1
|
Wang R, Yao B, Tan Z, Mao C, Ma Y, Qu J. Effect of Warming on Personality of Mosquitofish ( Gambusia affinis) and Medaka Fish ( Oryzias latipes). Animals (Basel) 2024; 14:2101. [PMID: 39061563 PMCID: PMC11273402 DOI: 10.3390/ani14142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Global warming may accelerate the process of biological invasions, and invasive species that can quickly adapt to new environments will have a negative impact on native species. Animal personalities have significant implications for ecology and evolution. However, few studies have simultaneously examined the combined effects of climate warming and biological invasions on native species. In this study, we hypothesized that temperature was positively correlated with personality, and invasive species had stronger personalities than native species. Accordingly, we established control (20 °C) and warming groups (20 °C, 25 °C, and 30 °C) to rear mosquitofish and medaka fish, individuals acclimatized to rearing temperatures for 7 days, then measured their personalities (sociability, exploration, novelty, and boldness). The results showed that individuals exhibited repeatable variation along the four behavioral axes across all temperature conditions, providing evidence for the presence of personalities. Significant positive correlations were found between each pair of behaviors, indicating the presence of behavioral syndrome. Sociability and exploration were most affected by temperature, showing increasing trends in sociability, exploration, and novelty in both invasive and native species with rising temperatures. Compared to medaka fish, mosquitofish exhibited higher exploration and lower sociability at elevated temperatures, while showing little change in boldness. Our results provide evidence that increased temperatures may promote biological invasions and pose a potential threat to the survival of native species. These findings are significant for understanding the complex impacts of climate change on ecosystems and for formulating effective biodiversity preservation strategies.
Collapse
Affiliation(s)
- Rong Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (R.W.); (Z.T.)
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining 810008, China
| | - Baohui Yao
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Zhaoxian Tan
- School of Life Science, Qinghai Normal University, Xining 810008, China; (R.W.); (Z.T.)
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining 810008, China
| | - Chengjie Mao
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Yonggui Ma
- School of Life Science, Qinghai Normal University, Xining 810008, China; (R.W.); (Z.T.)
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining 810008, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Jiapeng Qu
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| |
Collapse
|
2
|
Oliveira Pereira EA, Warriner TR, Simmons DBD, Jobst KJ, Simpson AJ, Simpson MJ. Metabolomic-Based Comparison of Daphnia magna and Japanese Medaka Responses After Exposure to Acetaminophen, Diclofenac, and Ibuprofen. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1339-1351. [PMID: 38661510 DOI: 10.1002/etc.5876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Pharmaceuticals are found in aquatic environments due to their widespread use and environmental persistence. To date, a range of impairments to aquatic organisms has been reported with exposure to pharmaceuticals; however, further comparisons of their impacts across different species on the molecular level are needed. In the present study, the crustacean Daphnia magna and the freshwater fish Japanese medaka, common model organisms in aquatic toxicity, were exposed for 48 h to the common analgesics acetaminophen (ACT), diclofenac (DCF), and ibuprofen (IBU) at sublethal concentrations. A targeted metabolomic-based approach, using liquid chromatography-tandem mass spectrometry to quantify polar metabolites from individual daphnids and fish was used. Multivariate analyses and metabolite changes identified differences in the metabolite profile for D. magna and medaka, with more metabolic perturbations for D. magna. Pathway analyses uncovered disruptions to pathways associated with protein synthesis and amino acid metabolism with D. magna exposure to all three analgesics. In contrast, medaka exposure resulted in disrupted pathways with DCF only and not ACT and IBU. Overall, the observed perturbations in the biochemistry of both organisms were different and consistent with assessments using other endpoints reporting that D. magna is more sensitive to pollutants than medaka in short-term studies. Our findings demonstrate that molecular-level responses to analgesic exposure can reflect observations of other endpoints, such as immobilization and mortality. Thus, environmental metabolomics can be a valuable tool for selecting sentinel species for the biomonitoring of freshwater ecosystems while also uncovering mechanistic information. Environ Toxicol Chem 2024;43:1339-1351. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Erico A Oliveira Pereira
- Environmental Nuclear Magnetic Resonance Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - André J Simpson
- Environmental Nuclear Magnetic Resonance Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental Nuclear Magnetic Resonance Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Kayo D, Kimura S, Yamazaki T, Naruse K, Takeuchi H, Ansai S. Spatio-temporal control of targeted gene expression in combination with CRISPR/Cas and Tet-On systems in Medaka. Genesis 2024; 62:e23519. [PMID: 37226848 DOI: 10.1002/dvg.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Spatial and temporal control of transgene expression is a powerful approach to understand gene functions in specific cells and tissues. The Tet-On system is a robust tool for controlling transgene expression spatially and temporally; however, few studies have examined whether this system can be applied to postembryonic stages of Medaka (Oryzias latipes) or other fishes. Here, we first improved a basal promoter sequence on the donor vector for a nonhomologous end joining (NHEJ)-based knock-in (KI) system. Next, using transgenic Medaka for establishing the Tet-On system by KI, we demonstrated that doxycycline administration for four or more days by feeding can be a stable and efficient method to achieve expression of the transduced reporter gene in adult fish. From these analyses, we propose an optimized approach for a spatio-temporal gene-expression system in the adult stage of Medaka and other small fishes.
Collapse
Affiliation(s)
- Daichi Kayo
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Sayaka Kimura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Touko Yamazaki
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
4
|
Spanke T, Gabelaia M, Flury JM, Hilgers L, Wantania LL, Misof B, Wipfler B, Wowor D, Mokodongan DF, Herder F, Schwarzer J. A landmark-free analysis of the pelvic girdle in Sulawesi ricefishes (Adrianichthyidae): How 2D and 3D geometric morphometrics can complement each other in the analysis of a complex structure. Ecol Evol 2023; 13:e10613. [PMID: 37859830 PMCID: PMC10582673 DOI: 10.1002/ece3.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Geometric morphometrics (GM) enable the quantification of morphological variation on various scales. Recent technical advances allow analyzing complex three-dimensional shapes also in cases where landmark-based approaches are not appropriate. Pelvic girdle bones (basipterygia) of Sulawesi ricefishes are 3D structures that challenge traditional morphometrics. We hypothesize that the pelvic girdle of ricefishes experienced sex-biased selection pressures in species where females provide brood care by carrying fertilized eggs supported by elongated pelvic fins ("pelvic brooding"). We test this by comparing pelvic bone shapes of both sexes in species exhibiting pelvic brooding and the more common reproductive strategy "transfer brooding," by using landmark-free 2D and 3D GM, as well as qualitative shape descriptions. Both landmark-free approaches revealed significant interspecific pelvic bone variation in the lateral process, medial facing side of the pelvic bone, and overall external and internal wing shape. Within pelvic brooders, the three analyzed species are clearly distinct, while pelvic bones of the genus Adrianichthys are more similar to transfer brooding Oryzias. Female pelvic brooding Oryzias exhibit prominent, medially pointing tips extending from the internal wing and basipterygial plate that are reduced or absent in conspecific males, Adrianichthys and transfer brooding Oryzias, supporting our hypothesis that selection pressures affecting pelvic girdle shape are sex-biased in Sulawesi ricefishes. Furthermore, both sexes of pelvic brooding Oryzias have overall larger pelvic bones than other investigated ricefishes. Based on these differences, we characterized two reproductive strategy- and sex-dependent pelvic girdle types for Sulawesi ricefishes. Morphological differences between the investigated pelvic brooding genera Adrianichthys and Oryzias provide additional evidence for two independent origins of pelvic brooding. Overall, our findings add to a better understanding on traits related to pelvic brooding in ricefishes and provide a basis for upcoming studies on pelvic girdle function and morphology.
Collapse
Affiliation(s)
- Tobias Spanke
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Mariam Gabelaia
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Jana M. Flury
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Leon Hilgers
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- LOEWE‐Zentrum für Translationale BiodiversitätsgenomikFrankfurtGermany
| | - Letha Louisiana Wantania
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Benjamin Wipfler
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Daniel F. Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Fabian Herder
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Julia Schwarzer
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| |
Collapse
|
5
|
Flury JM, Meusemann K, Martin S, Hilgers L, Spanke T, Böhne A, Herder F, Mokodongan DF, Altmüller J, Wowor D, Misof B, Nolte AW, Schwarzer J. Potential Contribution of Ancient Introgression to the Evolution of a Derived Reproductive Strategy in Ricefishes. Genome Biol Evol 2023; 15:evad138. [PMID: 37493080 PMCID: PMC10465105 DOI: 10.1093/gbe/evad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Karen Meusemann
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Sebastian Martin
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Leon Hilgers
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Tobias Spanke
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Astrid Böhne
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Fabian Herder
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Bernhard Misof
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Arne W Nolte
- Department of Ecological Genomics, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| |
Collapse
|
6
|
Lucon-Xiccato T, Montalbano G, Frigato E, Loosli F, Foulkes NS, Bertolucci C. Medaka as a model for seasonal plasticity: Photoperiod-mediated changes in behaviour, cognition, and hormones. Horm Behav 2022; 145:105244. [PMID: 35988451 DOI: 10.1016/j.yhbeh.2022.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Teleosts display the highest level of brain plasticity of all vertebrates. Yet we still know little about how seasonality affects fish behaviour and the underlying cognitive mechanisms since the common neurobehavioral fish models are native to tropical environments where seasonal variation is absent or reduced. The medaka, Oryzias latipes, which inhabits temperate zone habitats, represents a promising model in this context given its large phenotypic changes associated with seasonality and the possibility to induce seasonal plasticity by only manipulating photoperiod. Here, we report the first extended investigation of seasonal plasticity in medaka behaviour and cognition, as well as the potential underlying molecular mechanisms. We compared medaka exposed to summer photoperiod (16 h light:8 h dark) with medaka exposed to winter photoperiod (8 h light:16 h dark), and detected substantial differences. Medaka were more active and less social in summer photoperiod conditions, two effects that emerged in the second half of an open-field and a sociability test, respectively, and might be at least in part related to habituation to the testing apparatus. Moreover, the cognitive phenotype was significantly affected: in the early response to a social stimulus, brain functional lateralisation shifted between the two hemispheres under the two photoperiod conditions, and inhibitory and discrimination learning performance were reduced in summer conditions. Finally, the expression of genes encoding key pituitary hormones, tshß and gh, and of the tshß regulatory transcription factor tef in the brain was increased in summer photoperiod conditions. This work reveals remarkable behavioural and cognitive phenotypic plasticity in response to photoperiod in medaka, and suggests a potential regulatory role for the same hormones involved in seasonal plasticity of other vertebrates.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
7
|
Montenegro J, Fujimoto S, Ansai S, Nagano AJ, Sato M, Maeda Y, Tanaka R, Masengi KWA, Kimura R, Kitano J, Yamahira K. Genetic basis for the evolution of pelvic-fin brooding, a new mode of reproduction, in a Sulawesian fish. Mol Ecol 2022; 31:3798-3811. [PMID: 35638236 DOI: 10.1111/mec.16555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Modes of reproduction in animals are diverse, with different modes having evolved independently in multiple lineages across a variety of taxa. However, an understanding of the genomic change driving the transition between different modes of reproduction is limited. Several ricefishes (Adrianichthyidae) on the island of Sulawesi have a unique mode of reproduction called "pelvic-fin brooding," wherein females carry externally fertilized eggs until hatching using their pelvic fins. Phylogenomic analysis demonstrated pelvic-fin brooders to have evolved at least twice in two distant clades of the Adrianichthyidae. We investigated the genetic architecture of the evolution of this unique mode of reproduction. Morphological analyses and laboratory observations revealed that females of pelvic-fin brooders have longer pelvic fins and a deeper abdominal concavity, and that they can carry an egg clutch for longer than non-brooding adrianichthyids, suggesting that these traits play important roles in this reproductive mode. Quantitative trait locus mapping using a cross between a pelvic-fin brooder Oryzias eversi and a non-brooding O. dopingdopingensis reveals different traits involved in pelvic-fin brooding to be controlled by different loci on different chromosomes. Genomic analyses of admixture detected no signatures of introgression between two lineages with pelvic-fin brooders, indicating that introgression is unlikely to be responsible for repeated evolution of pelvic-fin brooding. These findings suggest that multiple independent mutations may have contributed to the convergent evolution of this novel mode of reproduction.
Collapse
Affiliation(s)
- Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shingo Fujimoto
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Present address: Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masahiro Sato
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Yusuke Maeda
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | | | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
8
|
Deeply divergent freshwater fish species within a single river system in central Sulawesi. Mol Phylogenet Evol 2022; 173:107519. [DOI: 10.1016/j.ympev.2022.107519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023]
|
9
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
10
|
Murakami Y, Kobayashi T. An effective double gene knock‐in strategy using small‐molecule
L755507
in the medaka fish (
Oryzias latipes
). Genesis 2022; 60:e23465. [DOI: 10.1002/dvg.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Murakami
- Department of Fisheries, Graduate School of Agriculture Kindai University Nara Japan
| | - Toru Kobayashi
- Department of Fisheries, Graduate School of Agriculture Kindai University Nara Japan
| |
Collapse
|
11
|
Naisbett-Jones LC, Lohmann KJ. Magnetoreception and magnetic navigation in fishes: a half century of discovery. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:19-40. [PMID: 35031832 DOI: 10.1007/s00359-021-01527-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023]
Abstract
As the largest and most diverse vertebrate group on the planet, fishes have evolved an impressive array of sensory abilities to overcome the challenges associated with navigating the aquatic realm. Among these, the ability to detect Earth's magnetic field, or magnetoreception, is phylogenetically widespread and used by fish to guide movements over a wide range of spatial scales ranging from local movements to transoceanic migrations. A proliferation of recent studies, particularly in salmonids, has revealed that fish can exploit Earth's magnetic field not only as a source of directional information for maintaining consistent headings, but also as a kind of map for determining location at sea and for returning to natal areas. Despite significant advances, much about magnetoreception in fishes remains enigmatic. How fish detect magnetic fields remains unknown and our understanding of the evolutionary origins of vertebrate magnetoreception would benefit greatly from studies that include a wider array of fish taxa. The rich diversity of life-history characteristics that fishes exhibit, the wide variety of environments they inhabit, and their suitability for manipulative studies, make fishes promising subjects for magnetoreception studies.
Collapse
Affiliation(s)
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Westrick SE, Laslo M, Fischer E. Natural History of Model Organisms: The big potential of the small frog Eleutherodactylus coqui. eLife 2022; 11:73401. [PMID: 35029143 PMCID: PMC8824473 DOI: 10.7554/elife.73401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
The Puerto Rican coquí frog Eleutherodactylus coqui is both a cultural icon and a species with an unusual natural history that has attracted attention from researchers in a number of different fields within biology. Unlike most frogs, the coquí frog skips the tadpole stage, which makes it of interest to developmental biologists. The frog is best known in Puerto Rico for its notoriously loud mating call, which has allowed researchers to study aspects of social behavior such as vocal communication and courtship, while the ability of coquí to colonize new habitats has been used to explore the biology of invasive species. This article reviews existing studies on the natural history of E. coqui and discusses opportunities for future research.
Collapse
Affiliation(s)
- Sarah E Westrick
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, United States
| | - Mara Laslo
- Curriculum Fellow Program, Harvard University, Cambridge, United States
| | - Eva Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana and Champaign, United States
| |
Collapse
|
13
|
Seleit A, Ansai S, Yamahira K, Masengi KWA, Naruse K, Centanin L. Diversity of lateral line patterns and neuromast numbers in the genus Oryzias. J Exp Biol 2021; 224:273715. [PMID: 34897518 DOI: 10.1242/jeb.242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
A remarkable diversity of lateral line patterns exists in adult teleost fishes, the basis of which is largely unknown. By analysing the lateral line patterns and organ numbers in 29 Oryzias species and strains we report a rapid diversification of the lateral line system within this genus. We show a strong dependence of lateral line elaboration (number of neuromasts per cluster, number of parallel lateral lines) on adult species body size irrespective of phylogenetic relationships. In addition, we report that the degree of elaboration of the anterior lateral line, posterior lateral line and caudal neuromast clusters is tightly linked within species, arguing for a globally coordinated mechanism controlling lateral line organ numbers and patterns. We provide evidence for a polygenic control over neuromast numbers and positioning in the genus Oryzias. Our data also indicate that the diversity in lateral lines can arise as a result of differences in patterning both during embryonic development and post-embryonically, where simpler embryonic patterns generate less complex adult patterns and organ numbers, arguing for a linkage between the two processes.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, 69120Heidelberg, Germany
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, 95115 Manado, Indonesia
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Hilgers L, Roth O, Nolte AW, Schüller A, Spanke T, Flury JM, Utama IV, Altmüller J, Wowor D, Misof B, Herder F, Böhne A, Schwarzer J. Inflammation and convergent placenta gene co-option contributed to a novel reproductive tissue. Curr Biol 2021; 32:715-724.e4. [PMID: 34932936 PMCID: PMC8837275 DOI: 10.1016/j.cub.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel “plug” tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation. Pelvic brooding induces tissue-specific changes in gene expression Inflammatory signaling characterizes transcriptome of the egg-anchoring plug Similar to embryo implantation, the plug likely evolved from an inflammatory response Mammalian placenta genes were independently co-opted into the plug
Collapse
Affiliation(s)
- Leon Hilgers
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany; LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt, Germany.
| | - Olivia Roth
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany; Marine Evolutionary Biology, Kiel University, Kiel, Germany
| | | | - Alina Schüller
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Tobias Spanke
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Jana M Flury
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Ilham V Utama
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Fabian Herder
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Astrid Böhne
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Julia Schwarzer
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany.
| |
Collapse
|
15
|
Zekoll T, Waldherr M, Tessmar-Raible K. Characterization of tmt-opsin2 in Medaka Fish Provides Insight Into the Interplay of Light and Temperature for Behavioral Regulation. Front Physiol 2021; 12:726941. [PMID: 34744767 PMCID: PMC8569850 DOI: 10.3389/fphys.2021.726941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
One of the big challenges in the study of animal behavior is to combine molecular-level questions of functional genetics with meaningful combinations of environmental stimuli. Light and temperature are important external cues, influencing the behaviors of organisms. Thus, understanding the combined effect of light and temperature changes on wild-type vs. genetically modified animals is a first step to understand the role of individual genes in the ability of animals to cope with changing environments. Many behavioral traits can be extrapolated from behavioral tests performed from automated motion tracking combined with machine learning. Acquired datasets, typically complex and large, can be challenging for subsequent quantitative analyses. In this study, we investigate medaka behavior of tmt-opsin2 mutants vs. corresponding wild-types under different light and temperature conditions using automated tracking combined with a convolutional neuronal network and a Hidden Markov model-based approach. The temperatures in this study can occur in summer vs. late spring/early autumn in the natural habitat of medaka fish. Under summer-like temperature, tmt-opsin2 mutants did not exhibit changes in overall locomotion, consistent with previous observations. However, detailed analyses of fish position revealed that the tmt-opsin2 mutants spent more time in central locations of the dish, possibly because of decreased anxiety. Furthermore, a clear difference in location and overall movement was obvious between the mutant and wild-types under colder conditions. These data indicate a role of tmt-opsin2 in behavioral adjustment, at least in part possibly depending on the season.
Collapse
Affiliation(s)
- Theresa Zekoll
- Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
- Research Platform “Rhythms of Life, ” University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Monika Waldherr
- Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
- Research Platform “Rhythms of Life, ” University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
- Research Platform “Rhythms of Life, ” University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
16
|
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. SCIENCE ADVANCES 2021; 7:eabe8215. [PMID: 34516923 PMCID: PMC8442896 DOI: 10.1126/sciadv.abe8215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sex is a fundamental trait determined by environmental and/or genetic factors, including sex chromosomes. Sex chromosomes are studied in species scattered across the tree of life, yet little is known about tempo and mode of sex chromosome evolution among closely related species. Here, we examine sex chromosome evolution in the adaptive radiation of cichlid fishes in Lake Tanganyika. Through the analysis of male and female genomes from 244 cichlid taxa (189 described species with 5 represented with two local variants/populations; 50 undescribed species) and of 396 multitissue transcriptomes from 66 taxa, we identify signatures of sex chromosomes in 79 taxa, involving 12 linkage groups. We find that Tanganyikan cichlids have the highest rates of sex chromosome turnover and heterogamety transitions known to date. We show that sex chromosome recruitment is not at random. Moreover convergently emerged sex chromosomes in cichlids support the “limited options” hypothesis of sex chromosome evolution.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding author.
| |
Collapse
|
17
|
Horoiwa M, Mandagi IF, Sutra N, Montenegro J, Tantu FY, Masengi KWA, Nagano AJ, Kusumi J, Yasuda N, Yamahira K. Mitochondrial introgression by ancient admixture between two distant lacustrine fishes in Sulawesi Island. PLoS One 2021; 16:e0245316. [PMID: 34111145 PMCID: PMC8192020 DOI: 10.1371/journal.pone.0245316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Sulawesi, an island located in a biogeographical transition zone between Indomalaya and Australasia, is famous for its high levels of endemism. Ricefishes (family Adrianichthyidae) are an example of taxa that have uniquely diversified on this island. It was demonstrated that habitat fragmentation due to the Pliocene juxtaposition among tectonic subdivisions of this island was the primary factor that promoted their divergence; however, it is also equally probable that habitat fusions and resultant admixtures between phylogenetically distant species may have frequently occurred. Previous studies revealed that some individuals of Oryzias sarasinorum endemic to a tectonic lake in central Sulawesi have mitochondrial haplotypes that are similar to the haplotypes of O. eversi, which is a phylogenetically related but geologically distant (ca. 190 km apart) adrianichthyid endemic to a small fountain. In this study, we tested if this reflects ancient admixture of O. eversi and O. sarasinorum. Population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that O. eversi and O. sarasinorum are substantially reproductively isolated from each other. Comparison of demographic models revealed that the models assuming ancient admixture from O. eversi to O. sarasinorum was more supported than the models assuming no admixture; this supported the idea that the O. eversi-like mitochondrial haplotype in O. sarasinorum was introgressed from O. eversi. This study is the first to demonstrate ancient admixture of lacustrine or pond organisms in Sulawesi beyond 100 km. The complex geological history of this island enabled such island-wide admixture of lacustrine organisms, which usually experience limited migration.
Collapse
Affiliation(s)
- Mizuki Horoiwa
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ixchel F. Mandagi
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Nobu Sutra
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Graduate School of Hasanuddin University, Makassar, Indonesia
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Fadly Y. Tantu
- Faculty of Animal Husbandry and Fisheries, Tadulako University, Palu, Indonesia
| | | | | | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
18
|
Audira G, Siregar P, Chen KHC, Roldan MJM, Huang JC, Lai HT, Hsiao CD. Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics. Int J Mol Sci 2021; 22:ijms22115686. [PMID: 34073632 PMCID: PMC8197923 DOI: 10.3390/ijms22115686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 600, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| |
Collapse
|
19
|
Dong Z, Li X, Yao Z, Wang C, Guo Y, Wang Q, Shao C, Wang Z. Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy. Animals (Basel) 2021; 11:ani11051327. [PMID: 34066583 PMCID: PMC8148570 DOI: 10.3390/ani11051327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Hainan medaka (Oryzias curvinotus) is distributed in the coastal waters of the South China Sea and is able to adapt to a wide range of salinities. In this study, we characterized O. curvinotus in Sanya River (SY-medaka), which lacks dmy (a male sex-determining gene in O. latipes and O. curvinotus). In a comparison of SY-medaka and Gaoqiao medaka (GQ-medaka), the morphological difference between the two populations does not reach the subspecies level and they can be considered two geographic populations of O. curvinotus. A mitochondrial cytochrome oxidase subunit I (CoI) sequence alignment showed that the sequence identities between SY-medaka and other geographic populations of O. curvinotus are as high as 95%. A phylogenetic analysis of the mitochondrial genome also indicated that SY-medaka belongs to O. curvinotus. Molecular marker-based genetic sex assays and whole genome re-sequencing showed that SY-medaka does not contain dmy. Further, in RNA-Seq analyses of the testis and ovaries of sexually mature SY-medaka, dmy expression was not detected. We speculate that high temperatures resulted in the loss of dmy in SY-medaka during evolution, or the lineage has another sex-determining gene. This study provides a valuable dataset for elucidating the mechanism underlying sex determination in Oryzias genus and advances research on functional genomics or reproduction biology in O. curvinotus.
Collapse
Affiliation(s)
- Zhongdian Dong
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Correspondence: (Z.D.); (Z.W.)
| | - Xueyou Li
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Zebin Yao
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Chun Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Yusong Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Qian Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao 266071, China; (Q.W.); (C.S.)
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao 266071, China; (Q.W.); (C.S.)
| | - Zhongduo Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha 410081, China
- Correspondence: (Z.D.); (Z.W.)
| |
Collapse
|
20
|
Spanke T, Hilgers L, Wipfler B, Flury JM, Nolte AW, Utama IV, Misof B, Herder F, Schwarzer J. Complex sexually dimorphic traits shape the parallel evolution of a novel reproductive strategy in Sulawesi ricefishes (Adrianichthyidae). BMC Ecol Evol 2021; 21:57. [PMID: 33879056 PMCID: PMC8056572 DOI: 10.1186/s12862-021-01791-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pelvic brooding is a form of uni-parental care, and likely evolved in parallel in two lineages of Sulawesi ricefishes. Contrary to all other ricefishes, females of pelvic brooding species do not deposit eggs at a substrate (transfer brooding), but carry them until the fry hatches. We assume that modifications reducing the costs of egg carrying are beneficial for pelvic brooding females, but likely disadvantageous in conspecific males, which might be resolved by the evolution of sexual dimorphism via sexual antagonistic selection. Thus we hypothesize that the evolution of pelvic brooding gave rise to female-specific skeletal adaptations that are shared by both pelvic brooding lineages, but are absent in conspecific males and transfer brooding species. To tackle this, we combine 3D-imaging and morphometrics to analyze skeletal adaptations to pelvic brooding. Results The morphology of skeletal traits correlated with sex and brooding strategy across seven ricefish species. Pelvic brooding females have short ribs caudal of the pelvic girdle forming a ventral concavity and clearly elongated and thickened pelvic fins compared to both sexes of transfer brooding species. The ventral concavity limits the body cavity volume in female pelvic brooders. Thus body volumes are smaller compared to males in pelvic brooding species, a pattern sharply contrasted by transfer brooding species. Conclusions We showed in a comparative framework that highly similar, sexually dimorphic traits evolved in parallel in both lineages of pelvic brooding ricefish species. Key traits, present in all pelvic brooding females, were absent or much less pronounced in conspecific males and both sexes of transfer brooding species, indicating that they are non-beneficial or even maladaptive for ricefishes not providing extended care. We assume that the combination of ventral concavity and robust, elongated fins reduces drag of brooding females and provides protection and stability to the egg cluster. Thus ricefishes are one of the rare examples where environmental factors rather than sexual selection shaped the evolution of sexually dimorphic skeletal adaptations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01791-z.
Collapse
Affiliation(s)
- Tobias Spanke
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Leon Hilgers
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Benjamin Wipfler
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Jana M Flury
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Arne W Nolte
- Carl Von Ossietzky Universität Oldenburg, AG Ökologische Genomik, Carl von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Ilham V Utama
- Ichthyology Laboratory, Indonesian Institute of Sciences (LIPI), JL. Raya Jakarta-Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Bernhard Misof
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Fabian Herder
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Julia Schwarzer
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| |
Collapse
|
21
|
Ansai S, Mochida K, Fujimoto S, Mokodongan DF, Sumarto BKA, Masengi KWA, Hadiaty RK, Nagano AJ, Toyoda A, Naruse K, Yamahira K, Kitano J. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat Commun 2021; 12:1350. [PMID: 33649298 PMCID: PMC7921647 DOI: 10.1038/s41467-021-21697-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Sexual selection drives rapid phenotypic diversification of mating traits. However, we know little about the causative genes underlying divergence in sexually selected traits. Here, we investigate the genetic basis of male mating trait diversification in the medaka fishes (genus Oryzias) from Sulawesi, Indonesia. Using linkage mapping, transcriptome analysis, and genome editing, we identify csf1 as a causative gene for red pectoral fins that are unique to male Oryzias woworae. A cis-regulatory mutation enables androgen-induced expression of csf1 in male fins. csf1-knockout males have reduced red coloration and require longer for mating, suggesting that coloration can contribute to male reproductive success. Contrary to expectations, non-red males are more attractive to a predatory fish than are red males. Our results demonstrate that integrating genomics with genome editing enables us to identify causative genes underlying sexually selected traits and provides a new avenue for testing theories of sexual selection.
Collapse
Affiliation(s)
- Satoshi Ansai
- grid.288127.60000 0004 0466 9350Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan ,grid.419396.00000 0004 0618 8593Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan ,grid.69566.3a0000 0001 2248 6943Present Address: Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi Japan
| | - Koji Mochida
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.26091.3c0000 0004 1936 9959Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Shingo Fujimoto
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.267625.20000 0001 0685 5104Present Address: Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa Japan
| | - Daniel F. Mokodongan
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ,grid.249566.a0000 0004 0644 6054Present Address: Museum Zoologicum Bogoriense (MZB), Zoology Division of Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Bayu Kreshna Adhitya Sumarto
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kawilarang W. A. Masengi
- grid.412381.d0000 0001 0702 3254Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Renny K. Hadiaty
- grid.249566.a0000 0004 0644 6054Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Atsushi J. Nagano
- grid.440926.d0000 0001 0744 5780Faculty of Agriculture, Ryukoku University, Ohtsu, Shiga, Japan
| | - Atsushi Toyoda
- grid.288127.60000 0004 0466 9350Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyoshi Naruse
- grid.419396.00000 0004 0618 8593Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazunori Yamahira
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Jun Kitano
- grid.288127.60000 0004 0466 9350Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
22
|
Molecular assessment and transcriptome profiling of wild fish populations of Oryzias mekongensis and O. songkhramensis (Adrianichthyidae: Beloniformes) from Thailand. PLoS One 2020; 15:e0242382. [PMID: 33211755 PMCID: PMC7676673 DOI: 10.1371/journal.pone.0242382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022] Open
Abstract
Among the fish of the genus Oryzias, two species are frequently used as model animals in biological research. In Thailand, Oryzias mekongensis is usually found in natural freshwater near the Mekong Basin in the northeast region, while O. songkhramensis inhabits the Songkhram Basin. For differential morphological identification, the coloured bands on the dorsal and ventral margins of the caudal fin are used to distinguish O. mekongensis from O. songkhramensis. However, these characteristics are insufficient to justify species differentiation, and little molecular evidence is available to supplement them. This study aimed to investigate the molecular population and transcriptome profiles of adult O. mekongensis and O. songkhramensis. In the molecular tree based on cytochrome b sequences, O. mekongensis exhibited four clades that were clearly distinguished from O. songkhramensis. Clade 1 of the O. mekongensis population was close to the Mekong River and lived in the eastern portion of the upper northeast region. Clade 2 was far from the Mekong River and inhabited the middle region of the Songkhram River. Clade 3 was positioned to the west of the Songkhram River, and clade 4 was to the south of the Songkhram River Basin. After RNA sequencing using an Illumina HiSeq 2500 platform, the gene category annotations hardly differentiated the species and were discussed in the text. Based on the present findings, population dispersal of these Oryzias species might be associated with geographic variations of the upper northeast region. Molecular genetics and transcriptome profiling might advance our understanding of the evolution of teleost fish.
Collapse
|
23
|
Dong Z, Li X, Huang S, Zhang N, Guo Y, Wang Z. Vitellogenins and choriogenins are biomarkers for monitoring Oryzias curvinotus juveniles exposed to 17 β - estradiol. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108800. [PMID: 32450338 DOI: 10.1016/j.cbpc.2020.108800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
The effect of estrogens on Oryzias curvinotus juveniles were investigated by sequencing the transcriptome of O. curvinotus juveniles exposed to 17 β - estradiol for 24 h. A total of 69,071,524 and 71,210,528 raw reads were obtained for the control group (NC) and 17 β - estradiol exposure group (E2), respectively. After de novo assembly, total 133,210 unigenes were identified, and 85,837 unigenes (64.44% of 133,210) were annotated. Analysis of the transcriptome showed that exposure to 2 μg/L 17 β - estradiol led to the up-regulation of 19 genes and down-regulation of 18 genes. The eef1b and rps4x was most suitable as controls for quantitative real-time PCR (qPCR) using Reffinder. Different expression genes enrichment analysis found that exposed to 2 μg/L 17 β - estradiol affected various physiological processes, including spliceosome, phototransduction, amino sugar and nuclear sugar metabolism, hypotaurine metabolism, and renin-angiotensin system, etc. Exposing O. curvinotus juveniles to increasing concentrations of 17 β - estradiol (2 ng/L, 20 ng/L, 200 ng/L and 2 μg/L) led to significant up-regulation of vitellogenins (vtgs) and choriogenins (chgs) mRNA expression. The present study is the first high-throughput transcriptome sequencing of O. curvinotus juveniles, which will be useful for future functional analysis of genes related to environmental estrogen exposed, and development of biomarkers.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Shunkai Huang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
24
|
Fodor I, Hussein AAA, Benjamin PR, Koene JM, Pirger Z. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife 2020; 9:e56962. [PMID: 32539932 PMCID: PMC7297532 DOI: 10.7554/elife.56962] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Only a limited number of animal species lend themselves to becoming model organisms in multiple biological disciplines: one of these is the great pond snail, Lymnaea stagnalis. Extensively used since the 1970s to study fundamental mechanisms in neurobiology, the value of this freshwater snail has been also recognised in fields as diverse as host-parasite interactions, ecotoxicology, evolution, genome editing and 'omics', and human disease modelling. While there is knowledge about the natural history of this species, what is currently lacking is an integration of findings from the laboratory and the field. With this in mind, this article aims to summarise the applicability of L. stagnalis and points out that this multipurpose model organism is an excellent, contemporary choice for addressing a large range of different biological questions, problems and phenomena.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| | - Ahmed AA Hussein
- Department of Ecological Sciences, Faculty of Sciences, Vrije UniversiteitAmsterdamNetherlands
| | - Paul R Benjamin
- Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| |
Collapse
|