil
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrew Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Aabha Vora
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Carmen Spicer
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Benjamin Shapiro
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| |
Collapse
|
14
|
O’Hara MK, Saul C, Handa A, Sehgal A, Williams JA. The NFκB Dif is required for behavioral and molecular correlates of sleep homeostasis in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562029. [PMID: 37905096 PMCID: PMC10614778 DOI: 10.1101/2023.10.12.562029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, efforts have been limited toward understanding how specific NFκB transcription factors function in sleep. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the distribution of a Dif-associated GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was suppressed in Dif mutants and pan-neuronal over-expression of nur also suppressed the Dif mutant phenotype. Together, these findings indicate that Dif functions from brain to target nemuri and to promote sleep.
Collapse
Affiliation(s)
| | | | | | - Amita Sehgal
- Chronobiology and Sleep Institute, Department of Neuroscience
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, PA 19104
| | | |
Collapse
|
15
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Li H, Aboudhiaf S, Parrot S, Scote-Blachon C, Benetollo C, Lin JS, Seugnet L. Pallidin function in Drosophila surface glia regulates sleep and is dependent on amino acid availability. Cell Rep 2023; 42:113025. [PMID: 37682712 DOI: 10.1016/j.celrep.2023.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
The Pallidin protein is a central subunit of a multimeric complex called biogenesis of lysosome-related organelles complex 1 (BLOC1) that regulates specific endosomal functions and has been linked to schizophrenia. We show here that downregulation of Pallidin and other members of BLOC1 in the surface glia, the Drosophila equivalent of the blood-brain barrier, reduces and delays nighttime sleep in a circadian-clock-dependent manner. In agreement with BLOC1 involvement in amino acid transport, downregulation of the large neutral amino acid transporter 1 (LAT1)-like transporters JhI-21 and mnd, as well as of TOR (target of rapamycin) amino acid signaling, phenocopy Pallidin knockdown. Furthermore, supplementing food with leucine normalizes the sleep/wake phenotypes of Pallidin downregulation, and we identify a role for Pallidin in the subcellular trafficking of JhI-21. Finally, we provide evidence that Pallidin in surface glia is required for GABAergic neuronal activity. These data identify a BLOC1 function linking essential amino acid availability and GABAergic sleep/wake regulation.
Collapse
Affiliation(s)
- Hui Li
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Sami Aboudhiaf
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, NeuroDialyTics Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Céline Scote-Blachon
- Centre de Recherche en Neurosciences de Lyon, GenCyTi Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Claire Benetollo
- Centre de Recherche en Neurosciences de Lyon, GenCyTi Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Jian-Sheng Lin
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France.
| |
Collapse
|
17
|
Souto-Maior C, Serrano Negron YL, Harbison ST. Nonlinear expression patterns and multiple shifts in gene network interactions underlie robust phenotypic change in Drosophila melanogaster selected for night sleep duration. PLoS Comput Biol 2023; 19:e1011389. [PMID: 37561813 PMCID: PMC10443883 DOI: 10.1371/journal.pcbi.1011389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
All but the simplest phenotypes are believed to result from interactions between two or more genes forming complex networks of gene regulation. Sleep is a complex trait known to depend on the system of feedback loops of the circadian clock, and on many other genes; however, the main components regulating the phenotype and how they interact remain an unsolved puzzle. Genomic and transcriptomic data may well provide part of the answer, but a full account requires a suitable quantitative framework. Here we conducted an artificial selection experiment for sleep duration with RNA-seq data acquired each generation. The phenotypic results are robust across replicates and previous experiments, and the transcription data provides a high-resolution, time-course data set for the evolution of sleep-related gene expression. In addition to a Hierarchical Generalized Linear Model analysis of differential expression that accounts for experimental replicates we develop a flexible Gaussian Process model that estimates interactions between genes. 145 gene pairs are found to have interactions that are different from controls. Our method appears to be not only more specific than standard correlation metrics but also more sensitive, finding correlations not significant by other methods. Statistical predictions were compared to experimental data from public databases on gene interactions. Mutations of candidate genes implicated by our results affected night sleep, and gene expression profiles largely met predicted gene-gene interactions.
Collapse
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Yazmin L. Serrano Negron
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Susan T. Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
19
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
20
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|
21
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
22
|
Li Y, Haynes P, Zhang SL, Yue Z, Sehgal A. Ecdysone acts through cortex glia to regulate sleep in Drosophila. eLife 2023; 12:e81723. [PMID: 36719183 PMCID: PMC9928426 DOI: 10.7554/elife.81723] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Steroid hormones are attractive candidates for transmitting long-range signals to affect behavior. These lipid-soluble molecules derived from dietary cholesterol easily penetrate the brain and act through nuclear hormone receptors (NHRs) that function as transcription factors. To determine the extent to which NHRs affect sleep:wake cycles, we knocked down each of the 18 highly conserved NHRs found in Drosophila adults and report that the ecdysone receptor (EcR) and its direct downstream NHR Eip75B (E75) act in glia to regulate the rhythm and amount of sleep. Given that ecdysone synthesis genes have little to no expression in the fly brain, ecdysone appears to act as a long-distance signal and our data suggest that it enters the brain more at night. Anti-EcR staining localizes to the cortex glia in the brain and functional screening of glial subtypes revealed that EcR functions in adult cortex glia to affect sleep. Cortex glia are implicated in lipid metabolism, which appears to be relevant for actions of ecdysone as ecdysone treatment mobilizes lipid droplets (LDs), and knockdown of glial EcR results in more LDs. In addition, sleep-promoting effects of exogenous ecdysone are diminished in lsd-2 mutant flies, which are lean and deficient in lipid accumulation. We propose that ecdysone is a systemic secreted factor that modulates sleep by stimulating lipid metabolism in cortex glia.
Collapse
Affiliation(s)
- Yongjun Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula Haynes
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Pharmacology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Shirley L Zhang
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Zhifeng Yue
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
23
|
Marquand K, Roselli C, Cervantes-Sandoval I, Boto T. Sleep benefits different stages of memory in Drosophila. Front Physiol 2023; 14:1087025. [PMID: 36744027 PMCID: PMC9892949 DOI: 10.3389/fphys.2023.1087025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Understanding the physiological mechanisms that modulate memory acquisition and consolidation remains among the most ambitious questions in neuroscience. Massive efforts have been dedicated to deciphering how experience affects behavior, and how different physiological and sensory phenomena modulate memory. Our ability to encode, consolidate and retrieve memories depends on internal drives, and sleep stands out among the physiological processes that affect memory: one of the most relatable benefits of sleep is the aiding of memory that occurs in order to both prepare the brain to learn new information, and after a learning task, to consolidate those new memories. Drosophila lends itself to the study of the interactions between memory and sleep. The fruit fly provides incomparable genetic resources, a mapped connectome, and an existing framework of knowledge on the molecular, cellular, and circuit mechanisms of memory and sleep, making the fruit fly a remarkable model to decipher the sophisticated regulation of learning and memory by the quantity and quality of sleep. Research in Drosophila has stablished not only that sleep facilitates learning in wild-type and memory-impaired animals, but that sleep deprivation interferes with the acquisition of new memories. In addition, it is well-accepted that sleep is paramount in memory consolidation processes. Finally, studies in Drosophila have shown that that learning itself can promote sleep drive. Nevertheless, the molecular and network mechanisms underlying this intertwined relationship are still evasive. Recent remarkable work has shed light on the neural substrates that mediate sleep-dependent memory consolidation. In a similar way, the mechanistic insights of the neural switch control between sleep-dependent and sleep-independent consolidation strategies were recently described. This review will discuss the regulation of memory by sleep in Drosophila, focusing on the most recent advances in the field and pointing out questions awaiting to be investigated.
Collapse
Affiliation(s)
- Katie Marquand
- Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Tamara Boto
- Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Calvo-Schimmel A, Kober KM, Paul SM, Cooper BA, Harris C, Shin J, Hammer MJ, Conley YP, Dokiparthi V, Olshen A, Levine JD, Miaskowski C. Sleep disturbance is associated with perturbations in immune-inflammatory pathways in oncology outpatients undergoing chemotherapy. Sleep Med 2023; 101:305-315. [PMID: 36470166 PMCID: PMC11200329 DOI: 10.1016/j.sleep.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE/BACKGROUND Sleep disturbance is a common problem in patients receiving chemotherapy. Purpose was to evaluate for perturbations in immune-inflammatory pathways between oncology patients with low versus very high levels of sleep disturbance. PATIENTS/METHODS Sleep disturbance was evaluated using the General Sleep Disturbance Scale six times over two cycles of chemotherapy. Latent profile analysis was used to identify subgroups of patients with distinct sleep disturbance profiles. Pathway impact analyses were performed in two independent samples using gene expression data obtained from RNA sequencing (n = 198) and microarray (n = 162) technologies. Fisher's combined probability test was used to identify significantly perturbed pathways between Low versus Very High sleep disturbance classes. RESULTS In the RNA sequencing and microarray samples, 59.1% and 51.9% of patients were in the Very High sleep disturbance class, respectively. Thirteen perturbed pathways were related to immune-inflammatory mechanisms (i.e., endocytosis, phagosome, antigen processing and presentation, natural killer cell mediated cytotoxicity, cytokine-cytokine receptor interaction, apoptosis, neutrophil extracellular trap formation, nucleotide-binding and oligomerization domain-like receptor signaling, Th17 cell differentiation, intestinal immune network for immunoglobulin A production, T-cell receptor signaling, complement and coagulation cascades, and tumor necrosis factor signaling). CONCLUSIONS First study to identify perturbations in immune-inflammatory pathways associated with very high levels of sleep disturbance in oncology outpatients. Findings suggest that complex immune-inflammatory interactions underlie sleep disturbance.
Collapse
Affiliation(s)
- Alejandra Calvo-Schimmel
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | - Kord M Kober
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven M Paul
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | - Bruce A Cooper
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | - Carolyn Harris
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | - Joosun Shin
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Vasuda Dokiparthi
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam Olshen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Jon D Levine
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 2022; 110:3186-3205.e7. [PMID: 35961319 PMCID: PMC10868424 DOI: 10.1016/j.neuron.2022.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Structural plasticity in the brain often necessitates dramatic remodeling of neuronal processes, with attendant reorganization of the cytoskeleton and membranes. Although cytoskeletal restructuring has been studied extensively, how lipids might orchestrate structural plasticity remains unclear. We show that specific glial cells in Drosophila produce glucocerebrosidase (GBA) to locally catabolize sphingolipids. Sphingolipid accumulation drives lysosomal dysfunction, causing gba1b mutants to harbor protein aggregates that cycle across circadian time and are regulated by neural activity, the circadian clock, and sleep. Although the vast majority of membrane lipids are stable across the day, a specific subset that is highly enriched in sphingolipids cycles daily in a gba1b-dependent fashion. Remarkably, both sphingolipid biosynthesis and degradation are required for the diurnal remodeling of circadian clock neurites, which grow and shrink across the day. Thus, dynamic sphingolipid regulation by glia enables diurnal circuit remodeling and proper circadian behavior.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Prateek Kalakuntla
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Vera C Mazurak
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Tom Hartl
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | | | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - M Thomas Clandinin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
De Backer JF, Grunwald Kadow IC. A role for glia in cellular and systemic metabolism: insights from the fly. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100947. [PMID: 35772690 DOI: 10.1016/j.cois.2022.100947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Excitability and synaptic transmission make neurons high-energy consumers. However, neurons do not store carbohydrates or lipids. Instead, they need support cells to fuel their metabolic demands. This role is assumed by glia, both in vertebrates and invertebrates. Many questions remain regarding the coupling between neuronal activity and energy demand on the one hand, and nutrient supply by glia on the other hand. Here, we review recent advances showing that fly glia, similar to their role in vertebrates, fuel neurons in times of high energetic demand, such as during memory formation and long-term storage. Vertebrate glia also play a role in the modulation of neurons, their communication, and behavior, including food search and feeding. We discuss recent literature pointing to similar roles of fly glia in behavior and metabolism.
Collapse
Affiliation(s)
- Jean-François De Backer
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
27
|
Damulewicz M, Doktór B, Baster Z, Pyza E. The Role of Glia Clocks in the Regulation of Sleep in Drosophila melanogaster. J Neurosci 2022; 42:6848-6860. [PMID: 35906073 PMCID: PMC9463985 DOI: 10.1523/jneurosci.2340-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila melanogaster, the pacemaker located in the brain plays the main role in maintaining circadian rhythms; however, peripheral oscillators including glial cells, are also crucial components of the circadian network. In the present study, we investigated an impact of oscillators located in astrocyte-like glia, the chiasm giant glia of the optic lobe, epithelial and subperineurial glia on sleep of Drosophila males. We described that oscillators located in astrocyte-like glia and chiasm giant glia are necessary to maintain daily changes in clock neurons arborizations, while those located in epithelial glia regulate amplitude of these changes. Finally, we showed that communication between glia and neurons through tripartite synapses formed by epithelial glia and, in effect, neurotransmission regulation plays important role in wake-promoting during the day.SIGNIFICANCE STATEMENT Circadian clock or pacemaker regulates many aspects of animals' physiology and behavior. The pacemaker is located in the brain and is composed of neurons. However, there are also additional oscillators, called peripheral clocks, which synchronize the main clock. Despite the critical role of glia in the clock machinery, little is known which type of glia houses peripheral oscillators and how they affect neuronal clocks. This study using Drosophila shows that oscillators in specific glia types maintain awakeness during the day by regulating the daily plasticity of clock neurons.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
28
|
LRRK2 Deficiency Aggravates Sleep Deprivation-Induced Cognitive Loss by Perturbing Synaptic Pruning in Mice. Brain Sci 2022; 12:brainsci12091200. [PMID: 36138936 PMCID: PMC9496729 DOI: 10.3390/brainsci12091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with pronounced sleep disorders or cognitive dysfunction in neurodegenerative diseases. However, the effects of LRRK2 deficiency on sleep rhythms and sleep deprivation-related cognitive changes, and the relevant underlying mechanism, remain unrevealed. In this study, Lrrk2-/- and Lrrk2+/+ mice were subjected to normal sleep (S) or sleep deprivation (SD). Sleep recording, behavioral testing, Golgi-cox staining, immunofluorescence, and real-time PCR were employed to evaluate the impacts of LRRK2 deficiency on sleep behaviors and to investigate the underlying mechanisms. The results showed that after SD, LRRK2-deficient mice displayed lengthened NREM and shortened REM, and reported decreased dendritic spines, increased microglial activation, and synaptic endocytosis in the prefrontal cortex. Meanwhile, after SD, LRRK2 deficiency aggravated cognitive impairments, especially in the recall memory cued by fear conditioning test. Our findings evidence that LRRK2 modulates REM/NREM sleep and its deficiency may exacerbate sleep deprivation-related cognitive disorders by perturbing synaptic plasticity and microglial synaptic pruning in mice.
Collapse
|
29
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
30
|
Ogata S, Ito S, Masuda T, Ohtsuki S. Diurnal Changes in Protein Expression at the Blood-Brain Barrier in Mice. Biol Pharm Bull 2022; 45:751-756. [PMID: 35650102 DOI: 10.1248/bpb.b22-00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circadian rhythms influence the transport function of the blood-brain barrier (BBB) and peripheral organs. However, the influence of circadian rhythms on protein expression in the BBB remains to be completely elucidated. Therefore, we aimed to investigate diurnal changes in protein expression in the mouse BBB using quantitative proteomics. Quantitative proteomics showed that the expression of 67, 10, and 20 proteins in the isolated mouse brain capillary fraction changed significantly at zeitgeber time (ZT) 6, 12, and 18, respectively, compared to ZT0. Among them, the levels of 44 proteins were significantly increased at ZT6 and then returned to the same level as ZT0 at ZT12 and ZT18. Gene ontology analysis indicated that the proteins significantly increased at ZT6 were majorly related to translation. The brain capillary endothelial cell-selective proteins sepiapterin reductase and vascular endothelial growth factor receptor 2 showed diurnal variation. In contrast, the expression of ABC transporters, SLC transporters, and receptors associated with receptor-mediated transcytosis, and tight junction proteins did not change within a day. The present findings demonstrated that protein expression related to transport function and physical barrier at the BBB was maintained throughout the day, although the proteins involved in some biological processes exhibited diurnal variation at the BBB.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
31
|
Damulewicz M, Szypulski K, Pyza E. Glia-Neurons Cross-Talk Regulated Through Autophagy. Front Physiol 2022; 13:886273. [PMID: 35574462 PMCID: PMC9099418 DOI: 10.3389/fphys.2022.886273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Autophagy is a self-degradative process which plays a role in removing misfolded or aggregated proteins, clearing damaged organelles, but also in changes of cell membrane size and shape. The aim of this phenomenon is to deliver cytoplasmic cargo to the lysosome through the intermediary of a double membrane-bound vesicle (autophagosome), that fuses with a lysosome to form autolysosome, where cargo is degraded by proteases. Products of degradation are transported back to the cytoplasm, where they can be re-used. In the present study we showed that autophagy is important for proper functioning of the glia and that it is involved in the regulation of circadian structural changes in processes of the pacemaker neurons. This effect is mainly observed in astrocyte-like glia, which play a role of peripheral circadian oscillators in the Drosophila brain.
Collapse
|
32
|
Yeung CYC, Dondelinger F, Schoof EM, Georg B, Lu Y, Zheng Z, Zhang J, Hannibal J, Fahrenkrug J, Kjaer M. Circadian regulation of protein cargo in extracellular vesicles. SCIENCE ADVANCES 2022; 8:eabc9061. [PMID: 35394844 PMCID: PMC8993114 DOI: 10.1126/sciadv.abc9061] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/17/2022] [Indexed: 05/19/2023]
Abstract
The circadian clock controls many aspects of physiology, but it remains undescribed whether extracellular vesicles (EVs), including exosomes, involved in cell-cell communications between tissues are regulated in a circadian pattern. We demonstrate a 24-hour rhythmic abundance of individual proteins in small EVs using liquid chromatography-mass spectrometry in circadian-synchronized tendon fibroblasts. Furthermore, the release of small EVs enriched in RNA binding proteins was temporally separated from those enriched in cytoskeletal and matrix proteins, which peaked during the end of the light phase. Last, we targeted the protein sorting mechanism in the exosome biogenesis pathway and established (by knockdown of circadian-regulated flotillin-1) that matrix metalloproteinase 14 abundance in tendon fibroblast small EVs is under flotillin-1 regulation. In conclusion, we have identified proteomic time signatures for small EVs released by tendon fibroblasts, which supports the view that the circadian clock regulates protein cargo in EVs involved in cell-cell cross-talk.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| | - Frank Dondelinger
- Centre for Health Informatics, Computation and Statistics, Lancaster University, Lancaster, UK
| | - Erwin M. Schoof
- Proteomics Core, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhiyong Zheng
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
34
|
Gan J, Wang XD, Shi Z, Yuan J, Zhang M, Liu S, Wang F, You Y, Jia P, Feng L, Xu J, Zhang J, Hu W, Chen Z, Ji Y. The Impact of Rotating Night Shift Work and Daytime Recharge on Cognitive Performance Among Retired Nurses. Front Aging Neurosci 2022; 13:827772. [PMID: 35145395 PMCID: PMC8821912 DOI: 10.3389/fnagi.2021.827772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe exact relationship between long-term shift work (SW) and cognitive impairment (CI) has been poorly understood. The effects of the long-term rotating night SW (RNSW) combining daytime recharge (DTR) on cognitive function were investigated.MethodsA total 920 retired nurses and 656 retired female teachers aged ≥50 years were analyzed. Participants who worked at least once per week for 8 hat night for more than 1 year were defined as the SW group, and those without a regular nighttime shift were defined as the control group. The associations among duration, frequency, and DTR of RNSW, and neuropsychological assessments were ascertained by regression models.ResultsParticipants with RNSW had a significantly higher proportion of mild CI (MCI), both amnestic MCI (aMCI) (14.4% in 11–20 years, p < 0.05, and 17.8% in > 20 years, p < 0.001) and non-amnestic MCI (naMCI) (8.1% in 11–20 years, p < 0.05), as well as dementia (1.5% in 1–10 years, and 11.7% in > 20 years, p < 0.05) compared to controls (8.4% with aMCI, 4.4% with naMCI, and 7.0% with dementia, respectively). There were significant negative relationships between general times of night SW and scores of Mini-Mental State Examination (MMSE) (R squared = 0.01, p = 0.0014) and Montreal Cognitive Assessment (MoCA) (R squared = 0.01, p = 0.0054). Participants with ≥1 h of DTR and ≥ 11 years of RNSW were about 2-fold more likely to experience MCI compared with the subjects in the control group, especially with 3–5 h (odds ratio [OR]: 2.35; 95% confidence interval: 1.49–3.68, p < 0.001).ConclusionThe long-term RNSW was associated with a higher risk of CI, especially aMCI and dementia, and the problem cannot be improved by DTR.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Dan Wang
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
| | - Zhihong Shi
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
| | - Junliang Yuan
- NHC Key Laboratory of Mental Health (Peking University), Department of Neurology, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Meiyun Zhang
- Department of Neurology, Tianjin People’s Hospital, Tianjin, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
| | - Fei Wang
- Department of Neurology, Yuncheng Central Hospital of Shanxi Province, Yuncheng, China
| | - Yong You
- Department of Neurology, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Peifei Jia
- Department of Neurology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Lisha Feng
- Department of Encephalopathy, Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junying Xu
- Department of Neurology, Tianjin Baodi People’s Hospital, Tianjin, China
| | - Jinhong Zhang
- Department of Neurology, Cangzhou People’s Hospital, Cangzhou, China
| | - Wenzheng Hu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhichao Chen
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
- *Correspondence: Yong Ji,
| |
Collapse
|
35
|
Jaggard JB, Wang GX, Mourrain P. Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr Opin Neurobiol 2021; 71:44-51. [PMID: 34583217 PMCID: PMC8719594 DOI: 10.1016/j.conb.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
All animals carefully studied sleep, suggesting that sleep as a behavioral state exists in all animal life. Such evolutionary maintenance of an otherwise vulnerable period of environmental detachment suggests that sleep must be integral in fundamental biological needs. Despite over a century of research, the knowledge of what sleep does at the tissue, cellular or molecular levels remain cursory. Currently, sleep is defined based on behavioral criteria and physiological measures rather than at the cellular or molecular level. Physiologically, sleep has been described as two main states, non-rapid eye moment (NREM) and REM/paradoxical sleep (PS), which are defined in the neocortex by synchronous oscillations and paradoxical wake-like activity, respectively. For decades, these two sleep states were believed to be defining characteristics of only mammalian and avian sleep. Recent work has revealed slow oscillation, silencing, and paradoxical/REM-like activities in reptiles, fish, flies, worms, and cephalopods suggesting that these sleep dynamics and associated physiological states may have emerged early in animal evolution. Here, we discuss these recent developments supporting the conservation of neural dynamics (silencing, oscillation, paradoxical activity) of sleep states across phylogeny.
Collapse
Affiliation(s)
- James B Jaggard
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gordon X Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; INSERM 1024, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
36
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
37
|
Glial glucose fuels the neuronal pentose phosphate pathway for long-term memory. Cell Rep 2021; 36:109620. [PMID: 34433052 PMCID: PMC8411112 DOI: 10.1016/j.celrep.2021.109620] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Brain function relies almost solely on glucose as an energy substrate. The main model of brain metabolism proposes that glucose is taken up and converted into lactate by astrocytes to fuel the energy-demanding neuronal activity underlying plasticity and memory. Whether direct neuronal glucose uptake is required for memory formation remains elusive. We uncover, in Drosophila, a mechanism of glucose shuttling to neurons from cortex glia, an exclusively perisomatic glial subtype, upon formation of olfactory long-term memory (LTM). In vivo imaging reveals that, downstream of cholinergic activation of cortex glia, autocrine insulin signaling increases glucose concentration in glia. Glucose is then transferred from glia to the neuronal somata in the olfactory memory center to fuel the pentose phosphate pathway and allow LTM formation. In contrast, our results indicate that the increase in neuronal glucose metabolism, although crucial for LTM formation, is not routed to glycolysis. Neuronal glucose metabolism is increased upon long-term memory formation Glial cells shuttle glucose to neurons following insulin signaling activation Glucose fuels the neuronal pentose phosphate pathway
Collapse
|
38
|
Li X, Fetter R, Schwabe T, Jung C, Liu L, Steller H, Gaul U. The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation. eLife 2021; 10:68275. [PMID: 34382936 PMCID: PMC8390003 DOI: 10.7554/elife.68275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.
Collapse
Affiliation(s)
- Xiaoling Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| | - Richard Fetter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| |
Collapse
|
39
|
Murakami K, Palermo J, Stanhope BA, Gibbs AG, Keene AC. A screen for sleep and starvation resistance identifies a wake-promoting role for the auxiliary channel unc79. G3 (BETHESDA, MD.) 2021; 11:6300522. [PMID: 34849820 PMCID: PMC8496288 DOI: 10.1093/g3journal/jkab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
The regulation of sleep and metabolism are highly interconnected, and dysregulation of sleep is linked to metabolic diseases that include obesity, diabetes, and heart disease. Furthermore, both acute and long-term changes in diet potently impact sleep duration and quality. To identify novel factors that modulate interactions between sleep and metabolic state, we performed a genetic screen for their roles in regulating sleep duration, starvation resistance, and starvation-dependent modulation of sleep. This screen identified a number of genes with potential roles in regulating sleep, metabolism, or both processes. One such gene encodes the auxiliary ion channel UNC79, which was implicated in both the regulation of sleep and starvation resistance. Genetic knockdown or mutation of unc79 results in flies with increased sleep duration, as well as increased starvation resistance. Previous findings have shown that unc79 is required in pacemaker for 24-hours circadian rhythms. Here, we find that unc79 functions in the mushroom body, but not pacemaker neurons, to regulate sleep duration and starvation resistance. Together, these findings reveal spatially localized separable functions of unc79 in the regulation of circadian behavior, sleep, and metabolic function.
Collapse
Affiliation(s)
- Kazuma Murakami
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Justin Palermo
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Allen G Gibbs
- Department of Biological Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
40
|
The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the Drosophila Blood-Brain Barrier. J Neurosci 2021; 41:6430-6448. [PMID: 34210781 PMCID: PMC8318086 DOI: 10.1523/jneurosci.0452-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as “brain sparing.” However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood–brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood–brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood–brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain. SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.
Collapse
|
41
|
Bedont JL, Toda H, Shi M, Park CH, Quake C, Stein C, Kolesnik A, Sehgal A. Short and long sleeping mutants reveal links between sleep and macroautophagy. eLife 2021; 10:64140. [PMID: 34085929 PMCID: PMC8177895 DOI: 10.7554/elife.64140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/20/2021] [Indexed: 02/03/2023] Open
Abstract
Sleep is a conserved and essential behavior, but its mechanistic and functional underpinnings remain poorly defined. Through unbiased genetic screening in Drosophila, we discovered a novel short-sleep mutant we named argus. Positional cloning and subsequent complementation, CRISPR/Cas9 knock-out, and RNAi studies identified Argus as a transmembrane protein that acts in adult peptidergic neurons to regulate sleep. argus mutants accumulate undigested Atg8a(+) autophagosomes, and genetic manipulations impeding autophagosome formation suppress argus sleep phenotypes, indicating that autophagosome accumulation drives argus short-sleep. Conversely, a blue cheese neurodegenerative mutant that impairs autophagosome formation was identified independently as a gain-of-sleep mutant, and targeted RNAi screens identified additional genes involved in autophagosome formation whose knockdown increases sleep. Finally, autophagosomes normally accumulate during the daytime and nighttime sleep deprivation extends this accumulation into the following morning, while daytime gaboxadol feeding promotes sleep and reduces autophagosome accumulation at nightfall. In sum, our results paradoxically demonstrate that wakefulness increases and sleep decreases autophagosome levels under unperturbed conditions, yet strong and sustained upregulation of autophagosomes decreases sleep, whereas strong and sustained downregulation of autophagosomes increases sleep. The complex relationship between sleep and autophagy suggested by our findings may have implications for pathological states including chronic sleep disorders and neurodegeneration, as well as for integration of sleep need with other homeostats, such as under conditions of starvation.
Collapse
Affiliation(s)
- Joseph L Bedont
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Hirofumi Toda
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Mi Shi
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Christine H Park
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Christine Quake
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Carly Stein
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Anna Kolesnik
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, United States.,Howard Hughes Medical Institute, Philadelphia, United States
| |
Collapse
|
42
|
Coll-Tané M, Gong NN, Belfer SJ, van Renssen LV, Kurtz-Nelson EC, Szuperak M, Eidhof I, van Reijmersdal B, Terwindt I, Durkin J, Verheij MMM, Kim CN, Hudac CM, Nowakowski TJ, Bernier RA, Pillen S, Earl RK, Eichler EE, Kleefstra T, Kayser MS, Schenck A. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. SCIENCE ADVANCES 2021; 7:eabe2626. [PMID: 34088660 PMCID: PMC8177706 DOI: 10.1126/sciadv.abe2626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| | - Naihua N Gong
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel J Belfer
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara V van Renssen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | | | - Milan Szuperak
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Isabel Terwindt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Jaclyn Durkin
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Chang N Kim
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tomasz J Nowakowski
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Sigrid Pillen
- Center for Sleep Medicine, Kempenhaeghe, Heeze, Netherlands
| | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Matthew S Kayser
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| |
Collapse
|
43
|
Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway. Int J Mol Sci 2021; 22:ijms22083884. [PMID: 33918672 PMCID: PMC8069648 DOI: 10.3390/ijms22083884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Huntington’s disease (HD) is a progressive and fatal autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the first exon of the huntingtin gene (HTT). In spite of considerable efforts, there is currently no treatment to stop or delay the disease. Although HTT is expressed ubiquitously, most of our knowledge has been obtained on neurons. More recently, the impact of mutant huntingtin (mHTT) on other cell types, including glial cells, has received growing interest. It is currently unclear whether new pathological pathways could be identified in these cells compared to neurons. To address this question, we performed an in vivo screen for modifiers of mutant huntingtin (HTT-548-128Q) induced pathology in Drosophila adult glial cells and identified several putative therapeutic targets. Among them, we discovered that partial nej/dCBP depletion in these cells was protective, as revealed by strongly increased lifespan and restored locomotor activity. Thus, dCBP promotes the HD pathology in glial cells, in contrast to previous opposite findings in neurons. Further investigations implicated the transcriptional activator Foxo as a critical downstream player in this glial protective pathway. Our data suggest that combinatorial approaches combined to specific tissue targeting may be required to uncover efficient therapies in HD.
Collapse
|
44
|
Teseo S, Houot B, Yang K, Monnier V, Liu G, Tricoire H. G. sinense and P. notoginseng Extracts Improve Healthspan of Aging Flies and Provide Protection in A Huntington Disease Model. Aging Dis 2021; 12:425-440. [PMID: 33815875 PMCID: PMC7990376 DOI: 10.14336/ad.2020.0714-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the strong increase in the proportion of older people worldwide, and the increased prevalence of age associated degenerative diseases, have put a stronger focus on aging biology. In spite of important progresses in our understanding of the aging process, an integrative view is still lacking and there is still need for efficient anti-aging interventions that could improve healthspan, reduce incidence of age-related disease and, eventually, increase the lifespan. Interestingly, some compounds from traditional medicine have been found to possess anti-oxidative and anti-inflammatory properties, suggesting that they could play a role as anti-aging compounds, although in depth in vivo investigations are still scarce. In this study we used one the major aging model organisms, Drosophila melanogaster, to investigate the ability of four herb extracts (HEs: Dendrobium candidum, Ophiopogon japonicum, Ganoderma sinense and Panax notoginseng) widely used in traditional Chinese medicine (TCM) to slow down aging and improve healthspan of aged animals. Combining multiple approaches (stress resistance assays, lifespan and metabolic measurements, functional heart characterizations and behavioral assays), we show that these four HEs provide in vivo protection from various insults, albeit with significant compound-specific differences. Importantly, extracts of P. notoginseng and G. sinense increase the healthspan of aging animals, as shown by increased activity during aging and improved heart function. In addition, these two compounds also provide protection in a Drosophila model of Huntington’s disease (HD), suggesting that, besides their anti-aging properties in normal individuals, they could be also efficient in the protection against age-related diseases.
Collapse
Affiliation(s)
- Serafino Teseo
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.,2School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Houot
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | | | | | - Hervé Tricoire
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| |
Collapse
|
45
|
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci 2021; 15:639140. [PMID: 33633540 PMCID: PMC7900543 DOI: 10.3389/fnins.2021.639140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The classic concept of the absence of lymphatic vessels in the central nervous system (CNS), suggesting the immune privilege of the brain in spite of its high metabolic rate, was predominant until recent times. On the other hand, this idea left questioned how cerebral interstitial fluid is cleared of waste products. It was generally thought that clearance depends on cerebrospinal fluid (CSF). Not long ago, an anatomically and functionally discrete paravascular space was revised to provide a pathway for the clearance of molecules drained within the interstitial space. According to this model, CSF enters the brain parenchyma along arterial paravascular spaces. Once mixed with interstitial fluid and solutes in a process mediated by aquaporin-4, CSF exits through the extracellular space along venous paravascular spaces, thus being removed from the brain. This process includes the participation of perivascular glial cells due to a sieving effect of their end-feet. Such draining space resembles the peripheral lymphatic system, therefore, the term "glymphatic" (glial-lymphatic) pathway has been coined. Specific studies focused on the potential role of the glymphatic pathway in healthy and pathological conditions, including neurodegenerative diseases. This mainly concerns Alzheimer's disease (AD), as well as hemorrhagic and ischemic neurovascular disorders; other acute degenerative processes, such as normal pressure hydrocephalus or traumatic brain injury are involved as well. Novel morphological and functional investigations also suggested alternative models to drain molecules through perivascular pathways, which enriched our insight of homeostatic processes within neural microenvironment. Under the light of these considerations, the present article aims to discuss recent findings and concepts on nervous lymphatic drainage and blood-brain barrier (BBB) in an attempt to understand how peripheral pathological conditions may be detrimental to the CNS, paving the way to neurodegeneration.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
46
|
Sehgal A. The 2020 Pittendrigh/Aschoff Lecture: My Circadian Journey. J Biol Rhythms 2021; 36:84-96. [PMID: 33428509 PMCID: PMC8815313 DOI: 10.1177/0748730420982398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian field has come a long way since I started as a postdoctoral fellow ~30 years ago. At the time, the only known animal clock gene was period, so I had the privilege of witnessing, and participating in, the molecular revolution that took us from the discovery of the circadian clock mechanism to the identification of pathways that link clocks to behavior and physiology. This lecture highlights my role and perspective in these developments, and also demonstrates how the successful use of Drosophila for studies of circadian rhythms inspired us to develop a fly model for sleep. I also touch upon my experiences as a non-white immigrant woman navigating my way through the US science and education system, and hope my story will be of interest to some.
Collapse
Affiliation(s)
- Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Zhang SL, Lahens NF, Yue Z, Arnold DM, Pakstis PP, Schwarz JE, Sehgal A. A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nat Commun 2021; 12:617. [PMID: 33504784 PMCID: PMC7841146 DOI: 10.1038/s41467-020-20795-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The blood-brain barrier (BBB) is critical for neural function. We report here circadian regulation of the BBB in mammals. Efflux of xenobiotics by the BBB oscillates in mice, with highest levels during the active phase and lowest during the resting phase. This oscillation is abrogated in circadian clock mutants. To elucidate mechanisms of circadian regulation, we profiled the transcriptome of brain endothelial cells; interestingly, we detected limited circadian regulation of transcription, with no evident oscillations in efflux transporters. We recapitulated the cycling of xenobiotic efflux using a human microvascular endothelial cell line to find that the molecular clock drives cycling of intracellular magnesium through transcriptional regulation of TRPM7, which appears to contribute to the rhythm in efflux. Our findings suggest that considering circadian regulation may be important when therapeutically targeting efflux transporter substrates to the CNS.
Collapse
Affiliation(s)
- Shirley L Zhang
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics (ITMAT), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Denice M Arnold
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter P Pakstis
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica E Schwarz
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Abstract
Sleep is critical for diverse aspects of brain function in animals ranging from invertebrates to humans. Powerful genetic tools in the fruit fly Drosophila melanogaster have identified - at an unprecedented level of detail - genes and neural circuits that regulate sleep. This research has revealed that the functions and neural principles of sleep regulation are largely conserved from flies to mammals. Further, genetic approaches to studying sleep have uncovered mechanisms underlying the integration of sleep and many different biological processes, including circadian timekeeping, metabolism, social interactions, and aging. These findings show that in flies, as in mammals, sleep is not a single state, but instead consists of multiple physiological and behavioral states that change in response to the environment, and is shaped by life history. Here, we review advances in the study of sleep in Drosophila, discuss their implications for understanding the fundamental functions of sleep that are likely to be conserved among animal species, and identify important unanswered questions in the field.
Collapse
Affiliation(s)
- Orie T Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA.
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
49
|
van Alphen B, Semenza ER, Yap M, van Swinderen B, Allada R. A deep sleep stage in Drosophila with a functional role in waste clearance. SCIENCE ADVANCES 2021; 7:7/4/eabc2999. [PMID: 33523916 PMCID: PMC7817094 DOI: 10.1126/sciadv.abc2999] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Sleep is a highly conserved state, suggesting that sleep's benefits outweigh the increased vulnerability it brings. Yet, little is known about how sleep fulfills its functions. Here, we used video tracking in tethered flies to identify a discrete deep sleep stage in Drosophila, termed proboscis extension sleep, that is defined by repeated stereotyped proboscis extensions and retractions. Proboscis extension sleep is accompanied by highly elevated arousal thresholds and decreased brain activity, indicative of a deep sleep state. Preventing proboscis extensions increases injury-related mortality and reduces waste clearance. Sleep deprivation reduces waste clearance and during subsequent rebound sleep, sleep, proboscis extensions, and waste clearance are increased. Together, these results provide evidence of a discrete deep sleep stage that is linked to a specific function and suggest that waste clearance is a core and ancient function of deep sleep.
Collapse
Affiliation(s)
- Bart van Alphen
- The Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, Illinois 60208, USA.
| | - Evan R Semenza
- The Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, Illinois 60208, USA
| | - Melvyn Yap
- The Queensland Brain Institute, QBI Building, 79, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Bruno van Swinderen
- The Queensland Brain Institute, QBI Building, 79, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Ravi Allada
- The Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, Illinois 60208, USA.
| |
Collapse
|
50
|
Davla S, Artiushin G, Li Y, Chitsaz D, Li S, Sehgal A, van Meyel DJ. AANAT1 functions in astrocytes to regulate sleep homeostasis. eLife 2020; 9:e53994. [PMID: 32955431 PMCID: PMC7550187 DOI: 10.7554/elife.53994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/18/2020] [Indexed: 01/23/2023] Open
Abstract
How the brain controls the need and acquisition of recovery sleep after prolonged wakefulness is an important issue in sleep research. The monoamines serotonin and dopamine are key regulators of sleep in mammals and in Drosophila. We found that the enzyme arylalkylamine N-acetyltransferase 1 (AANAT1) is expressed by Drosophila astrocytes and specific subsets of neurons in the adult brain. AANAT1 acetylates monoamines and inactivates them, and we found that AANAT1 limited the accumulation of serotonin and dopamine in the brain upon sleep deprivation (SD). Loss of AANAT1 from astrocytes, but not from neurons, caused flies to increase their daytime recovery sleep following overnight SD. Together, these findings demonstrate a crucial role for AANAT1 and astrocytes in the regulation of monoamine bioavailability and homeostatic sleep.
Collapse
Affiliation(s)
- Sejal Davla
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- BRaIN Program, Research Institute of the McGill University Health CentreMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Gregory Artiushin
- Neuroscience Graduate Group, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongjun Li
- Biology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Daryan Chitsaz
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Sally Li
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Donald J van Meyel
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- BRaIN Program, Research Institute of the McGill University Health CentreMontrealCanada
| |
Collapse
|