1
|
Wan K, Wu D, Xie G, Li Y, Zhang J. Different Cytotoxicity Induced by Hexabromocyclododecanes on Mouse Neuroblastoma N2a Cells via Oxidative Stress and Mitochondrial Apoptotic Pathway. TOXICS 2024; 12:665. [PMID: 39330593 PMCID: PMC11436204 DOI: 10.3390/toxics12090665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Hexabromocyclododecane (HBCD) is widely used in polystyrene foams, building materials, and electrical equipment as a brominated flame retardant (BFR) and persists in the environment and human body matrix. It has attracted increased attention since its neuroendocrine disorder effects have been observed in humans and animals. However, studies evaluating the neurotoxicity of HBCD diastereoisomers and the potential mechanisms involved are still limited. In this study, we compared the cytotoxicity induced by the three HBCD diastereoisomers (i.e., α-, β-, and γ-HBCD) in N2a cells and further investigated the underlying molecular mechanism. Our results showed that HBCD diastereoisomers decreased cell viability in the order of β-HBCD > α-HBCD > γ-HBCD. Moreover, α-HBCD and β-HBCD exposure led to different degrees of cell cycle disruption and oxidative stress of N2a cells, implying that oxidative stress-mediated differential cytotoxicity of HBCD diastereoisomers. The expressions of caspases and Bcl-2 were differentially regulated by α-HBCD and β-HBCD, suggesting that the mitochondrial apoptosis pathway may be critical in HBCDs-mediated N2a cell toxicity. Therefore, our studies provided novel evidence for the underlying mechanisms of the distinct cytotoxicity of HBCD diastereoisomers.
Collapse
Affiliation(s)
- Keyan Wan
- Shenzhen Bao'an District Songgang People's Hospital, Shenzhen 518105, China
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dongting Wu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518010, China
| | - Guangshan Xie
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunxiu Li
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
2
|
Maurya D, Rai G, Mandal D, Mondal BC. Transient caspase-mediated activation of caspase-activated DNase causes DNA damage required for phagocytic macrophage differentiation. Cell Rep 2024; 43:114251. [PMID: 38761374 DOI: 10.1016/j.celrep.2024.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Phagocytic macrophages are crucial for innate immunity and tissue homeostasis. Most tissue-resident macrophages develop from embryonic precursors that populate every organ before birth to lifelong self-renew. However, the mechanisms for versatile macrophage differentiation remain unknown. Here, we use in vivo genetic and cell biological analysis of the Drosophila larval hematopoietic organ, the lymph gland that produces macrophages. We show that the developmentally regulated transient activation of caspase-activated DNase (CAD)-mediated DNA strand breaks in intermediate progenitors is essential for macrophage differentiation. Insulin receptor-mediated PI3K/Akt signaling regulates the apoptosis signal-regulating kinase 1 (Ask1)/c-Jun kinase (JNK) axis to control sublethal levels of caspase activation, causing DNA strand breaks during macrophage development. Furthermore, caspase activity is also required for embryonic-origin macrophage development and efficient phagocytosis. Our study provides insights into developmental signaling and CAD-mediated DNA strand breaks associated with multifunctional and heterogeneous macrophage differentiation.
Collapse
Affiliation(s)
- Deepak Maurya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gayatri Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Debleena Mandal
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bama Charan Mondal
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
McDonald PC, Dedhar S. Persister cell plasticity in tumour drug resistance. Semin Cell Dev Biol 2024; 156:1-10. [PMID: 37977107 DOI: 10.1016/j.semcdb.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without genetic alterations, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
4
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
5
|
Neidhardt L, Cloots E, Friemel N, Weiss CAM, Harding HP, McLaughlin SH, Janssens S, Ron D. The IRE1β-mediated unfolded protein response is repressed by the chaperone AGR2 in mucin producing cells. EMBO J 2024; 43:719-753. [PMID: 38177498 PMCID: PMC10907699 DOI: 10.1038/s44318-023-00014-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Effector mechanisms of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) are well-characterised, but how ER proteostasis is sensed is less well understood. Here, we exploited the beta isoform of the UPR transducer IRE1, that is specific to mucin-producing cells in order to gauge the relative regulatory roles of activating ligands and repressing chaperones of the specialised ER of goblet cells. Replacement of the stress-sensing luminal domain of endogenous IRE1α in CHO cells (normally expressing neither mucin nor IRE1β) with the luminal domain of IRE1β deregulated basal IRE1 activity. The mucin-specific chaperone AGR2 repressed IRE1 activity in cells expressing the domain-swapped IRE1β/α chimera, but had no effect on IRE1α. Introduction of the goblet cell-specific client MUC2 reversed AGR2-mediated repression of the IRE1β/α chimera. In vitro, AGR2 actively de-stabilised the IRE1β luminal domain dimer and formed a reversible complex with the inactive monomer. These features of the IRE1β-AGR2 couple suggest that active repression of IRE1β by a specialised mucin chaperone subordinates IRE1 activity to a proteostatic challenge unique to goblet cells, a challenge that is otherwise poorly recognised by the pervasive UPR transducers.
Collapse
Affiliation(s)
- Lisa Neidhardt
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Eva Cloots
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Natalie Friemel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Caroline A M Weiss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
6
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
7
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Rowland MB, Moore PE, Correll RN. Regulation of cardiac fibroblast cell death by unfolded protein response signaling. Front Physiol 2024; 14:1304669. [PMID: 38283278 PMCID: PMC10811265 DOI: 10.3389/fphys.2023.1304669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The endoplasmic reticulum (ER) is a tightly regulated organelle that requires specific environmental properties to efficiently carry out its function as a major site of protein synthesis and folding. Embedded in the ER membrane, ER stress sensors inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) serve as a sensitive quality control system collectively known as the unfolded protein response (UPR). In response to an accumulation of misfolded proteins, the UPR signals for protective mechanisms to cope with the cellular stress. Under prolonged unstable conditions and an inability to regain homeostasis, the UPR can shift from its original adaptive response to mechanisms leading to UPR-induced apoptosis. These UPR signaling pathways have been implicated as an important feature in the development of cardiac fibrosis, but identifying effective treatments has been difficult. Therefore, the apoptotic mechanisms of UPR signaling in cardiac fibroblasts (CFs) are important to our understanding of chronic fibrosis in the heart. Here, we summarize the maladaptive side of the UPR, activated downstream pathways associated with cell death, and agents that have been used to modify UPR-induced apoptosis in CFs.
Collapse
Affiliation(s)
- Mary B. Rowland
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Patrick E. Moore
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Robert N. Correll
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
9
|
Ottens F, Efstathiou S, Hoppe T. Cutting through the stress: RNA decay pathways at the endoplasmic reticulum. Trends Cell Biol 2023:S0962-8924(23)00236-2. [PMID: 38008608 DOI: 10.1016/j.tcb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The endoplasmic reticulum (ER) is central to the processing of luminal, transmembrane, and secretory proteins, and maintaining a functional ER is essential for organismal physiology and health. Increased protein-folding load on the ER causes ER stress, which activates quality control mechanisms to restore ER function and protein homeostasis. Beyond protein quality control, mRNA decay pathways have emerged as potent ER fidelity regulators, but their mechanistic roles in ER quality control and their interrelationships remain incompletely understood. Herein, we review ER-associated RNA decay pathways - including regulated inositol-requiring enzyme 1α (IRE1α)-dependent mRNA decay (RIDD), nonsense-mediated mRNA decay (NMD), and Argonaute-dependent RNA silencing - in ER homeostasis, and highlight the intricate coordination of ER-targeted RNA and protein decay mechanisms and their association with antiviral defense.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sotirios Efstathiou
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Groenendyk J, Michalak M. Interplay between calcium and endoplasmic reticulum stress. Cell Calcium 2023; 113:102753. [PMID: 37209448 DOI: 10.1016/j.ceca.2023.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cellular homeostasis is crucial for the healthy functioning of the organism. Disruption of cellular homeostasis activates endoplasmic reticulum (ER) stress coping responses including the unfolded protein response (UPR). There are three ER resident stress sensors responsible for UPR activation - IRE1α, PERK and ATF6. Ca2+ signaling plays an important role in stress responses including the UPR and the ER is the main Ca2+ storage organelle and a source of Ca2+ for cell signaling. The ER contains many proteins involved in Ca2+ import/export/ storage, Ca2+ movement between different cellular organelles and ER Ca2+ stores refilling. Here we focus on selected aspects of ER Ca2+ homeostasis and its role in activation of the ER stress coping responses.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
11
|
Nano M, Mondo JA, Harwood J, Balasanyan V, Montell DJ. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci U S A 2023; 120:e2216531120. [PMID: 36669100 PMCID: PMC9942801 DOI: 10.1073/pnas.2216531120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/17/2022] [Indexed: 01/21/2023] Open
Abstract
Executioner-caspase activation has been considered a point-of-no-return in apoptosis. However, numerous studies report survival from caspase activation after treatment with drugs or radiation. An open question is whether cells can recover from direct caspase activation without pro-survival stress responses induced by drugs. To address this question, we engineered a HeLa cell line to express caspase-3 inducibly and combined it with a quantitative caspase activity reporter. While high caspase activity levels killed all cells and very low levels allowed all cells to live, doses of caspase activity sufficient to kill 15 to 30% of cells nevertheless allowed 70 to 85% to survive. At these doses, neither the rate, nor the peak level, nor the total amount of caspase activity could accurately predict cell death versus survival. Thus, cells can survive direct executioner-caspase activation, and variations in cellular state modify the outcome of potentially lethal caspase activity. Such heterogeneities may underlie incomplete tumor cell killing in response to apoptosis-inducing cancer treatments.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - James A. Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
| | - Jacob Harwood
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
| | - Varuzhan Balasanyan
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
12
|
Shishova A, Dyugay I, Fominykh K, Baryshnikova V, Dereventsova A, Turchenko Y, Slavokhotova AA, Ivin Y, Dmitriev SE, Gmyl A. Enteroviruses Manipulate the Unfolded Protein Response through Multifaceted Deregulation of the Ire1-Xbp1 Pathway. Viruses 2022; 14:v14112486. [PMID: 36366584 PMCID: PMC9699254 DOI: 10.3390/v14112486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Many viruses are known to trigger endoplasmic reticulum (ER) stress in host cells, which in turn can develop a protective unfolded protein response (UPR). Depending on the conditions, the UPR may lead to either cell survival or programmed cell death. One of three UPR branches involves the upregulation of Xbp1 transcription factor caused by the unconventional cytoplasmic splicing of its mRNA. This process is accomplished by the phosphorylated form of the endoribonuclease/protein kinase Ire1/ERN1. Here, we show that the phosphorylation of Ire1 is up-regulated in HeLa cells early in enterovirus infection but down-regulated at later stages. We also find that Ire1 is cleaved in poliovirus- and coxsackievirus-infected HeLa cells 4-6 h after infection. We further show that the Ire1-mediated Xbp1 mRNA splicing is repressed in infected cells in a time-dependent manner. Thus, our results demonstrate the ability of enteroviruses to actively modulate the Ire1-Xbp1 host defensive pathway by inducing phosphorylation and proteolytic cleavage of the ER stress sensor Ire1, as well as down-regulating its splicing activity. Inactivation of Ire1 could be a novel mode of the UPR manipulation employed by viruses to modify the ER stress response in the infected cells.
Collapse
Affiliation(s)
- Anna Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 117418 Moscow, Russia
- Correspondence: (A.S.); (S.E.D.)
| | - Ilya Dyugay
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Ksenia Fominykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Victoria Baryshnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Alena Dereventsova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Yuriy Turchenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Anna A. Slavokhotova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Yury Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (A.S.); (S.E.D.)
| | - Anatoly Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| |
Collapse
|
13
|
Carreras-Sureda A, Kroemer G, Cardenas JC, Hetz C. Balancing energy and protein homeostasis at ER-mitochondria contact sites. Sci Signal 2022; 15:eabm7524. [DOI: 10.1126/scisignal.abm7524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, 1211 Geneva, Switzerland
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Julio Cesar Cardenas
- Center for Integrative Biology, Mayor University, 7510041 Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claudio Hetz
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, 70086 Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, 70086 Santiago, Chile
| |
Collapse
|
14
|
IRE1α Inhibitors as a Promising Therapeutic Strategy in Blood Malignancies. Cancers (Basel) 2022; 14:cancers14102526. [PMID: 35626128 PMCID: PMC9139960 DOI: 10.3390/cancers14102526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Synthesis, folding, and structural maturation of proteins occur in the endoplasmic reticulum (ER). Accumulation of misfolded or unfolded proteins in the ER lumen contributes to the induction of ER stress and activation of the unfolded protein response (UPR) signaling pathway. Under ER stress, the UPR tries to maintain cellular homeostasis through different pathways, including the inositol-requiring enzyme 1 alpha (IRE1α)-dependent ones. IRE1α is located in an ER membrane, and it is evolutionarily the oldest UPR sensor. Activation of IRE1α via ER stress triggers the formation of the spliced form of XBP1 (XBP1s), which has been linked to a pro-survival effect in cancer cells. The role of IRE1α is critical for blood cancer cells, and it was found that the levels of IRE1α and XBP1s are elevated in various hematological malignancies. This review paper is focused on summarizing the latest knowledge about the role of IRE1α and on the assessment of the potential utility of IRE1α inhibitors in blood cancers.
Collapse
|
15
|
Almanza A, Mnich K, Blomme A, Robinson CM, Rodriguez-Blanco G, Kierszniowska S, McGrath EP, Le Gallo M, Pilalis E, Swinnen JV, Chatziioannou A, Chevet E, Gorman AM, Samali A. Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat Commun 2022; 13:2493. [PMID: 35524156 PMCID: PMC9076827 DOI: 10.1038/s41467-022-30159-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
IRE1α is constitutively active in several cancers and can contribute to cancer progression. Activated IRE1α cleaves XBP1 mRNA, a key step in production of the transcription factor XBP1s. In addition, IRE1α cleaves select mRNAs through regulated IRE1α-dependent decay (RIDD). Accumulating evidence implicates IRE1α in the regulation of lipid metabolism. However, the roles of XBP1s and RIDD in this process remain ill-defined. In this study, transcriptome and lipidome profiling of triple negative breast cancer cells subjected to pharmacological inhibition of IRE1α reveals changes in lipid metabolism genes associated with accumulation of triacylglycerols (TAGs). We identify DGAT2 mRNA, encoding the rate-limiting enzyme in TAG biosynthesis, as a RIDD target. Inhibition of IRE1α, leads to DGAT2-dependent accumulation of TAGs in lipid droplets and sensitizes cells to nutritional stress, which is rescued by treatment with the DGAT2 inhibitor PF-06424439. Our results highlight the importance of IRE1α RIDD activity in reprograming cellular lipid metabolism. IRE1α cleaves several mRNAs upon accumulation of misfolded proteins. Here the authors show that active IRE1α cleaves DGAT2 mRNA encoding the rate-limiting enzyme in the synthesis of triacylglycerols, suggesting a role of IRE1α in reprogramming lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Arnaud Blomme
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Claire M Robinson
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | | | | | - Eoghan P McGrath
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | | | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, Leuven, Belgium
| | - Aristotelis Chatziioannou
- e-NIOS Applications PC, 25 Alexandros Pantou str., 17671, Kallithea, Greece.,Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou str, 11527, Athens, GR, Greece
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland. .,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland.
| |
Collapse
|
16
|
Mallick P, Maity S, Chakrabarti O, Chakrabarti S. Role of systems biology and multi-omics analyses in delineating spatial interconnectivity and temporal dynamicity of ER stress mediated cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119210. [PMID: 35032474 DOI: 10.1016/j.bbamcr.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.
Collapse
Affiliation(s)
- Priyanka Mallick
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
17
|
Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nat Commun 2021; 12:7310. [PMID: 34911951 PMCID: PMC8674358 DOI: 10.1038/s41467-021-27597-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs-degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.
Collapse
|
18
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Gebert M, Sobolewska A, Bartoszewska S, Cabaj A, Crossman DK, Króliczewski J, Madanecki P, Dąbrowski M, Collawn JF, Bartoszewski R. Genome-wide mRNA profiling identifies X-box-binding protein 1 (XBP1) as an IRE1 and PUMA repressor. Cell Mol Life Sci 2021; 78:7061-7080. [PMID: 34636989 PMCID: PMC8558229 DOI: 10.1007/s00018-021-03952-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next‐generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Aleksandra Sobolewska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - David K Crossman
- Department of Genetics, Heflin Center for Genomic Science, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jarosław Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Piotr Madanecki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland.
| |
Collapse
|
20
|
Si J, Pei Y, Ji P, Zhang X, Xu R, Qiao H, Shen D, Peng H, Dou D. PsGRASP, a Golgi Reassembly Stacking Protein in Phytophthora sojae, Is Required for Mycelial Growth, Stress Responses, and Plant Infection. Front Microbiol 2021; 12:702632. [PMID: 34305870 PMCID: PMC8297711 DOI: 10.3389/fmicb.2021.702632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 01/21/2023] Open
Abstract
Golgi reassembly stacking proteins (GRASPs) play important roles in Golgi structure formation, ER stress response, and unconventional secretion in eukaryotic cells. However, GRASP functions in oomycetes haven’t been adequately characterized. Here, we report the identification and functional analysis of PsGRASP, a GRASP-encoding gene from the soybean-infecting oomycete Phytophthora sojae. Transcriptional profiling showed that PsGRASP expression is up-regulated at the infection stages. PsGRASP knockout mutants were created using the CRISPR/Cas9 system. These mutants exhibited impaired vegetative growth, zoospore release and virulence. PsGRASP was involved ER stress responses and altered laccase activity. Our work suggests that PsGRASP is crucial for P. sojae development and pathogenicity.
Collapse
Affiliation(s)
- Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yong Pei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruofei Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Qiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Triazoloacridone C-1305 impairs XBP1 splicing by acting as a potential IRE1α endoribonuclease inhibitor. Cell Mol Biol Lett 2021; 26:11. [PMID: 33730996 PMCID: PMC7968329 DOI: 10.1186/s11658-021-00255-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol requiring enzyme 1 alpha (IRE1α) is one of three signaling sensors in the unfolding protein response (UPR) that alleviates endoplasmic reticulum (ER) stress in cells and functions to promote cell survival. During conditions of irrevocable stress, proapoptotic gene expression is induced to promote cell death. One of the three signaling stressors, IRE1α is an serine/threonine-protein kinase/endoribonuclease (RNase) that promotes nonconventional splicing of XBP1 mRNA that is translated to spliced XBP1 (XBP1s), an active prosurvival transcription factor. Interestingly, elevated IRE1α and XBP1s are both associated with poor cancer survival and drug resistance. In this study, we used next-generation sequencing analyses to demonstrate that triazoloacridone C-1305, a microtubule stabilizing agent that also has topoisomerase II inhibitory activity, dramatically decreases XBP1s mRNA levels and protein production during ER stress conditions, suggesting that C-1305 does this by decreasing IRE1α’s endonuclease activity.
Collapse
|
22
|
McGrath EP, Centonze FG, Chevet E, Avril T, Lafont E. Death sentence: The tale of a fallen endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119001. [PMID: 33705817 DOI: 10.1016/j.bbamcr.2021.119001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
Endoplasmic Reticulum (ER) stress signaling is an adaptive mechanism triggered when protein folding demand overcomes the folding capacity of this compartment, thereby leading to the accumulation of improperly folded proteins. This stress signaling pathway is named the Unfolded Protein Response (UPR) and aims at restoring ER homeostasis. However, if this fails, mechanisms orienting cells towards death processes are initiated. Herein, we summarize the most recent findings connecting ER stress and the UPR with identified death mechanisms including apoptosis, necrosis, pyroptosis, ferroptosis, and autophagy. We highlight new avenues that could be investigated and controlled through actionable mechanisms in physiology and pathology.
Collapse
Affiliation(s)
| | | | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
23
|
The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines 2021; 9:biomedicines9020156. [PMID: 33562589 PMCID: PMC7914947 DOI: 10.3390/biomedicines9020156] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions. Emerging evidence suggests that genetic or pharmacological modulation of IRE1 may have a significant impact on cell viability, and thus may be a promising step forward towards development of novel therapeutic strategies. In this review, we extensively describe the structural analysis of IRE1 molecule, the molecular dynamics associated with IRE1 activation, and interconnection between it and the other branches of the UPR with regard to its potential use as a therapeutic target. Detailed knowledge of the molecular characteristics of the IRE1 protein and its activation may allow the design of specific kinase or RNase modulators that may act as drug candidates.
Collapse
|
24
|
Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands. Nat Commun 2020; 11:6387. [PMID: 33318494 PMCID: PMC7736581 DOI: 10.1038/s41467-020-19974-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Inositol-Requiring Enzyme 1 (IRE1) is an essential component of the Unfolded Protein Response. IRE1 spans the endoplasmic reticulum membrane, comprising a sensory lumenal domain, and tandem kinase and endoribonuclease (RNase) cytoplasmic domains. Excess unfolded proteins in the ER lumen induce dimerization and oligomerization of IRE1, triggering kinase trans-autophosphorylation and RNase activation. Known ATP-competitive small-molecule IRE1 kinase inhibitors either allosterically disrupt or stabilize the active dimeric unit, accordingly inhibiting or stimulating RNase activity. Previous allosteric RNase activators display poor selectivity and/or weak cellular activity. In this study, we describe a class of ATP-competitive RNase activators possessing high selectivity and strong cellular activity. This class of activators binds IRE1 in the kinase front pocket, leading to a distinct conformation of the activation loop. Our findings reveal exquisitely precise interdomain regulation within IRE1, advancing the mechanistic understanding of this important enzyme and its investigation as a potential small-molecule therapeutic target. The RNase activity of Inositol-Requiring Enzyme 1 (IRE1) can be allosterically regulated by ATP-competitive inhibitors of the IRE1 kinase domain. Here, the authors identify ATP-competitive IRE1 RNase activators with improved selectivity and cellular activity, and elucidate their mechanism of action.
Collapse
|
25
|
Gupta S, Mishra KP, Kumar B, Singh SB, Ganju L. Andrographolide Mitigates Unfolded Protein Response Pathway and Apoptosis Involved in Chikungunya Virus Infection. Comb Chem High Throughput Screen 2020; 24:849-859. [PMID: 32819227 DOI: 10.2174/1386207323999200818165029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/20/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an arthropod-borne RNA virus which induces host Endoplasmic Reticulum (ER) stress by accumulating unfolded or misfolded proteins. ER stress activates the unfolded protein response (UPR) pathway to enable proper protein folding and maintain cellular homeostasis. There is no approved drug or vaccine available for CHIKV treatment, therefore, a pharmacological countermeasure is warranted for preventing CHIKV infection. OBJECTIVE With a view to find a treatment modality for chikungunya infection, "andrographolide", a plant-derived diterpenoid with reported antiviral, anti-inflammatory and immunomodulatory effects, was used to investigate its role in chikungunya induced unfolded protein stress and apoptosis. METHODS Cells and supernatant collected on andrographolide and VER-155008, a GRP78 inhibitor, treatment in CHIKV infected and mock-infected THP-1 cells were tested for differential expression of UPR pathway proteins including GRP78, PERK, EIF-2α, IRE-1α, XBP-1 and ATF6. Furthermore, the inflammasome and apoptosis pathway proteins, i.e., caspase-1, caspase-3 and PARP, were tested by immunoblotting, and cytokines, i.e., IL-1β, IL-6 and IFN-γ were tested by ELISA. RESULTS Andrographolide treatment in CHIKV infected THP-1 cells significantly reduced IRE1α and downstream spliced XBP1 protein expression. Furthermore, CHIKV induced apoptosis and viral protein expression were also reduced on andrographolide treatment. A comparative analysis of andrographolide versus VER-155008, confirmed that andrographolide surpasses the effects of VER-155008 in suppressing the CHIKV induced ER stress. CONCLUSION The study, therefore, confirms that andrographolide is a potential remedy for chikungunya infection and suppresses CHIKV induced ER stress and apoptosis.
Collapse
Affiliation(s)
- Swati Gupta
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Kamla Prasad Mishra
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| | - Lilly Ganju
- Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi-110054, India
| |
Collapse
|
26
|
Urra H, Pihán P, Hetz C. The UPRosome - decoding novel biological outputs of IRE1α function. J Cell Sci 2020; 133:133/15/jcs218107. [PMID: 32788208 DOI: 10.1242/jcs.218107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile.,The Buck Institute for Research in Aging, Novato, CA 94945, USA
| |
Collapse
|
27
|
Forno F, Maatuf Y, Boukeileh S, Dipta P, Mahameed M, Darawshi O, Ferreira V, Rada P, García-Martinez I, Gross E, Priel A, Valverde ÁM, Tirosh B. Aripiprazole Cytotoxicity Coincides with Activation of the Unfolded Protein Response in Human Hepatic Cells. J Pharmacol Exp Ther 2020; 374:452-461. [PMID: 32554435 DOI: 10.1124/jpet.119.264481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia is a mental disease that results in decreased life expectancy and well-being by promoting obesity and sedentary lifestyles. Schizophrenia is treated by antipsychotic drugs. Although the second-generation antipsychotics (SGA), Olanzapine and Aripiprazole, are more effective in treating schizophrenia, they display a higher risk of metabolic side effects, mostly by development of diabetes and insulin resistance, weight gain, and dyslipidemia. Endoplasmic reticulum (ER) stress is induced when ER homeostasis of lipid biosynthesis and protein folding is impaired. This leads to the activation of the unfolded protein response (UPR), a signaling cascade that aims to restore ER homeostasis or initiate cell death. Chronic conditions of ER stress in the liver are associated with diabetes and perturbed lipid metabolism. These metabolic dysfunctions resemble the pharmacological side effects of SGAs. We therefore investigated whether SGAs promote the UPR in human and mouse hepatocytes. We observed full-fledged activation of ER stress by Aripiprazole not by Olanzapine. This occurred at low micromolar concentrations and to variable intensities in different cell types, such as hepatocellular carcinoma, melanoma, and glioblastoma. Mechanistically, Aripiprazole caused depletion of ER calcium, leading to activation of inositol-requiring enzyme 1 (IRE1)and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), two major transducers of the UPR. Cells underwent apoptosis with Aripiprazole treatment, which coincided with UPR induction, and this effect was reduced by adding glutathione without affecting UPR itself. Deletion of IRE1 from HepG2, a human liver cancer cell line, protected cells from Aripiprazole toxicity. Our study reveals for the first time a cytotoxic effect of Aripiprazole that involves the induction of ER stress. SIGNIFICANCE STATEMENT: The antischizophrenic drug Aripiprazole exerts cytotoxic properties at high concentrations. This study shows that this cytotoxicity is associated with the induction of endoplasmic reticulum (ER) stress and IRE1 activation, mechanisms involved in diet-induced obesity. Aripiprazole induced ER stress and calcium mobilization from the ER in human and mouse hepatocytes. Our study highlights a new mechanism of Aripiprazole that is not related to its effect on dopamine signaling.
Collapse
Affiliation(s)
- Francesca Forno
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Yossi Maatuf
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Shatha Boukeileh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Priya Dipta
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Odai Darawshi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Vitor Ferreira
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Patricia Rada
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Irma García-Martinez
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Einav Gross
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Avi Priel
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Ángela M Valverde
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel (F.F., Y.M., S.B., P.D., M.M., O.D., A.P., B.T.); Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain (V.F., P.R., I.G.-M., Á.M.V.); and Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (E.G.)
| |
Collapse
|
28
|
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21:421-438. [PMID: 32457508 DOI: 10.1038/s41580-020-0250-z] [Citation(s) in RCA: 1231] [Impact Index Per Article: 307.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,FONDAP Center for Geroscience Brain Health and Metabolism (GERO), Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
29
|
O'Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial Stress Response and Cancer. Trends Cancer 2020; 6:688-701. [PMID: 32451306 DOI: 10.1016/j.trecan.2020.04.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Cancer cells survive and adapt to many types of stress including hypoxia, nutrient deprivation, metabolic, and oxidative stress. These stresses are sensed by diverse cellular signaling processes, leading to either degradation of mitochondria or alleviation of mitochondrial stress. This review discusses signaling during sensing and mitigation of stress involving mitochondrial communication with the endoplasmic reticulum, and how retrograde signaling upregulates the mitochondrial stress response to maintain mitochondrial integrity. The importance of the mitochondrial unfolded protein response, an emerging pathway that alleviates cellular stress, will be elaborated with respect to cancer. Detailed understanding of cellular pathways will establish mitochondrial stress response as a key mechanism for cancer cell survival leading to cancer progression and resistance, and provide a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nagendra Yadava
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
30
|
Lafont E. Stress Management: Death Receptor Signalling and Cross-Talks with the Unfolded Protein Response in Cancer. Cancers (Basel) 2020; 12:E1113. [PMID: 32365592 PMCID: PMC7281445 DOI: 10.3390/cancers12051113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout tumour progression, tumour cells are exposed to various intense cellular stress conditions owing to intrinsic and extrinsic cues, to which some cells are remarkably able to adapt. Death Receptor (DR) signalling and the Unfolded Protein Response (UPR) are two stress responses that both regulate a plethora of outcomes, ranging from proliferation, differentiation, migration, cytokine production to the induction of cell death. Both signallings are major modulators of physiological tissue homeostasis and their dysregulation is involved in tumorigenesis and the metastastic process. The molecular determinants of the control between the different cellular outcomes induced by DR signalling and the UPR in tumour cells and their stroma and their consequences on tumorigenesis are starting to be unravelled. Herein, I summarize the main steps of DR signalling in relation to its cellular and pathophysiological roles in cancer. I then highlight how the UPR and DR signalling control common cellular outcomes and also cross-talk, providing potential opportunities to further understand the development of malignancies.
Collapse
Affiliation(s)
- Elodie Lafont
- Inserm U1242, Université de Rennes, 35042 Rennes, France;
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| |
Collapse
|
31
|
Grey MJ, Cloots E, Simpson MS, LeDuc N, Serebrenik YV, De Luca H, De Sutter D, Luong P, Thiagarajah JR, Paton AW, Paton JC, Seeliger MA, Eyckerman S, Janssens S, Lencer WI. IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress. J Cell Biol 2020; 219:133656. [PMID: 31985747 PMCID: PMC7041686 DOI: 10.1083/jcb.201904048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host-environment interface.
Collapse
Affiliation(s)
- Michael J Grey
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Harvard Digestive Disease Center, Boston, MA
| | - Eva Cloots
- VIB-UGent Center for Medical Biotechnology and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Laboratory for ER stress and Inflammation, VIB-UGent Center for Inflammation Research and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Mariska S Simpson
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA.,Graduate School of Life Sciences, Utrecht University, Utrecht, Netherlands
| | - Nicole LeDuc
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Yevgeniy V Serebrenik
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | - Heidi De Luca
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Phi Luong
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Harvard Digestive Disease Center, Boston, MA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University Medical School, Stony Brook, NY
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB-UGent Center for Inflammation Research and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wayne I Lencer
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Harvard Digestive Disease Center, Boston, MA
| |
Collapse
|
32
|
Karagöz GE, Aragón T, Acosta-Alvear D. Recent advances in signal integration mechanisms in the unfolded protein response. F1000Res 2019; 8. [PMID: 31723416 PMCID: PMC6833987 DOI: 10.12688/f1000research.19848.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery more than 25 years ago, great progress has been made in our understanding of the unfolded protein response (UPR), a homeostatic mechanism that adjusts endoplasmic reticulum (ER) function to satisfy the physiological demands of the cell. However, if ER homeostasis is unattainable, the UPR switches to drive cell death to remove defective cells in an effort to protect the health of the organism. This functional dichotomy places the UPR at the crossroads of the adaptation versus apoptosis decision. Here, we focus on new developments in UPR signaling mechanisms, in the interconnectivity among the signaling pathways that make up the UPR in higher eukaryotes, and in the coordination between the UPR and other fundamental cellular processes.
Collapse
Affiliation(s)
- G Elif Karagöz
- Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, Spain
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|