1
|
Tamagawa H, Fujii M, Togasaki K, Seino T, Kawasaki S, Takano A, Toshimitsu K, Takahashi S, Ohta Y, Matano M, Kawasaki K, Machida Y, Sekine S, Machinaga A, Sasai K, Kodama Y, Kakiuchi N, Ogawa S, Hirano T, Seno H, Kitago M, Kitagawa Y, Iwasaki E, Kanai T, Sato T. Wnt-deficient and hypoxic environment orchestrates squamous reprogramming of human pancreatic ductal adenocarcinoma. Nat Cell Biol 2024; 26:1759-1772. [PMID: 39232216 DOI: 10.1038/s41556-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human pancreatic cancer is characterized by the molecular diversity encompassing native duct-like and squamous cell-like identities, but mechanisms underlying squamous transdifferentiation have remained elusive. To comprehensively capture the molecular diversity of human pancreatic cancer, we here profiled 65 patient-derived pancreatic cancer organoid lines, including six adenosquamous carcinoma lines. H3K27me3-mediated erasure of the ductal lineage specifiers and hijacking of the TP63-driven squamous-cell programme drove squamous-cell commitment, providing survival benefit in a Wnt-deficient environment and hypoxic conditions. Gene engineering of normal pancreatic duct organoids revealed that GATA6 loss and a Wnt-deficient environment, in concert with genetic or hypoxia-mediated inactivation of KDM6A, facilitate squamous reprogramming, which in turn enhances environmental fitness. EZH2 inhibition counterbalanced the epigenetic bias and curbed the growth of adenosquamous cancer organoids. Our results demonstrate how an adversarial microenvironment dictates the molecular and histological evolution of human pancreatic cancer and provide insights into the principles and significance of lineage conversion in human cancer.
Collapse
Affiliation(s)
- Hiroki Tamagawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Seino
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Machida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Iwasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Sigafoos AN, Tolosa EJ, Carr RM, Fernandez-Barrena MG, Almada LL, Pease DR, Hogenson TL, Raja Arul GL, Mousavi F, Sen S, Vera RE, Marks DL, Flores LF, LaRue-Nolan KC, Wu C, Bamlet WR, Vrabel AM, Sicotte H, Schenk EL, Smyrk TC, Zhang L, Rabe KG, Oberg AL, Zaphiropoulos PG, Chevet E, Graham RP, Hagen CE, di Magliano MP, Elsawa SF, Pin CL, Mao J, McWilliams RR, Fernandez-Zapico ME. KRAS Promotes GLI2-Dependent Transcription during Pancreatic Carcinogenesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1677-1689. [PMID: 38896052 PMCID: PMC11232480 DOI: 10.1158/2767-9764.crc-23-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.
Collapse
Affiliation(s)
- Ashley N. Sigafoos
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Ezequiel J. Tolosa
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Ryan M. Carr
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Maite G. Fernandez-Barrena
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Luciana L. Almada
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - David R. Pease
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Tara L. Hogenson
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Glancis L. Raja Arul
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Fatemeh Mousavi
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
- Department of Oncology, University of Western Ontario, London, Canada.
| | - Sandhya Sen
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Renzo E. Vera
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - David L. Marks
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Luis F. Flores
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Kayla C. LaRue-Nolan
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wu
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - William R. Bamlet
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| | - Anne M. Vrabel
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| | - Hugues Sicotte
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| | - Erin L. Schenk
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Thomas C. Smyrk
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Lizhi Zhang
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Kari G. Rabe
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| | - Ann L. Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
| | | | - Eric Chevet
- Université de Rennes, CEDEX, Rennes, France.
| | | | | | - Marina P. di Magliano
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | - Sherine F. Elsawa
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire.
| | - Christopher L. Pin
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
- Department of Oncology, University of Western Ontario, London, Canada.
| | - Junhao Mao
- University of Massachusetts Medical School, Worcester, Massachusetts.
| | | | - Martin E. Fernandez-Zapico
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Yuan L, Liu Y, Fan L, Sun C, Ran S, Huang K, Shen Y. Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01118-5. [PMID: 38520499 DOI: 10.1007/s12033-024-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/25/2024]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyan Fan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266042, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sha Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
4
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
5
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a rising incidence and is one of the most lethal human malignancies. Much is known regarding the biology and pathophysiology of PDAC, but translating this knowledge to the clinic to improve patient outcomes has been challenging. In this Review, we discuss advances and practice-changing trials for PDAC. We briefly review therapeutic failures as well as ongoing research to refine the standard of care, including novel biomarkers and clinical trial designs. In addition, we highlight contemporary areas of research, including poly(ADP-ribose) polymerase inhibitors, KRAS-targeted therapies and immunotherapies. Finally, we discuss the future of pancreatic cancer research and areas for improvement in the next decade.
Collapse
Affiliation(s)
- Z Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Canel M, Sławińska AD, Lonergan DW, Kallor AA, Upstill-Goddard R, Davidson C, von Kriegsheim A, Biankin AV, Byron A, Alfaro J, Serrels A. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer. Gut 2023; 73:131-155. [PMID: 36977556 PMCID: PMC10715489 DOI: 10.1136/gutjnl-2022-327927] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Immunotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC) has shown limited efficacy. Poor CD8 T-cell infiltration, low neoantigen load and a highly immunosuppressive tumour microenvironment contribute to this lack of response. Here, we aimed to further investigate the immunoregulatory function of focal adhesion kinase (FAK) in PDAC, with specific emphasis on regulation of the type-II interferon response that is critical in promoting T-cell tumour recognition and effective immunosurveillance. DESIGN We combined CRISPR, proteogenomics and transcriptomics with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and validated findings using proteomic analysis of human patient-derived PDAC cell lines and analysis of publicly available human PDAC transcriptomics datasets. RESULTS Loss of PDAC cell-intrinsic FAK signalling promotes expression of the immunoproteasome and Major Histocompatibility Complex class-I (MHC-I), resulting in increased antigen diversity and antigen presentation by FAK-/- PDAC cells. Regulation of the immunoproteasome by FAK is a critical determinant of this response, optimising the physicochemical properties of the peptide repertoire for high affinity binding to MHC-I. Expression of these pathways can be further amplified in a STAT1-dependent manner via co-depletion of FAK and STAT3, resulting in extensive infiltration of tumour-reactive CD8 T-cells and further restraint of tumour growth. FAK-dependent regulation of antigen processing and presentation is conserved between mouse and human PDAC, but is lost in cells/tumours with an extreme squamous phenotype. CONCLUSION Therapies aimed at FAK degradation may unlock additional therapeutic benefit for the treatment of PDAC through increasing antigen diversity and promoting antigen presentation.
Collapse
Affiliation(s)
- Marta Canel
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - David W Lonergan
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ashwin Adrian Kallor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Rosie Upstill-Goddard
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Catherine Davidson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew V Biankin
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Malvi P, Chava S, Cai G, Hu K, Zhu LJ, Edwards YJK, Green MR, Gupta R, Wajapeyee N. HOXC6 drives a therapeutically targetable pancreatic cancer growth and metastasis pathway by regulating MSK1 and PPP2R2B. Cell Rep Med 2023; 4:101285. [PMID: 37951219 PMCID: PMC10694669 DOI: 10.1016/j.xcrm.2023.101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective therapies. Here, we demonstrate that the transcription factor, homeobox C6 (HOXC6), is overexpressed in most PDACs, and its inhibition blocks PDAC tumor growth and metastasis. HOXC6 transcriptionally activates tumor-promoting kinase MSK1 and suppresses tumor-inhibitory protein PPP2R2B in PDAC. HOXC6-induced PPP2R2B suppression causes mammalian target of rapamycin (mTOR) pathway activation, which facilitates PDAC growth. Also, MSK1 upregulation by HOXC6 is necessary for PDAC growth because of its ability to suppress apoptosis via its substrate DDX17. Combinatorial pharmacological inhibition of MSK1 and mTOR potently suppressed PDAC tumor growth and metastasis in PDAC mouse models. PDAC cells with acquired resistance to MSK1/mTOR-inhibitors displayed activated insulin-like growth factor 1 receptor (IGF1R) signaling and were successfully eradicated by IGF1R inhibitor. Furthermore, MEK inhibitor trametinib enhanced the efficacy of dual MSK1 and mTOR inhibition. Collectively, these results identify therapeutic vulnerabilities of PDAC and an approach to overcome acquired drug resistance to prolong therapeutic benefit.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Storrs EP, Chati P, Usmani A, Sloan I, Krasnick BA, Babbra R, Harris PK, Sachs CM, Qaium F, Chatterjee D, Wetzel C, Goedegebuure SP, Hollander T, Anthony H, Ponce J, Khaliq AM, Badiyan S, Kim H, Denardo DG, Lang GD, Cosgrove ND, Kushnir VM, Early DS, Masood A, Lim KH, Hawkins WG, Ding L, Fields RC, Das KK, Chaudhuri AA. High-dimensional deconstruction of pancreatic cancer identifies tumor microenvironmental and developmental stemness features that predict survival. NPJ Precis Oncol 2023; 7:105. [PMID: 37857854 PMCID: PMC10587349 DOI: 10.1038/s41698-023-00455-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Numerous cell states are known to comprise the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME). However, the developmental stemness and co-occurrence of these cell states remain poorly defined. Here, we performed single-cell RNA sequencing (scRNA-seq) on a cohort of treatment-naive PDAC time-of-diagnosis endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) samples (n = 25). We then combined these samples with surgical resection (n = 6) and publicly available samples to increase statistical power (n = 80). Following annotation into 25 distinct cell states, cells were scored for developmental stemness, and a customized version of the Ecotyper tool was used to identify communities of co-occurring cell states in bulk RNA-seq samples (n = 268). We discovered a tumor microenvironmental community comprised of aggressive basal-like malignant cells, tumor-promoting SPP1+ macrophages, and myofibroblastic cancer-associated fibroblasts associated with especially poor prognosis. We also found a developmental stemness continuum with implications for survival that is present in both malignant cells and cancer-associated fibroblasts (CAFs). We further demonstrated that high-dimensional analyses predictive of survival are feasible using standard-of-care, time-of-diagnosis EUS-FNB specimens. In summary, we identified tumor microenvironmental and developmental stemness characteristics from a high-dimensional gene expression analysis of PDAC using human tissue specimens, including time-of-diagnosis EUS-FNB samples. These reveal new connections between tumor microenvironmental composition, CAF and malignant cell stemness, and patient survival that could lead to better upfront risk stratification and more personalized upfront clinical decision-making.
Collapse
Affiliation(s)
- Erik P Storrs
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Prathamesh Chati
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abul Usmani
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian Sloan
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramandeep Babbra
- Division of Hematology & Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter K Harris
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chloe M Sachs
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Faridi Qaium
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deyali Chatterjee
- Division of Laboratory Medicine, Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Chris Wetzel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Hollander
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hephzibah Anthony
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Ponce
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Ateeq M Khaliq
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David G Denardo
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel D Lang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalie D Cosgrove
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vladimir M Kushnir
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dayna S Early
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashiq Masood
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kian-Huat Lim
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ding
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan C Fields
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Picard FSR, Lutz V, Brichkina A, Neuhaus F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI, Savai R, Prinz I, Waisman A, Moos S, Chang HD, Heinrich S, Bartsch DK, Buchholz M, Singh S, Tu M, Klein L, Bauer C, Liefke R, Burchert A, Chung HR, Mayer P, Gress TM, Lauth M, Gaida M, Huber M. IL-17A-producing CD8 + T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut 2023; 72:1510-1522. [PMID: 36759154 PMCID: PMC10359545 DOI: 10.1136/gutjnl-2022-327855] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant desmoplastic stroma composed of cancer-associated fibroblasts (CAF) and interspersed immune cells. A non-canonical CD8+ T-cell subpopulation producing IL-17A (Tc17) promotes autoimmunity and has been identified in tumours. Here, we evaluated the Tc17 role in PDAC. DESIGN Infiltration of Tc17 cells in PDAC tissue was correlated with patient overall survival and tumour stage. Wild-type (WT) or Il17ra-/- quiescent pancreatic stellate cells (qPSC) were exposed to conditional media obtained from Tc17 cells (Tc17-CM); moreover, co-culture of Tc17-CM-induced inflammatory (i)CAF (Tc17-iCAF) with tumour cells was performed. IL-17A/F-, IL-17RA-, RAG1-deficient and Foxn1nu/nu mice were used to study the Tc17 role in subcutaneous and orthotopic PDAC mouse models. RESULTS Increased abundance of Tc17 cells highly correlated with reduced survival and advanced tumour stage in PDAC. Tc17-CM induced iCAF differentiation as assessed by the expression of iCAF-associated genes via synergism of IL-17A and TNF. Accordingly, IL-17RA controlled the responsiveness of qPSC to Tc17-CM. Pancreatic tumour cells co-cultured with Tc17-iCAF displayed enhanced proliferation and increased expression of genes implicated in proliferation, metabolism and protection from apoptosis. Tc17-iCAF accelerated growth of mouse and human tumours in Rag1-/- and Foxn1nu/nu mice, respectively. Finally, Il17ra-expressed by fibroblasts was required for Tc17-driven tumour growth in vivo. CONCLUSIONS We identified Tc17 as a novel protumourigenic CD8+ T-cell subtype in PDAC, which accelerated tumour growth via IL-17RA-dependent stroma modification. We described a crosstalk between three cell types, Tc17, fibroblasts and tumour cells, promoting PDAC progression, which resulted in poor prognosis for patients.
Collapse
Affiliation(s)
| | - Veronika Lutz
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Anna Brichkina
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Felix Neuhaus
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Teresa Ruckenbrod
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Anna Hupfer
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Hartmann Raifer
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
- Core-Facility Flow Cytometry, Philipps-University Marburg, Marburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Petra Ina Pfefferle
- Comprehensive Biomaterial Bank Marburg (CBBMR), Philipps-Universitat Marburg, Marburg, Germany
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Justus Liebig Universitat, Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hyun-Dong Chang
- Institute of Biotechnology, Technische Universität, Berlin, Germany
- German Rheumatism Research Center (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Heinrich
- Department of Surgery, Johannes Gutenberg University, Mainz, Germany
| | - Detlef K Bartsch
- Division of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Shiv Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps University Marburg Faculty of Medicine, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Marburg, Germany
| | - Philipp Mayer
- Department of Diagnostic and Interventional Radiology, Heidelberg University, Heidelberg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Gaida
- Institute of Pathology, JGU Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, Mainz, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
10
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Yoo HB, Moon JW, Kim HR, Lee HS, Miyabayashi K, Park CH, Ge S, Zhang A, Tae YK, Sub Y, Park HW, Gee HY, Notta F, Tuveson DA, Bang S, Kim MY, Roe JS. A TEAD2-Driven Endothelial-Like Program Shapes Basal-Like Differentiation and Metastasis of Pancreatic Cancer. Gastroenterology 2023; 165:133-148.e17. [PMID: 36907523 PMCID: PMC10330865 DOI: 10.1053/j.gastro.2023.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.
Collapse
Affiliation(s)
- Hye-Been Yoo
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Jin Woo Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chan Hee Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sabrina Ge
- Princess Margaret Cancer Center, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Amy Zhang
- Princess Margaret Cancer Center, Toronto, Ontario, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Yoo Keung Tae
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yujin Sub
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Woo Park
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Faiyaz Notta
- Princess Margaret Cancer Center, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David A Tuveson
- Lustgarten Foundation Dedicated Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
12
|
Fushimi T, Kobayashi T, Itoh H. CEP164-GLI2 association ensures the hedgehog signaling in pancreatic cancer cells. Biochem Biophys Res Commun 2023; 666:179-185. [PMID: 37199136 DOI: 10.1016/j.bbrc.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Hedgehog (Hh) signaling is involved in multiple biological events including development and cancers. It is processed through primary cilia, which are assembled from the mother centriole in most mammalian cells. Pancreatic ductal adenocarcinoma (PDAC) cells generally lose their primary cilia; thus, the Hh signaling pathway is postulated to be independent of the organelle in PDAC. We previously reported that the mother centriole-specific protein, centrosomal protein 164 (CEP164), is required for centriolar localization of the GLI2 transcription factor in Hh signaling and for suppressing the expression of Hh-target genes. In this study, we demonstrated the physical interaction between CEP164 and GLI2, and delineated their binding modes at the mother centriole. The ectopically expressed GLI2-binding region of CEP164 reduced the centriolar GLI2 localization and enhanced the expression of Hh-target genes in PDAC cells. Furthermore, similar phenotypes were observed in PDAC cells lacking primary cilia. These results suggest that the CEP164-GLI2 association at the mother centriole is responsible for controlling Hh signaling, independent of primary cilia in PDAC cells.
Collapse
Affiliation(s)
- Toshihiko Fushimi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
13
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
14
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
15
|
Chen ZH, Zhang WY, Ye H, Guo YQ, Zhang K, Fang XM. A signature of immune-related genes correlating with clinical prognosis and immune microenvironment in sepsis. BMC Bioinformatics 2023; 24:20. [PMID: 36650470 PMCID: PMC9843880 DOI: 10.1186/s12859-023-05134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immune-related genes (IRGs) remain poorly understood in their function in the onset and progression of sepsis. METHODS GSE65682 was obtained from the Gene Expression Omnibus database. The IRGs associated with survival were screened for subsequent modeling using univariate Cox regression analysis and least absolute shrinkage and selection operator in the training cohort. Then, we assessed the reliability of the 7 IRGs signature's independent predictive value in the training and validation cohorts following the creation of a signature applying multivariable Cox regression analysis. After that, we utilized the E-MTAB-4451 external dataset in order to do an independent validation of the prognostic signature. Finally, the CIBERSORT algorithm and single-sample gene set enrichment analysis was utilized to investigate and characterize the properties of the immune microenvironment. RESULTS Based on 7 IRGs signature, patients could be separated into low-risk and high-risk groups. Patients in the low-risk group had a remarkably increased 28-day survival compared to those in the high-risk group (P < 0.001). In multivariable Cox regression analyses, the risk score calculated by this signature was an independent predictor of 28-day survival (P < 0.001). The signature's predictive ability was confirmed by receiver operating characteristic curve analysis with the area under the curve reaching 0.876 (95% confidence interval 0.793-0.946). Moreover, both the validation set and the external dataset demonstrated that the signature had strong clinical prediction performance. In addition, patients in the high-risk group were characterized by a decreased neutrophil count and by reduced inflammation-promoting function. CONCLUSION We developed a 7 IRGs signature as a novel prognostic marker for predicting sepsis patients' 28-day survival, indicating possibilities for individualized reasonable resource distribution of intensive care unit.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road 79, Hangzhou, 310003 China ,grid.415644.60000 0004 1798 6662Department of Anesthesiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Wen-Yuan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road 79, Hangzhou, 310003 China
| | - Hui Ye
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road 79, Hangzhou, 310003 China
| | - Yu-Qian Guo
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road 79, Hangzhou, 310003 China
| | - Kai Zhang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road 79, Hangzhou, 310003 China
| | - Xiang-Ming Fang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road 79, Hangzhou, 310003 China
| |
Collapse
|
16
|
Wisniewski L, Braak S, Klamer Z, Gao C, Shi C, Allen P, Haab BB. Heterogeneity of Glycan Biomarker Clusters as an Indicator of Recurrence in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522607. [PMID: 36711795 PMCID: PMC9881915 DOI: 10.1101/2023.01.05.522607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Outcomes following tumor resection vary dramatically among patients with pancreatic cancer. A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block tumor sections. The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.
Collapse
|
17
|
Wisniewski L, Braak S, Klamer Z, Gao C, Shi C, Allen P, Haab BB. Heterogeneity of glycan biomarker clusters as an indicator of recurrence in pancreatic cancer. Front Oncol 2023; 13:1135405. [PMID: 37124496 PMCID: PMC10130372 DOI: 10.3389/fonc.2023.1135405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Outcomes following tumor resection vary dramatically among patients with pancreatic ductal adenocarcinoma (PDAC). A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. Methods We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block sections of PDAC tumors collected from curative resections. Results The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Conclusion Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.
Collapse
Affiliation(s)
- Luke Wisniewski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Samuel Braak
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Zachary Klamer
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - ChongFeng Gao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Chanjuan Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Peter Allen
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brian B. Haab
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
- *Correspondence: Brian B. Haab,
| |
Collapse
|
18
|
Yang S, Tang W, Azizian A, Gaedcke J, Ströbel P, Wang L, Cawley H, Ohara Y, Valenzuela P, Zhang L, Lal T, Sinha S, Rupin E, Hanna N, Ghadimi BM, Hussain SP. Dysregulation of HNF1B/Clusterin axis enhances disease progression in a highly aggressive subset of pancreatic cancer patients. Carcinogenesis 2022; 43:1198-1210. [PMID: 36426859 PMCID: PMC10122429 DOI: 10.1093/carcin/bgac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy and is largely refractory to available treatments. Identifying key pathways associated with disease aggressiveness and therapeutic resistance may characterize candidate targets to improve patient outcomes. We used a strategy of examining the tumors from a subset of PDAC patient cohorts with the worst survival to understand the underlying mechanisms of aggressive disease progression and to identify candidate molecular targets with potential therapeutic significance. Non-negative matrix factorization (NMF) clustering, using gene expression profile, revealed three patient subsets. A 142-gene signature specific to the subset with the worst patient survival, predicted prognosis and stratified patients with significantly different survival in the test and validation cohorts. Gene-network and pathway analysis of the 142-gene signature revealed dysregulation of Clusterin (CLU) in the most aggressive patient subset in our patient cohort. Hepatocyte nuclear factor 1 b (HNF1B) positively regulated CLU, and a lower expression of HNF1B and CLU was associated with poor patient survival. Mechanistic and functional analyses revealed that CLU inhibits proliferation, 3D spheroid growth, invasiveness and epithelial-to-mesenchymal transition (EMT) in pancreatic cancer cell lines. Mechanistically, CLU enhanced proteasomal degradation of EMT-regulator, ZEB1. In addition, orthotopic transplant of CLU-expressing pancreatic cancer cells reduced tumor growth in mice. Furthermore, CLU enhanced sensitivity of pancreatic cancer cells representing aggressive patient subset, to the chemotherapeutic drug gemcitabine. Taken together, HNF1B/CLU axis negatively regulates pancreatic cancer progression and may potentially be useful in designing novel strategies to attenuate disease progression in PDAC patients.
Collapse
Affiliation(s)
- Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Azadeh Azizian
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Limin Wang
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Paloma Valenzuela
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Lin Zhang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Trisha Lal
- Howard University College of Medicine, Washington, DC, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, CCR, NCI, Bethesda, MD, USA
| | - Eythan Rupin
- Cancer Data Science Laboratory, CCR, NCI, Bethesda, MD, USA
| | - Nader Hanna
- Division of Surgical Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| |
Collapse
|
19
|
Espinet E, Klein L, Puré E, Singh SK. Mechanisms of PDAC subtype heterogeneity and therapy response. Trends Cancer 2022; 8:1060-1071. [PMID: 36117109 DOI: 10.1016/j.trecan.2022.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is clinically challenging due to late diagnosis and resistance to therapy. Two major PDAC subtypes have been defined based on malignant epithelial cell gene expression profiles; the basal-like/squamous subtype is associated with a worse prognosis and therapeutic resistance as opposed to the classical subtype. Subtype specification is not binary, consistent with plasticity of malignant cell phenotype. PDAC heterogeneity and plasticity reflect partly malignant cell-intrinsic transcriptional and epigenetic regulation. However, the stromal and immune compartments of the tumor microenvironment (TME) also determine disease progression and therapy response. It is evident that integration of intrinsic and extrinsic factors can dictate subtype heterogeneity, and thus, delineating the pathways involved can help to reprogram PDAC towards a classical/druggable subtype.
Collapse
Affiliation(s)
- Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany; Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
Baba T, Finetti P, Lillemoe KD, Warshaw AL, Fernández-Del Castillo C, Liss AS. A Lesson in Transcriptional Plasticity: Classical Identity Is Silenced, but Not Lost, in Pancreatic Ductal Adenocarcinoma Cell Lines. Gastroenterology 2022; 163:1450-1453.e3. [PMID: 35850199 PMCID: PMC9613505 DOI: 10.1053/j.gastro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and, Harvard Medical School, Boston, Massachusetts
| | - Pascal Finetti
- Department of Predictive Oncology, Cancer Research Center of Marseille, U1068 INSERM, UMR 7258 CNRS, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital and, Harvard Medical School, Boston, Massachusetts
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Ramezankhani R, Ghavidel AA, Rashidi S, Rojhannezhad M, Abolkheir HR, Mirhosseini M, Taleahmad S, Vosough M. Gender-related differentially expressed genes in pancreatic cancer: possible culprits or accomplices? Front Genet 2022; 13:966941. [DOI: 10.3389/fgene.2022.966941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer mortality worldwide, and its incidence and mortality rate in several regions is higher in male patients. Although numerous efforts have been made to enhance the clinical outcomes of existing therapeutic regimens, their efficiency is still low, and drug resistance usually occurs in many patients. In addition, the exact underlying molecular basis that makes PC slightly more prevalent among males remains unknown. Providing information regarding the possible association between gender and PC tumorigenesis may offer important clues for how certain molecular cross-talks can affect PC initiation and/or progression. In this study, we used several microarray expression data to identify the common up- and downregulated genes within one specific gender, which were also specified to have binding sites for androgen and/or estrogen receptors. Using functional enrichment analysis among the others, for all the gene sets found in this study, we have shed light on the plausible importance of the androgenic effectors in tumorigenesis, such as the androgen-regulated expression of the GLI transcription factor and the potential role of testosterone in the extracellular matrix (ECM)–cell interaction, which are known for their importance in tumorigenesis. Moreover, we demonstrated that the biological process axon guidance was highlighted regarding the upregulated genes in male patients. Overall, identification of gene candidates as the possible link between gender and PC progression or survival rates may help in developing strategies to reduce the incidence of this cancer.
Collapse
|
22
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|
24
|
Ravichandran M, Hu J, Cai C, Ward NP, Venida A, Foakes C, Kuljanin M, Yang A, Hennessey CJ, Yang Y, Desousa BR, Rademaker G, Staes AA, Cakir Z, Jain IH, Aguirre AJ, Mancias JD, Shen Y, DeNicola GM, Perera RM. Coordinated Transcriptional and Catabolic Programs Support Iron-Dependent Adaptation to RAS-MAPK Pathway Inhibition in Pancreatic Cancer. Cancer Discov 2022; 12:2198-2219. [PMID: 35771494 PMCID: PMC9444964 DOI: 10.1158/2159-8290.cd-22-0044] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/23/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition. SIGNIFICANCE Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jingjie Hu
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles Cai
- Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nathan P. Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anthony Venida
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Callum Foakes
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Connor J. Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yang Yang
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brandon R. Desousa
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gilles Rademaker
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annelot A.L. Staes
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zeynep Cakir
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isha H. Jain
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D. Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yin Shen
- Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Rushika M. Perera
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Zhong Z, Harmston N, Wood KC, Madan B, Virshup DM. A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. J Clin Invest 2022; 132:e156305. [PMID: 35536676 PMCID: PMC9197518 DOI: 10.1172/jci156305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Wnt signaling regulates the balance between stemness and differentiation in multiple tissues and in cancer. RNF43-mutant pancreatic cancers are dependent on Wnt production, and pharmacologic blockade of the pathway, e.g., by PORCN inhibitors, leads to tumor differentiation. However, primary resistance to these inhibitors has been observed. To elucidate potential mechanisms, we performed in vivo CRISPR screens in PORCN inhibitor-sensitive RNF43-mutant pancreatic cancer xenografts. As expected, genes in the Wnt pathway whose loss conferred drug resistance were identified, including APC, AXIN1, and CTNNBIP1. Unexpectedly, the screen also identified the histone acetyltransferase EP300 (p300), but not its paralog, CREBBP (CBP). We found that EP300 is silenced due to genetic alterations in all the existing RNF43-mutant pancreatic cancer cell lines that are resistant to PORCN inhibitors. Mechanistically, loss of EP300 directly downregulated GATA6 expression, thereby silencing the GATA6-regulated differentiation program and leading to a phenotypic transition from the classical subtype to the dedifferentiated basal-like/squamous subtype of pancreatic cancer. EP300 mutation and loss of GATA6 function bypassed the antidifferentiation activity of Wnt signaling, rendering these cancer cells resistant to Wnt inhibition.
Collapse
Affiliation(s)
- Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Department of Physiology, National University of Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Science Division, Yale–NUS College, Singapore
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology and
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Ozturk H, Cingoz H, Tufan T, Yang J, Adair SJ, Tummala KS, Kuscu C, Kinali M, Comertpay G, Nagdas S, Goudreau BJ, Luleyap HU, Bingul Y, Ware TB, Hwang WL, Hsu KL, Kashatus DF, Ting DT, Chandel NS, Bardeesy N, Bauer TW, Adli M. ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer. Dev Cell 2022; 57:1331-1346.e9. [PMID: 35508175 DOI: 10.1016/j.devcel.2022.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) cells reprogram their transcriptional and metabolic programs to survive the nutrient-poor tumor microenvironment. Through in vivo CRISPR screening, we discovered islet-2 (ISL2) as a candidate tumor suppressor that modulates aggressive PDA growth. Notably, ISL2, a nuclear and chromatin-associated transcription factor, is epigenetically silenced in PDA tumors and high promoter DNA methylation or its reduced expression correlates with poor patient survival. The exogenous ISL2 expression or CRISPR-mediated upregulation of the endogenous loci reduces cell proliferation. Mechanistically, ISL2 regulates the expression of metabolic genes, and its depletion increases oxidative phosphorylation (OXPHOS). As such, ISL2-depleted human PDA cells are sensitive to the inhibitors of mitochondrial complex I in vitro and in vivo. Spatial transcriptomic analysis shows heterogeneous intratumoral ISL2 expression, which correlates with the expression of critical metabolic genes. These findings nominate ISL2 as a putative tumor suppressor whose inactivation leads to increased mitochondrial metabolism that may be exploitable therapeutically.
Collapse
Affiliation(s)
- Harun Ozturk
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | - Harun Cingoz
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sara J Adair
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Meric Kinali
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | | | - Sarbajeet Nagdas
- Department of Cell, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Bernadette J Goudreau
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Yagmur Bingul
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Wiliam L Hwang
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - David F Kashatus
- Department of Cell, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - David T Ting
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Navdeep S Chandel
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pulmonary and Critical Care and Department of Biochemistry and Molecular Genetics, Chicago, IL 60611, USA
| | - Nabeel Bardeesy
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Todd W Bauer
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Mazhar Adli
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Robust Validation and Comprehensive Analysis of a Novel Signature Derived from Crucial Metabolic Pathways of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071825. [PMID: 35406597 PMCID: PMC8997486 DOI: 10.3390/cancers14071825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a dismal prognosis. PDAC have extensively reprogrammed metabolic characteristics influenced by interactions with normal cells, the effects of the tumor microenvironment and oncogene-mediated cell-autonomous pathways. In this study, we found that among all cancer hallmarks, metabolism played an important role in PDAC. Subsequently, a 16-gene prognostic signature was established with genes derived from crucial metabolic pathways, including glycolysis, bile acid metabolism, cholesterol homeostasis and xenobiotic metabolism (gbcx). The signature was used to distinguish overall survival in multiple cohorts from public datasets as well as a validation cohort followed up by us at Shanghai Cancer Center. Notably, the gbcx-related risk score (gbcxMRS) also accurately predicted poor PDAC subtypes, such as pure-basal-like and squamous types. At the same time, it also predicted PDAC recurrence. The gbcxMRS was also associated with immune cells, especially CD8 T cells, Treg cells. Furthermore, a high gbcxMRS may indicate high drug sensitivity to irinotecan and docetaxel and CTLA4 inhibitor immunotherapy. Taken together, these results indicate a robust and reproducible metabolic-related signature based on analysis of the overall pathogenesis of pancreatic cancer, which may have excellent prognostic and therapeutic implications for PDAC.
Collapse
|
28
|
Versemann L, Hessmann E, Ulisse M. Epigenetic Therapeutic Strategies to Target Molecular and Cellular Heterogeneity in Pancreatic Cancer. Visc Med 2022; 38:11-19. [PMID: 35291698 PMCID: PMC8874235 DOI: 10.1159/000519859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a major challenge in cancer medicine and is characterized by a 5-year survival rate of <10%. Compelling evidence suggests that the devastating disease outcome of PDAC patients is linked to a high degree of intra- and interindividual tumor heterogeneity, which is predominantly installed at the level of gene transcription. The cellular and molecular complexities of the disease explain the poor efficacy of "one-size-fits-all" therapeutic approaches in PDAC treatment and strongly argue for pursuing tailored therapeutic strategies to tackle PDAC. In a highly dynamic manner, a network of transcription factors and epigenetic regulatory proteins temporally and spatially control the diverse transcriptomic states determining PDAC heterogeneity. Given the reversibility of epigenetic processes, pharmacological intervention with key epigenetic drivers of PDAC heterogeneity appeals as a promising concept to shift the transcriptomic phenotype of PDAC toward a less aggressive and more chemosensible state. SUMMARY In this review, we discuss the chances and pitfalls of epigenetic treatment strategies in overcoming and shifting molecular and cellular PDAC heterogeneities in order to combat PDAC. To this end, we utilized the keywords "pancreatic cancer," "heterogeneity," and "epigenetics" to search for relevant articles on the database PubMed and selected interventional studies enrolling PDAC patients as displayed in clinicaltrails.gov to generate a synopsis of clinical trials involving epigenetic targeting. KEY MESSAGES Targeting epigenetic regulators in PDAC represents a promising concept to reprogram molecular and cellular tumor heterogeneities in the pancreas and hence to modulate the PDAC phenotype in favor of a less aggressive and more therapy susceptible disease course. However, we just start to understand the complex interactions of epigenetic regulators in controlling PDAC plasticity, and a clinical breakthrough utilizing epigenetic targeting in PDAC patients has not been achieved yet. Nevertheless, increasing translational efforts which consider the pleiotropic effects of targeting epigenetic regulation in different cellular compartments of the tumor and that focus on the utility and sequence of combinatory treatment approaches might pave the way toward novel epigenetic treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Ulisse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
29
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
31
|
Tu M, Klein L, Espinet E, Georgomanolis T, Wegwitz F, Li X, Urbach L, Danieli-Mackay A, Küffer S, Bojarczuk K, Mizi A, Günesdogan U, Chapuy B, Gu Z, Neesse A, Kishore U, Ströbel P, Hessmann E, Hahn SA, Trumpp A, Papantonis A, Ellenrieder V, Singh SK. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. NATURE CANCER 2021; 2:1185-1203. [PMID: 35122059 DOI: 10.1038/s43018-021-00258-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.
Collapse
Affiliation(s)
- Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | | | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaojuan Li
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kamil Bojarczuk
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
- Division of Cancer Epigenomics, DKFZ, Heidelberg, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
32
|
Gutiérrez ML, Muñoz-Bellvís L, Orfao A. Genomic Heterogeneity of Pancreatic Ductal Adenocarcinoma and Its Clinical Impact. Cancers (Basel) 2021; 13:4451. [PMID: 34503261 PMCID: PMC8430663 DOI: 10.3390/cancers13174451] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death due to limited advances in recent years in early diagnosis and personalized therapy capable of overcoming tumor resistance to chemotherapy. In the last decades, significant advances have been achieved in the identification of recurrent genetic and molecular alterations of PDAC including those involving the KRAS, CDKN2A, SMAD4, and TP53 driver genes. Despite these common genetic traits, PDAC are highly heterogeneous tumors at both the inter- and intra-tumoral genomic level, which might contribute to distinct tumor behavior and response to therapy, with variable patient outcomes. Despite this, genetic and genomic data on PDAC has had a limited impact on the clinical management of patients. Integration of genomic data for classification of PDAC into clinically defined entities-i.e., classical vs. squamous subtypes of PDAC-leading to different treatment approaches has the potential for significantly improving patient outcomes. In this review, we summarize current knowledge about the most relevant genomic subtypes of PDAC including the impact of distinct patterns of intra-tumoral genomic heterogeneity on the classification and clinical and therapeutic management of PDAC.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| | - Luis Muñoz-Bellvís
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
- Service of General and Gastrointestinal Surgery, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| |
Collapse
|
33
|
Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021; 35:940-962. [PMID: 34117095 PMCID: PMC8247606 DOI: 10.1101/gad.348523.121] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the United States and has only recently achieved a 5-yr survival rate of 10%. This dismal prognosis reflects the remarkable capacity of PDAC to effectively adapt to and resist therapeutic intervention. In this review, we discuss recent advances in our understanding of the biological underpinnings of PDAC and their implications as targetable vulnerabilities in this highly lethal disease.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregor Werba
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
34
|
Venkat S, Alahmari AA, Feigin ME. Drivers of Gene Expression Dysregulation in Pancreatic Cancer. Trends Cancer 2021; 7:594-605. [PMID: 33618999 PMCID: PMC8217125 DOI: 10.1016/j.trecan.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a poor prognosis. The functional consequences of common genetic aberrations and their roles in treatment strategies have been extensively reviewed. In addition to these genomic aberrations, consideration of non-genetic drivers of altered oncogene expression is essential to account for the diversity in PDAC phenotypes. In this review we seek to assess our current understanding of mechanisms of gene expression dysregulation. We focus on four drivers of gene expression dysregulation, including mutations, transcription factors, epigenetic regulators, and RNA stability/isoform regulation, in the context of PDAC pathogenesis. Recent studies provide much-needed insight into the role of gene expression dysregulation in dissecting tumor heterogeneity and stratifying patients for the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Medical Laboratory Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
35
|
Miyabayashi K, Nakagawa H, Koike K. Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives. Front Oncol 2021; 11:682872. [PMID: 34249730 PMCID: PMC8260689 DOI: 10.3389/fonc.2021.682872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is the most common lethal malignancy, with little improvement in patient outcomes over the decades. The development of early detection methods and effective therapeutic strategies are needed to improve the prognosis of patients with this disease. Recent advances in cancer genomics have revealed the genetic landscape of pancreatic cancer, and clinical trials are currently being conducted to match the treatment to underlying mutations. Liquid biopsy-based diagnosis is a promising method to start personalized treatment. In addition to genome-based medicine, personalized models have been studied as a tool to test candidate drugs to select the most efficacious treatment. The innovative three-dimensional organoid culture platform, as well as patient-derived xenografts can be used to conduct genomic and functional studies to enable personalized treatment approaches. Combining genome-based medicine with drug screening based on personalized models may fulfill the promise of precision medicine for pancreatic cancer.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
36
|
Kim HR, Yim J, Yoo HB, Lee SE, Oh S, Jung S, Hwang CI, Shin DM, Kim T, Yoo KH, Kim YS, Lee HW, Roe JS. EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer. NAR Cancer 2021; 3:zcab023. [PMID: 34316710 PMCID: PMC8210884 DOI: 10.1093/narcan/zcab023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells utilize epigenetic alterations to acquire autonomous capabilities for tumor maintenance. Here, we show that pancreatic ductal adenocarcinoma (PDA) cells utilize super-enhancers (SEs) to activate the transcription factor EVI1 (ecotropic viral integration site 1) gene, resulting in activation of an EVI1-dependent transcription program conferring PDA tumorigenesis. Our data indicate that SE is the vital cis-acting element to maintain aberrant EVI1 transcription in PDA cells. Consistent with disease progression and inferior survival outcomes of PDA patients, we further show that EVI1 upregulation is a major cause of aggressive tumor phenotypes. Specifically, EVI1 promotes anchorage-independent growth and motility in vitro and enhances tumor propagation in vivo. Mechanistically, EVI1-dependent activation of tumor-promoting gene expression programs through the stepwise configuration of the active enhancer chromatin attributes to these phenotypes. In sum, our findings support the premise that EVI1 is a crucial driver of oncogenic transcription programs in PDA cells. Further, we emphasize the instructive role of epigenetic aberrancy in establishing PDA tumorigenesis.
Collapse
Affiliation(s)
- Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Juhye Yim
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Hye-Been Yoo
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Seung Eon Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Sumin Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sungju Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, South Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - You-Sun Kim
- Department of Biochemistry, School of Medicine, Ajou University, Suwon 16499, South Korea
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
37
|
Hendley AM, Rao AA, Leonhardt L, Ashe S, Smith JA, Giacometti S, Peng XL, Jiang H, Berrios DI, Pawlak M, Li LY, Lee J, Collisson EA, Anderson MS, Fragiadakis GK, Yeh JJ, Ye CJ, Kim GE, Weaver VM, Hebrok M. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. eLife 2021; 10:e67776. [PMID: 34009124 PMCID: PMC8184217 DOI: 10.7554/elife.67776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.
Collapse
Affiliation(s)
- Audrey M Hendley
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Arjun A Rao
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Leonhardt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer A Smith
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Simone Giacometti
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Xianlu L Peng
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - David I Berrios
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's HospitalBostonUnited States
| | - Lucia Y Li
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jonghyun Lee
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, Division of Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Surgery, University of North Carolina at Chapel HillChapel HillUnited States
| | - Chun Jimmie Ye
- Parker Institute for Cancer ImmunotherapySan FranciscoUnited States
| | - Grace E Kim
- Department of Pathology, University of California, San FranciscoSan FranciscoUnited States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
38
|
Camolotto SA, Belova VK, Torre-Healy L, Vahrenkamp JM, Berrett KC, Conway H, Shea J, Stubben C, Moffitt R, Gertz J, Snyder EL. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut 2021; 70:900-914. [PMID: 32826305 PMCID: PMC7945295 DOI: 10.1136/gutjnl-2020-321316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival of less than 5%. Transcriptomic analysis has identified two clinically relevant molecular subtypes of PDAC: classical and basal-like. The classical subtype is characterised by a more favourable prognosis and better response to chemotherapy than the basal-like subtype. The classical subtype also expresses higher levels of lineage specifiers that regulate endodermal differentiation, including the nuclear receptor hepatocyte nuclear factor 4 α (HNF4α). The objective of this study is to evaluate the role of HNF4α, SIX4 and SIX1 in regulating the growth and molecular subtype of PDAC. DESIGN We manipulate the expression of HNF4α, SIX4 and SIX1 in multiple in vitro and in vivo PDAC models. We determine the consequences of manipulating these genes on PDAC growth, differentiation and molecular subtype using functional assays, gene expression analysis and cross-species comparisons with human datasets. RESULTS We show that HNF4α restrains tumour growth and drives tumour cells toward an epithelial identity. Gene expression analysis of murine models and human tumours shows that HNF4α activates expression of genes associated with the classical subtype. HNF4α also directly represses SIX4 and SIX1, two mesodermal/neuronal lineage specifiers expressed in the basal-like subtype. Finally, SIX4 and SIX1 drive proliferation and regulate differentiation in HNF4α-negative PDAC. CONCLUSION Our data show that HNF4α regulates the growth and molecular subtype of PDAC by multiple mechanisms, including activation of the classical gene expression programme and repression of SIX4 and SIX1, which may represent novel dependencies of the basal-like subtype.
Collapse
Affiliation(s)
- Soledad A Camolotto
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Veronika K Belova
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Luke Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Hannah Conway
- HCI Clinical Trials Operations, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Richard Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Eric L Snyder
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
39
|
Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, Finkernagel F, Nist A, Stiewe T, Adhikary T, Diederich W, Lauth M. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel) 2021; 13:cancers13081908. [PMID: 33921042 PMCID: PMC8071409 DOI: 10.3390/cancers13081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Elevated GLI1 expression levels are associated with improved survival in NB patients and GLI1 overexpression exerts tumor-suppressive traits in cultured NB cells. However, NB cells are protected from increased GLI1 levels as they have lost the ability to form primary cilia and transduce Hedgehog signals. This study identifies an isoxazole (ISX) molecule with primary cilia-independent GLI1-activating properties, which blocks NB cell growth. Mechanistically, ISX combines the removal of GLI3 repressor and the inhibition of class I HDACs, providing proof-of-principle evidence that small molecule-mediated activation of GLI1 could be harnessed therapeutically in the future. Abstract Although being rare in absolute numbers, neuroblastoma (NB) represents the most frequent solid tumor in infants and young children. Therapy options and prognosis are comparably good for NB patients except for the high risk stage 4 class. Particularly in adolescent patients with certain genetic alterations, 5-year survival rates can drop below 30%, necessitating the development of novel therapy approaches. The developmentally important Hedgehog (Hh) pathway is involved in neural crest differentiation, the cell type being causal in the etiology of NB. However, and in contrast to its function in some other cancer types, Hedgehog signaling and its transcription factor GLI1 exert tumor-suppressive functions in NB, rendering GLI1 an interesting new candidate for anti-NB therapy. Unfortunately, the therapeutic concept of pharmacological Hh/GLI1 pathway activation is difficult to implement as NB cells have lost primary cilia, essential organelles for Hh perception and activation. In order to bypass this bottleneck, we have identified a GLI1-activating small molecule which stimulates endogenous GLI1 production without the need for upstream Hh pathway elements such as Smoothened or primary cilia. This isoxazole compound potently abrogates NB cell proliferation and might serve as a starting point for the development of a novel class of NB-suppressive molecules.
Collapse
Affiliation(s)
- Anke Koeniger
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Anna Brichkina
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Iris Nee
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
| | - Lukas Dempwolff
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
| | - Anna Hupfer
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Ilya Galperin
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Florian Finkernagel
- Center for Tumor- and Immune Biology, Bioinformatics Core Facility, Philipps University Marburg, 35043 Marburg, Germany;
| | - Andrea Nist
- Member of the German Center for Lung Research (DZL), Center for Tumor- and Immune Biology, Genomics Core Facility, Institute of Molecular Oncology, Philipps University Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Member of the German Center for Lung Research (DZL), Center for Tumor- and Immune Biology, Genomics Core Facility, Institute of Molecular Oncology, Philipps University Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Till Adhikary
- Institute for Biomedical Informatics and Biostatistics, Philipps University Marburg, 35043 Marburg, Germany;
| | - Wibke Diederich
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
- Core Facility Medicinal Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
- Correspondence:
| |
Collapse
|
40
|
GLI1/GLI2 functional interplay is required to control Hedgehog/GLI targets gene expression. Biochem J 2021; 477:3131-3145. [PMID: 32766732 DOI: 10.1042/bcj20200335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.
Collapse
|
41
|
Ma J, Zhou C, Chen X. miR-636 inhibits EMT, cell proliferation and cell cycle of ovarian cancer by directly targeting transcription factor Gli2 involved in Hedgehog pathway. Cancer Cell Int 2021; 21:64. [PMID: 33472614 PMCID: PMC7819188 DOI: 10.1186/s12935-020-01725-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
| | - Chunxia Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China
| | - Xuejun Chen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
42
|
Topham JT, Karasinska JM, Lee MKC, Csizmok V, Williamson LM, Jang GH, Denroche RE, Tsang ES, Kalloger SE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Notta F, Loree JM, Wilson JM, Bathe O, Tang PA, Goodwin R, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Renouf DJ, Schaeffer DF. Subtype-Discordant Pancreatic Ductal Adenocarcinoma Tumors Show Intermediate Clinical and Molecular Characteristics. Clin Cancer Res 2021; 27:150-157. [PMID: 33051307 DOI: 10.1158/1078-0432.ccr-20-2831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE RNA-sequencing-based subtyping of pancreatic ductal adenocarcinoma (PDAC) has been reported by multiple research groups, each using different methodologies and patient cohorts. "Classical" and "basal-like" PDAC subtypes are associated with survival differences, with basal-like tumors associated with worse prognosis. We amalgamated various PDAC subtyping tools to evaluate the potential of such tools to be reliable in clinical practice. EXPERIMENTAL DESIGN Sequencing data for 574 PDAC tumors was obtained from prospective trials and retrospective public databases. Six published PDAC subtyping strategies (Moffitt regression tools, clustering-based Moffitt, Collisson, Bailey, and Karasinska subtypes) were used on each sample, and results were tested for subtype call consistency and association with survival. RESULTS Basal-like and classical subtype calls were concordant in 88% of patient samples, and survival outcomes were significantly different (P < 0.05) between prognostic subtypes. Twelve percent of tumors had subtype-discordant calls across the different methods, showing intermediate survival in univariate and multivariate survival analyses. Transcriptional profiles compatible with that of a hybrid subtype signature were observed for subtype-discordant tumors, in which classical and basal-like genes were concomitantly expressed. Subtype-discordant tumors showed intermediate molecular characteristics, including subtyping gene expression (P < 0.0001) and mutant KRAS allelic imbalance (P < 0.001). CONCLUSIONS Nearly 1 in 6 patients with PDAC have tumors that fail to reliably fall into the classical or basal-like PDAC subtype categories, based on two regression tools aimed toward clinical practice. Rather, these patient tumors show intermediate prognostic and molecular traits. We propose close consideration of the non-binary nature of PDAC subtypes for future incorporation of subtyping into clinical practice.
Collapse
Affiliation(s)
| | | | - Michael K C Lee
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Erica S Tsang
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Oliver Bathe
- The University of Calgary, Calgary, Alberta, Canada
| | | | - Rachel Goodwin
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Janessa Laskin
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Tan Z, Lei Y, Xu J, Shi S, Hua J, Zhang B, Meng Q, Liu J, Zhang Y, Wei M, Yu X, Liang C. The value of a metabolic reprogramming-related gene signature for pancreatic adenocarcinoma prognosis prediction. Aging (Albany NY) 2020; 12:24228-24241. [PMID: 33226369 PMCID: PMC7762467 DOI: 10.18632/aging.104134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. Extensive enhancement of glycolysis and reprogramming of lipid metabolism are both associated with the development and progression of PDAC. Previous studies have suggested that various gene signatures could convey prognostic information about PDAC. However, the use of these signatures has some limitations, perhaps because of a lack of knowledge regarding the genetic and energy supply backgrounds of PDAC. Therefore, we conducted multi-mRNA analysis based on metabolic reprogramming to identify novel signatures for accurate prognosis prediction in PDAC patients. In this study, a three-gene signature comprising MET, ENO3 and CD36 was established to predict the overall survival of PDAC patients. The three-gene signature could divide patients into high- and low-risk groups by disparities in overall survival verified by log-rank test in two independent validation cohorts and could differentiate tumors from normal tissues with excellent accuracy in four Gene Expression Omnibus (GEO) cohorts. We also found a positive correlation between the risk score of the gene signature and inherited germline mutations in PDAC predisposition genes. A glycolysis and lipid metabolism-based gene nomogram and corresponding calibration curves showed significant performance for survival prediction in the TCGA-PDAC dataset. The high-risk designation was closely connected with oncological signatures and multiple aggressiveness-related pathways, as determined by gene set enrichment analysis (GSEA). In summary, our study developed a three-gene signature and established a prognostic nomogram that objectively predicted overall survival in PDAC. The findings could provide a reference for the prediction of overall survival and could aid in individualized management for PDAC patients.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yubin Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Shao J, Xu Y, Li H, Chen L, Wang W, Shen D, Chen J. LMCD1 antisense RNA 1 (LMCD1-AS1) potentiates thyroid cancer cell growth and stemness via a positive feedback loop of LMCD1-AS1/miR-1287-5p/GLI2. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1508. [PMID: 33313253 PMCID: PMC7729329 DOI: 10.21037/atm-20-7182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background LMCD1 antisense RNA 1 (LMCD1-AS1) is a certified oncogene in several tumour types. However, its role in thyroid cancer (THCA) remains unknown. Methods The expression level of LMCD1-AS1 in THCA cells and the normal control cell was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of LMCD1-AS1 knockdown on cell proliferation, migration and apoptosis were detected by colony formation assay, EdU assay, wound healing assay and TUNEL assay. Sphere formation assay was applied to assess sphere formation ability of THCA cells. Bioinformatics analysis and mechanism experiments, including ChIP assay, RIP assay and luciferase reporter assay were conducted to evaluate the downstream and upstream molecular mechanisms of LMCD-AS1. Results A marked up-regulation of LMCD1-AS1 in THCA cells relative to normal control cells was found. LMCD1-AS1 silencing suppressed proliferation and migration but induced apoptosis in THCA cells. Moreover, LMCD1-AS1 knockdown reduced the sphere formation capacity of THCA cells. The transcriptional factor GLI family zinc finger 2 (GLI2) binds to LMCD1-AS1, which contributed to LMCD1-AS1 up-regulation in THCA cells. Cytoplasmic LMCD1-AS1 sponged a shared microRNA between LMCD1-AS1 and GLI2. GLI2 was inhibited bymiR-1287-5p and disinhibited by LMCD1-AS1. Conclusions LMCD1-AS1exerts pro-tumorigenic function through sponging miR-1287-5p to elevate GLI2 expression in THCA development, constituting a feedback loop of LMCD1-AS1/miR-1287-5p/GLI2.
Collapse
Affiliation(s)
- Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Li
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjuan Wang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Danfeng Shen
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Gabitova-Cornell L, Surumbayeva A, Peri S, Franco-Barraza J, Restifo D, Weitz N, Ogier C, Goldman AR, Hartman TR, Francescone R, Tan Y, Nicolas E, Shah N, Handorf EA, Cai KQ, O'Reilly AM, Sloma I, Chiaverelli R, Moffitt RA, Khazak V, Fang CY, Golemis EA, Cukierman E, Astsaturov I. Cholesterol Pathway Inhibition Induces TGF-β Signaling to Promote Basal Differentiation in Pancreatic Cancer. Cancer Cell 2020; 38:567-583.e11. [PMID: 32976774 PMCID: PMC7572882 DOI: 10.1016/j.ccell.2020.08.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Oncogenic transformation alters lipid metabolism to sustain tumor growth. We define a mechanism by which cholesterol metabolism controls the development and differentiation of pancreatic ductal adenocarcinoma (PDAC). Disruption of distal cholesterol biosynthesis by conditional inactivation of the rate-limiting enzyme Nsdhl or treatment with cholesterol-lowering statins switches glandular pancreatic carcinomas to a basal (mesenchymal) phenotype in mouse models driven by KrasG12D expression and homozygous Trp53 loss. Consistently, PDACs in patients receiving statins show enhanced mesenchymal features. Mechanistically, statins and NSDHL loss induce SREBP1 activation, which promotes the expression of Tgfb1, enabling epithelial-mesenchymal transition. Evidence from patient samples in this study suggests that activation of transforming growth factor β signaling and epithelial-mesenchymal transition by cholesterol-lowering statins may promote the basal type of PDAC, conferring poor outcomes in patients.
Collapse
Affiliation(s)
- Linara Gabitova-Cornell
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aizhan Surumbayeva
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Janusz Franco-Barraza
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Diana Restifo
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nicole Weitz
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Charline Ogier
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aaron R Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Tiffiney R Hartman
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Ralph Francescone
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yinfei Tan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Neelima Shah
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elizabeth A Handorf
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alana M O'Reilly
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Ido Sloma
- Champions Oncology, Inc., Hackensack, NJ, USA
| | | | - Richard A Moffitt
- Department of Biomedical Informatics, Stony Brook Cancer Center, Stony Brook, NY, USA
| | | | - Carolyn Y Fang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Edna Cukierman
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Igor Astsaturov
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
46
|
Miyabayashi K, Baker LA, Deschênes A, Traub B, Caligiuri G, Plenker D, Alagesan B, Belleau P, Li S, Kendall J, Jang GH, Kawaguchi RK, Somerville TDD, Tiriac H, Hwang CI, Burkhart RA, Roberts NJ, Wood LD, Hruban RH, Gillis J, Krasnitz A, Vakoc CR, Wigler M, Notta F, Gallinger S, Park Y, Tuveson DA. Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discov 2020; 10:1566-1589. [PMID: 32703770 PMCID: PMC7664990 DOI: 10.1158/2159-8290.cd-20-0133] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Koji Miyabayashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benno Traub
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Microbiology and Molecular Genetics, University of California, Davis, California
| | - Richard A Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas J Roberts
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura D Wood
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
47
|
Roger E, Gout J, Arnold F, Beutel AK, Müller M, Abaei A, Barth TFE, Rasche V, Seufferlein T, Perkhofer L, Kleger A. Maintenance Therapy for ATM-Deficient Pancreatic Cancer by Multiple DNA Damage Response Interferences after Platinum-Based Chemotherapy. Cells 2020; 9:cells9092110. [PMID: 32948057 PMCID: PMC7563330 DOI: 10.3390/cells9092110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine in treating pancreatic ductal adenocarcinoma (PDAC) is still in its infancy, albeit PDAC-related deaths are projected to rise over the next decade. Only recently, maintenance therapy with the PARP inhibitor olaparib showed improved progression-free survival in germline BRCA1/2-mutated PDAC patients after platinum-based induction for the first time. Transferability of such a concept to other DNA damage response (DDR) genes remains unclear. Here, we conducted a placebo-controlled, three-armed preclinical trial to evaluate the efficacy of multi-DDR interference (mDDRi) as maintenance therapy vs. continuous FOLFIRINOX treatment, implemented with orthotopically transplanted ATM-deficient PDAC cell lines. Kaplan–Meier analysis, cross-sectional imaging, histology, and in vitro analysis served as analytical readouts. Median overall survival was significantly longer in the mDDRi maintenance arm compared to the maintained FOLFIRINOX treatment. This survival benefit was mirrored in the highest DNA-damage load, accompanied by superior disease control and reduced metastatic burden. In vitro analysis suggests FOLFIRINOX-driven selection of invasive subclones, erased by subsequent mDDRi treatment. Collectively, this preclinical trial substantiates mDDRi in a maintenance setting as a novel therapeutic option and extends the concept to non-germline BRCA1/2-mutant PDAC.
Collapse
Affiliation(s)
- Elodie Roger
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Johann Gout
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Alica K. Beutel
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Alireza Abaei
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany; (A.A.); (V.R.)
| | - Thomas F. E. Barth
- Institute of Pathology, University Medical Center Ulm, 89081 Ulm, Germany;
| | - Volker Rasche
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany; (A.A.); (V.R.)
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
- Correspondence: (L.P.); (A.K.); Tel.: +49-731-500 44769 (L.P.); +49-731-500 44728 (A.K.)
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (E.R.); (J.G.); (F.A.); (A.K.B.); (T.S.)
- Correspondence: (L.P.); (A.K.); Tel.: +49-731-500 44769 (L.P.); +49-731-500 44728 (A.K.)
| |
Collapse
|
48
|
Patil S, Steuber B, Kopp W, Kari V, Urbach L, Wang X, Küffer S, Bohnenberger H, Spyropoulou D, Zhang Z, Versemann L, Bösherz MS, Brunner M, Gaedcke J, Ströbel P, Zhang JS, Neesse A, Ellenrieder V, Singh SK, Johnsen SA, Hessmann E. EZH2 Regulates Pancreatic Cancer Subtype Identity and Tumor Progression via Transcriptional Repression of GATA6. Cancer Res 2020; 80:4620-4632. [PMID: 32907838 DOI: 10.1158/0008-5472.can-20-0672] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Recent studies have thoroughly described genome-wide expression patterns defining molecular subtypes of pancreatic ductal adenocarcinoma (PDAC), with different prognostic and predictive implications. Although the reversible nature of key regulatory transcription circuits defining the two extreme PDAC subtype lineages "classical" and "basal-like" suggests that subtype states are not permanently encoded but underlie a certain degree of plasticity, pharmacologically actionable drivers of PDAC subtype identity remain elusive. Here, we characterized the mechanistic and functional implications of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in controlling PDAC plasticity, dedifferentiation, and molecular subtype identity. Utilization of transgenic PDAC models and human PDAC samples linked EZH2 activity to PDAC dedifferentiation and tumor progression. Combined RNA- and chromatin immunoprecipitation sequencing studies identified EZH2 as a pivotal suppressor of differentiation programs in PDAC and revealed EZH2-dependent transcriptional repression of the classical subtype defining transcription factor Gata6 as a mechanistic basis for EZH2-dependent PDAC progression. Importantly, genetic or pharmacologic depletion of EZH2 sufficiently increased GATA6 expression, thus inducing a gene signature shift in favor of a less aggressive and more therapy-susceptible, classical PDAC subtype state. Consistently, abrogation of GATA6 expression in EZH2-deficient PDAC cells counteracted the acquisition of classical gene signatures and rescued their invasive capacities, suggesting that GATA6 derepression is critical to overcome PDAC progression in the context of EZH2 inhibition. Together, our findings link the EZH2-GATA6 axis to PDAC subtype identity and uncover EZH2 inhibition as an appealing strategy to induce subtype-switching in favor of a less aggressive PDAC phenotype. SIGNIFICANCE: This study highlights the role of EZH2 in PDAC progression and molecular subtype identity and suggests EZH2 inhibition as a strategy to recalibrate GATA6 expression in favor of a less aggressive disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4620/F1.large.jpg.
Collapse
Affiliation(s)
- Shilpa Patil
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Benjamin Steuber
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Dimitra Spyropoulou
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Marius Brunner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Jin-San Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, PR China.,Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany.,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
49
|
Ding LY, Hou YC, Kuo IY, Hsu TY, Tsai TC, Chang HW, Hsu WY, Tsao CC, Tian CC, Wang PS, Wang HC, Lee CT, Wang YC, Lin SH, Hughes MW, Chuang WJ, Lu PJ, Shan YS, Huang PH. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. Clin Epigenetics 2020; 12:87. [PMID: 32552862 PMCID: PMC7301993 DOI: 10.1186/s13148-020-00878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer subtype switching, which involves unclear cancer cell origin, cell fate decision, and transdifferentiation of cells within a confined tumor microenvironment, remains a major problem in pancreatic cancer (PDA). Results By analyzing PDA subtypes in The Cancer Genome Atlas, we identified that epigenetic silencing of apoptosis-associated tyrosine kinase (AATK) inversely was correlated with mRNA expression and was enriched in the quasi-mesenchymal cancer subtype. By comparing early mouse pancreatic lesions, the non-invasive regions showed AATK co-expression in cells with acinar-to-ductal metaplasia, nuclear VAV1 localization, and cell cycle suppression; but the invasive lesions conversely revealed diminished AATK expression in those with poorly differentiated histology, cytosolic VAV1 localization, and co-expression of p63 and HNF1α. Transiently activated AATK initiates acinar differentiation into a ductal cell fate to establish apical-basal polarization in acinar-to-ductal metaplasia. Silenced AATK and ectopically expressed p63 and HNF1α allow the proliferation of ductal PanINs in mice. Conclusion Epigenetic silencing of AATK regulates the cellular transdifferentiation, proliferation, and cell cycle progression in converting PDA-subtypes.
Collapse
Affiliation(s)
- Li-Yun Ding
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yi Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Ching Tsai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Wei Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chieh Tsao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Chen Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Shun Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael W Hughes
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
50
|
Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, Wellik DM, Crawford HC, Pasca di Magliano M. Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cell Mol Gastroenterol Hepatol 2020; 10:581-599. [PMID: 32454112 PMCID: PMC7399194 DOI: 10.1016/j.jcmgh.2020.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Although the healthy pancreas consists mostly of epithelial cells, pancreatic cancer and the precursor lesions known as pancreatic intraepithelial neoplasia, are characterized by an extensive accumulation of fibroinflammatory stroma that includes a substantial and heterogeneous fibroblast population. The cellular origin of fibroblasts within the stroma has not been determined. Here, we show that the Gli1 and Hoxb6 markers label distinct fibroblast populations in the healthy mouse pancreas. We then set out to determine whether these distinct fibroblast populations expanded during carcinogenesis. METHODS We developed genetically engineered models using a dual-recombinase approach that allowed us to induce pancreatic cancer formation through codon-optimized Flp recombinase-driven epithelial recombination of Kirsten rat sarcoma viral oncogene homolog while labeling Gli1+ or Hoxb6+ fibroblasts in an inducible manner. By using these models, we lineage-traced these 2 fibroblast populations during the process of carcinogenesis. RESULTS Although in the healthy pancreas Gli1+ fibroblasts and Hoxb6+ fibroblasts are present in similar numbers, they contribute differently to the stroma in carcinogenesis. Namely, Gli1+ fibroblasts expand dramatically, whereas Hoxb6+ cells do not. CONCLUSIONS Fibroblasts present in the healthy pancreas expand during carcinogenesis, but with a different prevalence for different subtypes. Here, we compared Gli1+ and Hoxb6+ fibroblasts and found only Gli1+ expanded to contribute to the stroma during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Paloma E Garcia
- Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan
| | - Maeva Adoumie
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Esther C Kim
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yara S El-Tawil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Amara Z Shaikh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Ben L Allen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Deneen M Wellik
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|