1
|
Wang Z, Di Tullio RW, Rooke S, Balasubramanian V. Time Makes Space: Emergence of Place Fields in Networks Encoding Temporally Continuous Sensory Experiences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607484. [PMID: 39185149 PMCID: PMC11343115 DOI: 10.1101/2024.08.11.607484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The vertebrate hippocampus is believed to use recurrent connectivity in area CA3 to support episodic memory recall from partial cues. This brain area also contains place cells, whose location-selective firing fields implement maps supporting spatial memory. Here we show that place cells emerge in networks trained to remember temporally continuous sensory episodes. We model CA3 as a recurrent autoencoder that recalls and reconstructs sensory experiences from noisy and partially occluded observations by agents traversing simulated arenas. The agents move in realistic trajectories modeled from rodents and environments are modeled as continuously varying, high-dimensional, sensory experience maps (spatially smoothed Gaussian random fields). Training our autoencoder to accurately pattern-complete and reconstruct sensory experiences with a constraint on total activity causes spatially localized firing fields, i.e., place cells, to emerge in the encoding layer. The emergent place fields reproduce key aspects of hippocampal phenomenology: a) remapping (maintenance of and reversion to distinct learned maps in different environments), implemented via repositioning of experience manifolds in the network's hidden layer, b) orthogonality of spatial representations in different arenas, c) robust place field emergence in differently shaped rooms, with single units showing multiple place fields in large or complex spaces, and d) slow representational drift of place fields. We argue that these results arise because continuous traversal of space makes sensory experience temporally continuous. We make testable predictions: a) rapidly changing sensory context will disrupt place fields, b) place fields will form even if recurrent connections are blocked, but reversion to previously learned representations upon remapping will be abolished, c) the dimension of temporally smooth experience sets the dimensionality of place fields, including during virtual navigation of abstract spaces.
Collapse
Affiliation(s)
- Zhaoze Wang
- Department of Computer and Information Science, University of Pennsylvania
| | | | | | | |
Collapse
|
2
|
Kymn CJ, Mazelet S, Thomas A, Kleyko D, Frady EP, Sommer FT, Olshausen BA. Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps. ARXIV 2024:arXiv:2406.18808v1. [PMID: 38979486 PMCID: PMC11230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We propose a normative model for spatial representation in the hippocampal formation that combines optimality principles, such as maximizing coding range and spatial information per neuron, with an algebraic framework for computing in distributed representation. Spatial position is encoded in a residue number system, with individual residues represented by high-dimensional, complex-valued vectors. These are composed into a single vector representing position by a similarity-preserving, conjunctive vector-binding operation. Self-consistency between the representations of the overall position and of the individual residues is enforced by a modular attractor network whose modules correspond to the grid cell modules in entorhinal cortex. The vector binding operation can also associate different contexts to spatial representations, yielding a model for entorhinal cortex and hippocampus. We show that the model achieves normative desiderata including superlinear scaling of patterns with dimension, robust error correction, and hexagonal, carry-free encoding of spatial position. These properties in turn enable robust path integration and association with sensory inputs. More generally, the model formalizes how compositional computations could occur in the hippocampal formation and leads to testable experimental predictions.
Collapse
Affiliation(s)
| | - Sonia Mazelet
- Redwood Center for Theoretical Neuroscience, UC Berkeley, Berkeley, USA
- Université Paris-Saclay, ENS Paris-Saclay, Gif-sur-Yvette, France
| | - Anthony Thomas
- Redwood Center for Theoretical Neuroscience, UC Berkeley, Berkeley, USA
| | - Denis Kleyko
- Centre for Applied Autonomous Sensor Systems, Örebro University, Örebro, Sweden
| | | | - Friedrich T. Sommer
- Redwood Center for Theoretical Neuroscience, UC Berkeley, Berkeley, USA
- Intel Labs, Santa Clara, USA
| | | |
Collapse
|
3
|
Ohki T, Kunii N, Chao ZC. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0. Rev Neurosci 2023; 34:839-868. [PMID: 36960579 DOI: 10.1515/revneuro-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose "Mental Schema 2.0," a new computational property underlying the brain's unique learning ability that can be implemented in ANNs.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zenas C Chao
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Yan M, Zhang WH, Wang H, Wong KYM. Bimodular continuous attractor neural networks with static and moving stimuli. Phys Rev E 2023; 107:064302. [PMID: 37464697 DOI: 10.1103/physreve.107.064302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/08/2023] [Indexed: 07/20/2023]
Abstract
We investigated the dynamical behaviors of bimodular continuous attractor neural networks, each processing a modality of sensory input and interacting with each other. We found that when bumps coexist in both modules, the position of each bump is shifted towards the other input when the intermodular couplings are excitatory and is shifted away when inhibitory. When one intermodular coupling is excitatory while another is moderately inhibitory, temporally modulated population spikes can be generated. On further increase of the inhibitory coupling, momentary spikes will emerge. In the regime of bump coexistence, bump heights are primarily strengthened by excitatory intermodular couplings, but there is a lesser weakening effect due to a bump being displaced from the direct input. When bimodular networks serve as decoders of multisensory integration, we extend the Bayesian framework to show that excitatory and inhibitory couplings encode attractive and repulsive priors, respectively. At low disparity, the bump positions decode the posterior means in the Bayesian framework, whereas at high disparity, multiple steady states exist. In the regime of multiple steady states, the less stable state can be accessed if the input causing the more stable state arrives after a sufficiently long delay. When one input is moving, the bump in the corresponding module is pinned when the moving stimulus is weak, unpinned at intermediate stimulus strength, and tracks the input at strong stimulus strength, and the stimulus strengths for these transitions increase with the velocity of the moving stimulus. These results are important to understanding multisensory integration of static and dynamic stimuli.
Collapse
Affiliation(s)
- Min Yan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - Wen-Hao Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Wang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
| | - K Y Michael Wong
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| |
Collapse
|
5
|
Morris G, Derdikman D. The chicken and egg problem of grid cells and place cells. Trends Cogn Sci 2023; 27:125-138. [PMID: 36437188 DOI: 10.1016/j.tics.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
Place cells and grid cells are major building blocks of the hippocampal cognitive map. The prominent forward model postulates that grid-cell modules are generated by a continuous attractor network; that a velocity signal evoked during locomotion moves entorhinal activity bumps; and that place-cell activity constitutes summation of entorhinal grid-cell modules. Experimental data support the first postulate, but not the latter two. Several families of solutions that depart from these postulates have been put forward. We suggest a modified model (spatial modulation continuous attractor network; SCAN), whereby place cells are generated from spatially selective nongrid cells. Locomotion causes these cells to move the hippocampal activity bump, leading to movement of the entorhinal manifolds. Such inversion accords with the shift of hippocampal thought from navigation to more abstract functions.
Collapse
Affiliation(s)
- Genela Morris
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Zhang X, Long X, Zhang SJ, Chen ZS. Excitatory-inhibitory recurrent dynamics produce robust visual grids and stable attractors. Cell Rep 2022; 41:111777. [PMID: 36516752 PMCID: PMC9805366 DOI: 10.1016/j.celrep.2022.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Spatially modulated grid cells have been recently found in the rat secondary visual cortex (V2) during active navigation. However, the computational mechanism and functional significance of V2 grid cells remain unknown. To address the knowledge gap, we train a biologically inspired excitatory-inhibitory recurrent neural network to perform a two-dimensional spatial navigation task with multisensory input. We find grid-like responses in both excitatory and inhibitory RNN units, which are robust with respect to spatial cues, dimensionality of visual input, and activation function. Population responses reveal a low-dimensional, torus-like manifold and attractor. We find a link between functional grid clusters with similar receptive fields and structured excitatory-to-excitatory connections. Additionally, multistable torus-like attractors emerged with increasing sparsity in inter- and intra-subnetwork connectivity. Finally, irregular grid patterns are found in recurrent neural network (RNN) units during a visual sequence recognition task. Together, our results suggest common computational mechanisms of V2 grid cells for spatial and non-spatial tasks.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neurosurgery, Xinqiao Hospital, Chongqing, China; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Wang R, Kang L. Multiple bumps can enhance robustness to noise in continuous attractor networks. PLoS Comput Biol 2022; 18:e1010547. [PMID: 36215305 PMCID: PMC9584540 DOI: 10.1371/journal.pcbi.1010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/20/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
A central function of continuous attractor networks is encoding coordinates and accurately updating their values through path integration. To do so, these networks produce localized bumps of activity that move coherently in response to velocity inputs. In the brain, continuous attractors are believed to underlie grid cells and head direction cells, which maintain periodic representations of position and orientation, respectively. These representations can be achieved with any number of activity bumps, and the consequences of having more or fewer bumps are unclear. We address this knowledge gap by constructing 1D ring attractor networks with different bump numbers and characterizing their responses to three types of noise: fluctuating inputs, spiking noise, and deviations in connectivity away from ideal attractor configurations. Across all three types, networks with more bumps experience less noise-driven deviations in bump motion. This translates to more robust encodings of linear coordinates, like position, assuming that each neuron represents a fixed length no matter the bump number. Alternatively, we consider encoding a circular coordinate, like orientation, such that the network distance between adjacent bumps always maps onto 360 degrees. Under this mapping, bump number does not significantly affect the amount of error in the coordinate readout. Our simulation results are intuitively explained and quantitatively matched by a unified theory for path integration and noise in multi-bump networks. Thus, to suppress the effects of biologically relevant noise, continuous attractor networks can employ more bumps when encoding linear coordinates; this advantage disappears when encoding circular coordinates. Our findings provide motivation for multiple bumps in the mammalian grid network.
Collapse
Affiliation(s)
- Raymond Wang
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Louis Kang
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
8
|
于 乃, 廖 诣. [A spatial localization model of mobile robot based on entorhinal-hippocampal cognitive mechanism in rat brain]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:217-227. [PMID: 35523542 PMCID: PMC9927332 DOI: 10.7507/1001-5515.202109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Physiological studies reveal that rats rely on multiple spatial cells for spatial navigation and memory. In this paper, we investigated the firing mechanism of spatial cells within the entorhinal-hippocampal structure of the rat brain and proposed a spatial localization model for mobile robot. Its characteristics were as follows: on the basis of the information transmission model from grid cells to place cells, the neural network model of place cells interaction was introduced to obtain the place cell plate with a single-peaked excitatory activity package. Then the solution to the robot's position was achieved by establishing a transformation relationship between the position of the excitatory activity package on the place cell plate and the robot's position in the physical environment. In this paper, simulation experiments and physical experiments were designed to verify the model. The experimental results showed that compared with RatSLAM and the model of grid cells to place cells, the positioning performance of the model in this paper was more accurate, and the cumulative error in the long-time path integration process of the robot was also smaller. The research results of this paper lay a foundation for the robot navigation method that mimics the cognitive mechanism of rat brain.
Collapse
Affiliation(s)
- 乃功 于
- 北京工业大学 信息学部 计算智能与智能系统重点实验室(北京 100124)Faculty of Information Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, P. R. China
| | - 诣深 廖
- 北京工业大学 信息学部 计算智能与智能系统重点实验室(北京 100124)Faculty of Information Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
9
|
Waaga T, Agmon H, Normand VA, Nagelhus A, Gardner RJ, Moser MB, Moser EI, Burak Y. Grid-cell modules remain coordinated when neural activity is dissociated from external sensory cues. Neuron 2022; 110:1843-1856.e6. [PMID: 35385698 PMCID: PMC9235855 DOI: 10.1016/j.neuron.2022.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
The representation of an animal’s position in the medial entorhinal cortex (MEC) is distributed across several modules of grid cells, each characterized by a distinct spatial scale. The population activity within each module is tightly coordinated and preserved across environments and behavioral states. Little is known, however, about the coordination of activity patterns across modules. We analyzed the joint activity patterns of hundreds of grid cells simultaneously recorded in animals that were foraging either in the light, when sensory cues could stabilize the representation, or in darkness, when such stabilization was disrupted. We found that the states of different modules are tightly coordinated, even in darkness, when the internal representation of position within the MEC deviates substantially from the true position of the animal. These findings suggest that internal brain mechanisms dynamically coordinate the representation of position in different modules, ensuring that they jointly encode a coherent and smooth trajectory. Hundreds of grid cells were recorded simultaneously from multiple grid modules Coordination between grid modules was assessed in rats that foraged in darkness Coordination persists despite relative drift of the represented versus true position This suggests that internal network mechanisms maintain inter-module coordination
Collapse
Affiliation(s)
- Torgeir Waaga
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Haggai Agmon
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Valentin A Normand
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Nagelhus
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
DiTullio RW, Balasubramanian V. Dynamical self-organization and efficient representation of space by grid cells. Curr Opin Neurobiol 2021; 70:206-213. [PMID: 34861597 PMCID: PMC8688296 DOI: 10.1016/j.conb.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
To plan trajectories and navigate, animals must maintain a mental representation of the environment and their own position within it. This "cognitive map" is thought to be supported in part by the entorhinal cortex, where grid cells are active when an animal occupies the vertices of a scaling hierarchy of periodic lattices of locations in an enclosure. Here, we review computational developments which suggest that the grid cell network is: (a) efficient, providing required spatial resolution with a minimum number of neurons, (b) self-organizing, dynamically coordinating the structure and scale of the responses, and (c) adaptive, re-organizing in response to changes in landmarks and the structure of the boundaries of spaces. We consider these ideas in light of recent discoveries of similar structures in the mental representation of abstract spaces of shapes and smells, and in other brain areas, and highlight promising directions for future research.
Collapse
Affiliation(s)
- Ronald W. DiTullio
- David Rittenhouse Laboratories & Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA 19104
| | - Vijay Balasubramanian
- David Rittenhouse Laboratories & Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
11
|
Badrinarayanan S, Manseau F, Williams S, Brandon MP. A Characterization of the Electrophysiological and Morphological Properties of Vasoactive Intestinal Peptide (VIP) Interneurons in the Medial Entorhinal Cortex (MEC). Front Neural Circuits 2021; 15:653116. [PMID: 34421547 PMCID: PMC8378838 DOI: 10.3389/fncir.2021.653116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Circuit interactions within the medial entorhinal cortex (MEC) translate movement into a coherent code for spatial location. Entorhinal principal cells are subject to strong lateral inhibition, suggesting that a disinhibitory mechanism may drive their activation. Cortical Vasoactive Intestinal Peptide (VIP) expressing inhibitory neurons are known to contact other interneurons and excitatory cells and are thus capable of providing a local disinhibitory mechanism, yet little is known about this cell type in the MEC. To investigate the electrophysiological and morphological properties of VIP cells in the MEC, we use in vitro whole-cell patch-clamp recordings in VIPcre/tdTom mice. We report several gradients in electrophysiological properties of VIP cells that differ across laminae and along the dorsal-ventral MEC axis. We additionally show that VIP cells have distinct morphological features across laminae. Together, these results characterize the cellular and morphological properties of VIP cells in the MEC.
Collapse
Affiliation(s)
- Saishree Badrinarayanan
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Frédéric Manseau
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Sylvain Williams
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Eliav T, Maimon SR, Aljadeff J, Tsodyks M, Ginosar G, Las L, Ulanovsky N. Multiscale representation of very large environments in the hippocampus of flying bats. Science 2021; 372:372/6545/eabg4020. [PMID: 34045327 DOI: 10.1126/science.abg4020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Hippocampal place cells encode the animal's location. Place cells were traditionally studied in small environments, and nothing is known about large ethologically relevant spatial scales. We wirelessly recorded from hippocampal dorsal CA1 neurons of wild-born bats flying in a long tunnel (200 meters). The size of place fields ranged from 0.6 to 32 meters. Individual place cells exhibited multiple fields and a multiscale representation: Place fields of the same neuron differed up to 20-fold in size. This multiscale coding was observed from the first day of exposure to the environment, and also in laboratory-born bats that never experienced large environments. Theoretical decoding analysis showed that the multiscale code allows representation of very large environments with much higher precision than that of other codes. Together, by increasing the spatial scale, we discovered a neural code that is radically different from classical place codes.
Collapse
Affiliation(s)
- Tamir Eliav
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shir R Maimon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnatan Aljadeff
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.,Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | - Misha Tsodyks
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.,The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540, USA
| | - Gily Ginosar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liora Las
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Kang L, Xu B, Morozov D. Evaluating State Space Discovery by Persistent Cohomology in the Spatial Representation System. Front Comput Neurosci 2021; 15:616748. [PMID: 33897395 PMCID: PMC8060447 DOI: 10.3389/fncom.2021.616748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/02/2022] Open
Abstract
Persistent cohomology is a powerful technique for discovering topological structure in data. Strategies for its use in neuroscience are still undergoing development. We comprehensively and rigorously assess its performance in simulated neural recordings of the brain's spatial representation system. Grid, head direction, and conjunctive cell populations each span low-dimensional topological structures embedded in high-dimensional neural activity space. We evaluate the ability for persistent cohomology to discover these structures for different dataset dimensions, variations in spatial tuning, and forms of noise. We quantify its ability to decode simulated animal trajectories contained within these topological structures. We also identify regimes under which mixtures of populations form product topologies that can be detected. Our results reveal how dataset parameters affect the success of topological discovery and suggest principles for applying persistent cohomology, as well as persistent homology, to experimental neural recordings.
Collapse
Affiliation(s)
- Louis Kang
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA, United States
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Boyan Xu
- Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States
| | - Dmitriy Morozov
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
14
|
Modularization of grid cells constrained by the pyramidal patch lattice. iScience 2021; 24:102301. [PMID: 33870125 PMCID: PMC8042349 DOI: 10.1016/j.isci.2021.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 11/29/2022] Open
Abstract
Grid cells provide a metric representation of self-location. They are organized into modules, showing discretized scales of grid spacing, but the underlying mechanism remains elusive. In this modeling study, we propose that the hexagonal lattice of pyramidal cell patches may underlie the discretization of grid spacing and orientation. In the continuous attractor network composed of interneurons, stellate and pyramidal cells, the hexagonal lattice of bump attractors is specifically aligned to the patch lattice under 22 conditions determined by the geometry of the patch lattice, while pyramidal cells exhibit synchrony to diverse extents. Given the bump attractor lattice in each module originates from those 22 scenarios, the experimental data on the grid spacing ratio and orientation difference between modules can be reproduced. This work recapitulates the patterns of grid spacing versus orientation in individual animals and reveals the correlation between microstructures and firing fields, providing a systems-level mechanism for grid modularity. Each module is modeled as a continuous attractor network with specific parameters The lattice of bump attractors is specifically aligned to the pyramidal patch lattice Twenty-two scenarios for the bump attractor lattice are proposed The grid spacing ratios and orientation differences are determined intrinsically
Collapse
|
15
|
Krishna A, Mittal D, Virupaksha SG, Nair AR, Narayanan R, Thakur CS. Biomimetic FPGA-based spatial navigation model with grid cells and place cells. Neural Netw 2021; 139:45-63. [PMID: 33677378 DOI: 10.1016/j.neunet.2021.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
The mammalian spatial navigation system is characterized by an initial divergence of internal representations, with disparate classes of neurons responding to distinct features including location, speed, borders and head direction; an ensuing convergence finally enables navigation and path integration. Here, we report the algorithmic and hardware implementation of biomimetic neural structures encompassing a feed-forward trimodular, multi-layer architecture representing grid-cell, place-cell and decoding modules for navigation. The grid-cell module comprised of neurons that fired in a grid-like pattern, and was built of distinct layers that constituted the dorsoventral span of the medial entorhinal cortex. Each layer was built as an independent continuous attractor network with distinct grid-field spatial scales. The place-cell module comprised of neurons that fired at one or few spatial locations, organized into different clusters based on convergent modular inputs from different grid-cell layers, replicating the gradient in place-field size along the hippocampal dorso-ventral axis. The decoding module, a two-layer neural network that constitutes the convergence of the divergent representations in preceding modules, received inputs from the place-cell module and provided specific coordinates of the navigating object. After vital design optimizations involving all modules, we implemented the tri-modular structure on Zynq Ultrascale+ field-programmable gate array silicon chip, and demonstrated its capacity in precisely estimating the navigational trajectory with minimal overall resource consumption involving a mere 2.92% Look Up Table utilization. Our implementation of a biomimetic, digital spatial navigation system is stable, reliable, reconfigurable, real-time with execution time of about 32 s for 100k input samples (in contrast to 40 minutes on Intel Core i7-7700 CPU with 8 cores clocking at 3.60 GHz) and thus can be deployed for autonomous-robotic navigation without requiring additional sensors.
Collapse
Affiliation(s)
- Adithya Krishna
- NeuRonICS Lab, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Divyansh Mittal
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Siri Garudanagiri Virupaksha
- NeuRonICS Lab, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Abhishek Ramdas Nair
- NeuRonICS Lab, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Chetan Singh Thakur
- NeuRonICS Lab, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
D'Albis T, Kempter R. Recurrent amplification of grid-cell activity. Hippocampus 2020; 30:1268-1297. [PMID: 33022854 DOI: 10.1002/hipo.23254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/18/2020] [Accepted: 07/25/2020] [Indexed: 11/07/2022]
Abstract
High-level cognitive abilities such as navigation and spatial memory are thought to rely on the activity of grid cells in the medial entorhinal cortex (MEC), which encode the animal's position in space with periodic triangular patterns. Yet the neural mechanisms that underlie grid-cell activity are still unknown. Recent in vitro and in vivo experiments indicate that grid cells are embedded in highly structured recurrent networks. But how could recurrent connectivity become structured during development? And what is the functional role of these connections? With mathematical modeling and simulations, we show that recurrent circuits in the MEC could emerge under the supervision of weakly grid-tuned feedforward inputs. We demonstrate that a learned excitatory connectivity could amplify grid patterns when the feedforward sensory inputs are available and sustain attractor states when the sensory cues are lost. Finally, we propose a Fourier-based measure to quantify the spatial periodicity of grid patterns: the grid-tuning index.
Collapse
Affiliation(s)
- Tiziano D'Albis
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany
| |
Collapse
|
17
|
Agmon H, Burak Y. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. eLife 2020; 9:56894. [PMID: 32779570 PMCID: PMC7447444 DOI: 10.7554/elife.56894] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
The representation of position in the mammalian brain is distributed across multiple neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity patterns that span a low-dimensional manifold which remains stable across different environments. In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds in different environments. It is unknown how these multiple representations of position are coordinated. Here, we develop a theory of joint attractor dynamics in the hippocampus and the MEC. We show that the system exhibits a coordinated, joint representation of position across multiple environments, consistent with global remapping in place cells and grid cells. In addition, our model accounts for recent experimental observations that lack a mechanistic explanation: variability in the firing rate of single grid cells across firing fields, and artificial remapping of place cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.
Collapse
Affiliation(s)
- Haggai Agmon
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Kang L, DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. eLife 2019; 8:46351. [PMID: 31736462 PMCID: PMC6901334 DOI: 10.7554/elife.46351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays.
Collapse
Affiliation(s)
- Louis Kang
- Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Michael R DeWeese
- Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
19
|
Mosheiff N, Burak Y. Velocity coupling of grid cell modules enables stable embedding of a low dimensional variable in a high dimensional neural attractor. eLife 2019; 8:e48494. [PMID: 31469365 PMCID: PMC6756787 DOI: 10.7554/elife.48494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
Grid cells in the medial entorhinal cortex (MEC) encode position using a distributed representation across multiple neural populations (modules), each possessing a distinct spatial scale. The modular structure of the representation confers the grid cell neural code with large capacity. Yet, the modularity poses significant challenges for the neural circuitry that maintains the representation, and updates it based on self motion. Small incompatible drifts in different modules, driven by noise, can rapidly lead to large, abrupt shifts in the represented position, resulting in catastrophic readout errors. Here, we propose a theoretical model of coupled modules. The coupling suppresses incompatible drifts, allowing for a stable embedding of a two-dimensional variable (position) in a higher dimensional neural attractor, while preserving the large capacity. We propose that coupling of this type may be implemented by recurrent synaptic connectivity within the MEC with a relatively simple and biologically plausible structure.
Collapse
Affiliation(s)
- Noga Mosheiff
- Racah Institute of PhysicsHebrew UniversityJerusalemIsrael
| | - Yoram Burak
- Racah Institute of PhysicsHebrew UniversityJerusalemIsrael
- Edmond and Lily Safra Center for Brain SciencesHebrew UniversityJerusalemIsrael
| |
Collapse
|