1
|
Zhang SM, Yan G, Lekired A, Zhong D. Genomic basis of schistosome resistance in a molluscan vector of human schistosomiasis. iScience 2025; 28:111520. [PMID: 39758819 PMCID: PMC11699755 DOI: 10.1016/j.isci.2024.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Freshwater snails are obligate intermediate hosts for the transmission of schistosomiasis, one of the world's most devastating parasitic diseases. To decipher the mechanisms underlying snail resistance to schistosomes, recombinant inbred lines (RILs) were developed from two well-defined homozygous lines (iM line and iBS90) of the snail Biomphalaria glabrata. Whole-genome sequencing (WGS) was used to scan the genomes of 46 individual RIL snails, representing 46 RILs, half of which were resistant or susceptible to Schistosoma mansoni. Genome-wide association study (GWAS) and bin marker-assisted quantitative trait loci (QTLs) analysis, aided by our chromosome-level assembled genome, were conducted. A small genomic region (∼3 Mb) on chromosome 5 was identified as being associated with schistosome resistance, designated the B. glabrata schistosome resistance region 1 (BgSRR1). This study, built on our recently developed genetic and genomic resources, provides valuable insights into anti-schistosome mechanisms and the future development of snail-targeted biocontrol programs for schistosomiasis.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Abdelmalek Lekired
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Zayed KM. Innate and putative adaptive immunological responses of schistosome-parasitized snails. Acta Trop 2025; 261:107503. [PMID: 39675412 DOI: 10.1016/j.actatropica.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by digenetic trematode from Schistosoma genus, as an etiological agent that uses snails as an intermediate host. In mollusc-trematode relationships, the miracidia attract in the aquatic media to a specific snail as an intermediate hosts, then penetrate its integument in the sporocyst form thereafter, the invasive sporocysts produce secreted/excreted products in order to survive and avoid the snails' immune system. The next larval stage is the cercariae that developed by sporocysts. Subsequently, the snail intermediate host suffers from biological, physiological, biochemical and immunological changes during the development of these parasite larval stages within their tissues. Snails and their parasites engage in an interactive innate and putative adaptive immune response that involves many immune mechanisms, such as the production of nitric oxide, lysozymes, phagocytosis, lectin formation and phenol oxidase activity. Schistosomes have developed a variety of strategies to evade and counteract these deliberate host reactions. These strategies include the secretion of many strong proteases, the use of an immune-resistant outer tegument, the molecular mimicry of host antigens, and the controlled release of certain immunomodulatory substances that influence immune cell activities. This review aims to characterize these important immune evasion mechanisms in order to comprehend the many immunological molecular determinants in the snail/schistosome interaction and to develop alternate management measures for schistosomiasis control.
Collapse
Affiliation(s)
- Khaled M Zayed
- Medical Malacology Department, Theodor Bilharz Research Institute, Kornaish El Nile St.,Warrak El-Haddar, Imbaba, Giza, 12411, Egypt.
| |
Collapse
|
3
|
Sacchi S, Malagoli D, Franchi N. The Invertebrate Immunocyte: A Complex and Versatile Model for Immunological, Developmental, and Environmental Research. Cells 2024; 13:2106. [PMID: 39768196 PMCID: PMC11674123 DOI: 10.3390/cells13242106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The knowledge of comparative and developmental immunobiology has grown over the years and has been strengthened by the contributions of multi-omics research. High-performance microscopy, flow cytometry, scRNA sequencing, and the increased capacity to handle complex data introduced by machine learning have allowed the uncovering of aspects of great complexity and diversity in invertebrate immunocytes, i.e., immune-related circulating cells, which until a few years ago could only be described in terms of morphology and basic cellular functions, such as phagocytosis or enzymatic activity. Today, invertebrate immunocytes are recognized as sophisticated biological entities, involved in host defense, stress response, wound healing, organ regeneration, but also in numerous functional aspects of organismal life not directly related to host defense, such as embryonic development, metamorphosis, and tissue homeostasis. The multiple functions of immunocytes do not always fit the description of invertebrate organisms as simplified biological systems compared to those represented by vertebrates. However, precisely the increasing complexity revealed by immunocytes makes invertebrate organisms increasingly suitable models for addressing biologically significant and specific questions, while continuing to present the undeniable advantages associated with their ethical and economic sustainability.
Collapse
Affiliation(s)
- Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
| |
Collapse
|
4
|
Simphor E, Rognon A, Vignal E, Henry S, Allienne JF, Turtoi A, Chaparro C, Galinier R, Duval D, Gourbal B. Combining a transcriptomic approach and a targeted metabolomics approach for deciphering the molecular bases of compatibility phenotype in the snail Biomphalaria glabrata toward Schistosoma mansoni. Acta Trop 2024; 255:107212. [PMID: 38641222 DOI: 10.1016/j.actatropica.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.
Collapse
Affiliation(s)
- Elodie Simphor
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Anne Rognon
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Emmanuel Vignal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Sylvain Henry
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Andrei Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France; Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Montpellier, France
| | - Cristian Chaparro
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France.
| |
Collapse
|
5
|
Lu L, Bu L, Laidemitt MR, Zhang SM, Loker ES. Different metazoan parasites, different transcriptomic responses, with new insights on parasitic castration by digenetic trematodes in the schistosome vector snail Biomphalaria glabrata. BMC Genomics 2024; 25:608. [PMID: 38886647 PMCID: PMC11184841 DOI: 10.1186/s12864-024-10454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Gastropods of the genus Biomphalaria (Family Planorbidae) are exploited as vectors by Schistosoma mansoni, the most common causative agent of human intestinal schistosomiasis. Using improved genomic resources, overviews of how Biomphalaria responds to S. mansoni and other metazoan parasites can provide unique insights into the reproductive, immune, and other systems of invertebrate hosts, and their responses to parasite challenges. RESULTS Using Illumina-based RNA-Seq, we compared the responses of iM line B. glabrata at 2, 8, and 40 days post-infection (dpi) to single infections with S. mansoni, Echinostoma paraensei (both digenetic trematodes) or Daubaylia potomaca (a nematode parasite of planorbid snails). Responses were compared to unexposed time-matched control snails. We observed: (1) each parasite provoked a distinctive response with a predominance of down-regulated snail genes at all time points following exposure to either trematode, and of up-regulated genes at 8 and especially 40dpi following nematode exposure; (2) At 2 and 8dpi with either trematode, several snail genes associated with gametogenesis (particularly spermatogenesis) were down-regulated. Regarding the phenomenon of trematode-mediated parasitic castration in molluscs, we define for the first time a complement of host genes that are targeted, as early as 2dpi when trematode larvae are still small; (3) Differential gene expression of snails with trematode infection at 40dpi, when snails were shedding cercariae, was unexpectedly modest and revealed down-regulation of genes involved in the production of egg mass proteins and peptide processing; and (4) surprisingly, D. potomaca provoked up-regulation at 40dpi of many of the reproduction-related snail genes noted to be down-regulated at 2 and 8dpi following trematode infection. Happening at a time when B. glabrata began to succumb to D. potomaca, we hypothesize this response represents an unexpected form of fecundity compensation. We also document expression patterns for other Biomphalaria gene families, including fibrinogen domain-containing proteins (FReDs), C-type lectins, G-protein coupled receptors, biomphalysins, and protease and protease inhibitors. CONCLUSIONS Our study is relevant in identifying several genes involved in reproduction that are targeted by parasites in the vector snail B. glabrata and that might be amenable to manipulation to minimize their ability to serve as vectors of schistosomes.
Collapse
Affiliation(s)
- Lijun Lu
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA.
| | - Lijing Bu
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Martina R Laidemitt
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Eric S Loker
- Department of Biology, Center for Evolutionary & Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| |
Collapse
|
6
|
Li H, Chen Y, Zhu Y, Feng Y, Qian Y, Ye X, Xu J, Yang H, Yu J, Chen J, Chen K. Exploring the immune interactions between Oncomelania hupensis and Schistosoma japonicum, with a cross-comparison of immunological research progress in other intermediate host snails. Parasit Vectors 2023; 16:453. [PMID: 38093363 PMCID: PMC10717515 DOI: 10.1186/s13071-023-06011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/17/2023] Open
Abstract
Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China.
- Ocean College, Beibu Gulf University, Qinzhou, China.
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyu Ye
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiatong Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hanyu Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Yu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingyu Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China.
| |
Collapse
|
7
|
Lin D, Hong J, Sanogo B, Du S, Xiang S, Hui JHL, Ding T, Wu Z, Sun X. Core gut microbes Cloacibacterium and Aeromonas associated with different gastropod species could be persistently transmitted across multiple generations. MICROBIOME 2023; 11:267. [PMID: 38017581 PMCID: PMC10685545 DOI: 10.1186/s40168-023-01700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Studies on the gut microbiota of animals have largely focused on vertebrates. The transmission modes of commensal intestinal bacteria in mammals have been well studied. However, in gastropods, the relationship between gut microbiota and hosts is still poorly understood. To gain a better understanding of the composition of gut microbes and their transmission routes in gastropods, a large-scale and long-term experiment on the dynamics and transmission modes of gut microbiota was conducted on freshwater snails. RESULTS We analyzed 244 microbial samples from the digestive tracts of freshwater gastropods and identified Proteobacteria and Bacteroidetes as dominant gut microbes. Aeromonas, Cloacibacterium, and Cetobacterium were identified as core microbes in the guts, accounting for over 50% of the total sequences. Furthermore, both core bacteria Aeromonas and Cloacibacterium, were shared among 7 gastropod species and played an important role in determining the gut microbial community types of both wild and cultured gastropods. Analysis of the gut microbiota at the population level, including wild gastropods and their offspring, indicated that a proportion of gut microbes could be consistently vertically transmitted inheritance, while the majority of the gut microbes resulted from horizontal transmission. Comparing cultured snails to their wild counterparts, we observed an increasing trend in the proportion of shared microbes and a decreasing trend in the number of unique microbes among wild gastropods and their offspring reared in a cultured environment. Core gut microbes, Aeromonas and Cloacibacterium, remained persistent and dispersed from wild snails to their offspring across multiple generations. Interestingly, under cultured environments, the gut microbiota in wild gastropods could only be maintained for up to 2 generations before converging with that of cultured snails. The difference observed in gut bacterial metabolism functions was associated with this transition. Our study also demonstrated that the gut microbial compositions in gastropods are influenced by developmental stages and revealed the presence of Aeromonas and Cloacibacterium throughout the life cycle in gastropods. Based on the dynamics of core gut microbes, it may be possible to predict the health status of gastropods during their adaptation to new environments. Additionally, gut microbial metabolic functions were found to be associated with the adaptive evolution of gastropods from wild to cultured environments. CONCLUSIONS Our findings provide novel insights into the dynamic processes of gut microbiota colonization in gastropod mollusks and unveil the modes of microbial transmission within their guts. Video Abstract.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Benjamin Sanogo
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Parasitology, Institut National de Recherche en Sante Publique, Bamako, Mali
| | - Shuling Du
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Jerome Ho-Lam Hui
- State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Ding
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongdao Wu
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Key Laboratory of Tropical Disease Control (Ministry of Education), Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Duval D, Poteaux P, Gourbal B, Rognon A, Augusto RDC. Fluorescent non transgenic schistosoma to decipher host-parasite phenotype compatibility. Front Immunol 2023; 14:1293009. [PMID: 38106408 PMCID: PMC10721968 DOI: 10.3389/fimmu.2023.1293009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Schistosomiasis is considered as a significant public health problem, imposing a deeper understanding of the intricate interplay between parasites and their hosts. Unfortunately, current invasive methodologies employed to study the compatibility and the parasite development impose limitations on exploring diverse strains under various environmental conditions, thereby impeding progress in the field. In this study, we demonstrate the usefulness for the trematode parasite Schistosma mansoni, leveranging a fluorescence-imaging-based approach that employs fluorescein 5-chloromethylfluorescein diacetate (CMFDA) and 5-chloromethylfluorescein diacetate (CMAC) as organism tracker for intramolluscan studies involving the host snail Biomphalaria glabrata. These probes represent key tools for qualitatively assessing snail infections with unmatched accuracy and precision. By monitoring the fluorescence of parasites within the snail vector, our method exposes an unprecedented glimpse into the host-parasite compatibility landscape. The simplicity and sensitivity of our approach render it an ideal choice for evolutionary studies, as it sheds light on the intricate mechanisms governing host-parasite interactions. Fluorescent probe-based methods play a pivotal role in characterizing factors influencing parasite development and phenotype of compatibility, paving the way for innovative, effective, and sustainable solutions to enhance our understanding host-parasite immunobiological interaction and compatibility.
Collapse
Affiliation(s)
- David Duval
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Anne Rognon
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | | |
Collapse
|
9
|
Li P, Hong J, Yuan Z, Huang Y, Wu M, Ding T, Wu Z, Sun X, Lin D. Gut microbiota in parasite-transmitting gastropods. Infect Dis Poverty 2023; 12:105. [PMID: 38001502 PMCID: PMC10668521 DOI: 10.1186/s40249-023-01159-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gastropoda, the largest class within the phylum Mollusca, houses diverse gut microbiota, and some gastropods serve as intermediate hosts for parasites. Studies have revealed that gut bacteria in gastropods are associated with various biological aspects, such as growth, immunity and host-parasite interactions. Here, we summarize our current knowledge of gastropod gut microbiomes and highlight future research priorities and perspectives. METHODS A literature search was undertaken using PubMed, Web of Science and CNKI for the articles on the gut microbiota of gastropods until December 31, 2022. We retrieved a total of 166 articles and identified 73 eligible articles for inclusion in this review based on the inclusion and exclusion criteria. RESULTS Our analysis encompassed freshwater, seawater and land snails, with a specific focus on parasite-transmitting gastropods. We found that most studies on gastropod gut microbiota have primarily utilized 16S rRNA gene sequencing to analyze microbial composition, rather than employing metagenomic, metatranscriptomic, or metabolomic approaches. This comprehensive review provided an overview of the parasites carried by snail species in the context of gut microbiota studies. We presented the gut microbial trends, a comprehensive summary of the diversity and composition, influencing factors, and potential functions of gastropod gut microbiota. Additionally, we discussed the potential applications, research gaps and future perspectives of gut microbiomes in parasite-transmitting gastropods. Furthermore, several strategies for enhancing our comprehension of gut microbiomes in snails were also discussed. CONCLUSIONS This review comprehensively summarizes the current knowledge on the composition, potential function, influencing factors, potential applications, limitations, and challenges of gut microbiomes in gastropods, with a specific emphasis on parasite-transmitting gastropods. These findings provide important insights for future studies aiming to understand the potential role of gastropod gut microbiota in controlling snail populations and snail-borne diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Status Quo and Future Perspectives of Molecular and Genomic Studies on the Genus Biomphalaria-The Intermediate Snail Host of Schistosoma mansoni. Int J Mol Sci 2023; 24:ijms24054895. [PMID: 36902324 PMCID: PMC10003693 DOI: 10.3390/ijms24054895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Schistosomiasis, or also generally known as bilharzia or snail fever, is a parasitic disease that is caused by trematode flatworms of the genus Schistosoma. It is considered by the World Health Organisation as the second most prevalent parasitic disease after malaria and affects more than 230 million people in over 70 countries. People are infected via a variety of activities ranging from agricultural, domestic, occupational to recreational activities, where the freshwater snails Biomphalaria release Schistosoma cercariae larvae that penetrate the skin of humans when exposed in water. Understanding the biology of the intermediate host snail Biomphalaria is thus important to reveal the potential spread of schistosomiasis. In this article, we present an overview of the latest molecular studies focused on the snail Biomphalaria, including its ecology, evolution, and immune response; and propose using genomics as a foundation to further understand and control this disease vector and thus the transmission of schistosomiasis.
Collapse
|
11
|
Bu L, Lu L, Laidemitt MR, Zhang SM, Mutuku M, Mkoji G, Steinauer M, Loker ES. A genome sequence for Biomphalaria pfeifferi, the major vector snail for the human-infecting parasite Schistosoma mansoni. PLoS Negl Trop Dis 2023; 17:e0011208. [PMID: 36961841 PMCID: PMC10075465 DOI: 10.1371/journal.pntd.0011208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/05/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is the world's most widely distributed and commonly implicated vector snail species for the causative agent of human intestinal schistosomiasis, Schistosoma mansoni. In efforts to control S. mansoni transmission, chemotherapy alone has proven insufficient. New approaches to snail control offer a way forward, and possible genetic manipulations of snail vectors will require new tools. Towards this end, we here offer a diverse set of genomic resources for the important African schistosome vector, B. pfeifferi. METHODOLOGY/PRINCIPAL FINDINGS Based largely on PacBio High-Fidelity long reads, we report a genome assembly size of 772 Mb for B. pfeifferi (Kenya), smaller in size than known genomes of other planorbid schistosome vectors. In a total of 505 scaffolds (N50 = 3.2Mb), 430 were assigned to 18 large linkage groups inferred to represent the 18 known chromosomes, based on whole genome comparisons with Biomphalaria glabrata. The annotated B. pfeifferi genome reveals a divergence time of 3.01 million years with B. glabrata, a South American species believed to be similar to the progenitors of B. pfeifferi which undertook a trans-Atlantic colonization < five million years ago. CONCLUSIONS/SIGNIFICANCE The genome for this preferentially self-crossing species is less heterozygous than related species known to be preferential out-crossers; its smaller genome relative to congeners may similarly reflect its preference for selfing. Expansions of gene families with immune relevance are noted, including the FReD gene family which is far more similar in its composition to B. glabrata than to Bulinus truncatus, a vector for Schistosoma haematobium. Provision of this annotated genome will help better understand the dependencies of trematodes on snails, enable broader comparative insights regarding factors contributing to susceptibility/ resistance of snails to schistosome infections, and provide an invaluable resource with respect to identifying and manipulating snail genes as potential targets for more specific snail control programs.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martina R Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martin Mutuku
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gerald Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michelle Steinauer
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
| | - Eric S Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
12
|
Hanington PC. ACCEPTANCE OF THE 2022 HENRY BALDWIN WARD MEDAL: A BIFURCATED TALE OF SCHISTOSOMES AND SNAILS. J Parasitol 2022; 108:671-674. [PMID: 36577002 DOI: 10.1645/22-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Patrick C Hanington
- University of Alberta School of Public Health, 3-57F South Academic Building, Edmonton, Alberta, T6G 2G7, Canada
| |
Collapse
|
13
|
Marquez J, Dinguirard N, Gonzalez A, Kane A, Joffe N, Yoshino T, Castillo M. Molecular characterization of thioester-containing proteins in Biomphalaria glabrata and their differential gene expression upon Schistosoma mansoni exposure. Front Immunol 2022; 13:903158. [PMID: 35967434 PMCID: PMC9363628 DOI: 10.3389/fimmu.2022.903158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis is a disease caused by trematode parasites of the genus Schistosoma that affects approximately 200 million people worldwide. Schistosomiasis has been a persistent problem in endemic areas as there is no vaccine available, currently used anti-helmintic medications do not prevent reinfection, and most concerning, drug resistance has been documented in laboratory and field isolates. Thus, alternative approaches to curtail this human disease are warranted. Understanding the immunobiology of the obligate intermediate host of these parasites, which include the freshwater snail Biomphalaria glabrata, may facilitate the development of novel methods to stop or reduce transmission to humans. Molecules from the thioester-containing protein (TEP) superfamily have been shown to be involved in immunological functions in many animals including corals and humans. In this study we identified, characterized, and compared TEP transcripts and their expression upon S. mansoni exposure in resistant and susceptible strains of B. glabrata snails. Results showed the expression of 11 unique TEPs in B. glabrata snails. These transcripts present high sequence identity at the nucleotide and putative amino acid levels between susceptible and resistant strains. Further analysis revealed differences in several TEPs’ constitutive expression levels between resistant and susceptible snail strains, with C3-1, C3-3, and CD109 having higher constitutive expression levels in the resistant (BS90) strain, whereas C3-2 and TEP-1 showed higher constitutive expression levels in the susceptible (NMRI) strain. Furthermore, TEP-specific response to S. mansoni miracidia exposure reiterated their differential expression, with resistant snails upregulating the expression of both TEP-4 and TEP-3 at 2 h and 48 h post-exposure, respectively. Further understanding the diverse TEP genes and their functions in invertebrate animal vectors will not only expand our knowledge in regard to this ancient family of immune proteins, but also offer the opportunity to identify novel molecular targets that could aid in the efforts to develop control methods to reduce schistosomiasis transmission.
Collapse
Affiliation(s)
- J. Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N. Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - A. Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - A.E. Kane
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N.R. Joffe
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - T.P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - M.G. Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: M.G. Castillo,
| |
Collapse
|
14
|
Young ND, Stroehlein AJ, Wang T, Korhonen PK, Mentink-Kane M, Stothard JR, Rollinson D, Gasser RB. Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium. Nat Commun 2022; 13:977. [PMID: 35190553 PMCID: PMC8861042 DOI: 10.1038/s41467-022-28634-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.
Collapse
Affiliation(s)
- Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute (BRI), Rockville, MD, USA
| | - J Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, London, UK
- London Centre for Neglected Tropical Disease Research, London, UK
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
16
|
Single-cell RNA-seq profiling of individual Biomphalaria glabrata immune cells with a focus on immunologically relevant transcripts. Immunogenetics 2021; 74:77-98. [PMID: 34854945 DOI: 10.1007/s00251-021-01236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
The immune cells of the snail Biomphalaria glabrata are classified into hyalinocyte and granulocyte subtypes. Both subtypes are essential for the proper functioning of the snail immune response, which we understand best within the context of how it responds to challenge with the human parasite Schistosoma mansoni. Granulocytes are adherent phagocytic cells that possess conspicuous granules within the cell cytoplasm. Hyalinocytes, on the other hand, are predominantly non-adherent and are known to produce a handful of anti-S. mansoni immune effectors. While our understanding of these cells has progressed, an in-depth comparison of the functional capabilities of each type of immune cell has yet to be undertaken. Here, we present the results of a single-cell RNA-seq study in which single granulocytes and hyalinocytes from S. mansoni-susceptible M-line B. glabrata and S. mansoni-resistant BS-90 B. glabrata are compared without immune stimulation. This transcriptomic analysis supports a role for the hyalinocytes as producers of immune effectors such as biomphalysin and thioester-containing proteins. It suggests that granulocytes are primarily responsible for producing fibrinogen-related proteins and are armed with various pattern-recognition receptors such as toll-like receptors with a confirmed role in the anti-S. mansoni immune response. This analysis also confirms that the granulocytes and hyalinocytes of BS-90 snails are generally more immunologically prepared than their M-line counterparts. As the first single-cell analysis of the transcriptional profiles of B. glabrata immune cells, this study provides crucial context for understanding the B. glabrata immune response. It sets the stage for future investigations into how each immune cell subtype differs in its response to various immunological threats.
Collapse
|
17
|
Junior NCP, de Melo ES, de Lima IL, da Rocha RET, Batista M, da Silva RA, Feitosa APS, de Lima Filho JL, Brayner FA, Alves LC. A proteomics evaluation of the primary and secondary immune response of Biomphalaria straminea challenged by Schistosoma mansoni. Parasitol Res 2021; 120:4023-4035. [PMID: 34657981 DOI: 10.1007/s00436-021-07341-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Biomphalaria spp. snails are intermediary hosts of Schistosoma mansoni, etiologic agent of intestinal schistosomiasis, one of the most important neglected tropical diseases. Biomphalaria straminea is an important intermediary host that possess a different phenotype to parasite infection but shows a large geographic distribution and high capacity of new ecologic niche invasion. Our purpose was to characterize for the first time the differentially expressed proteome in B. straminea during two times intervals after primary and secondary exposure to S. mansoni. The hemolymph was collected at 1 and 15 days after primary and secondary exposure of snails to the parasite. Total proteins were extracted and digested with trypsin. LC-MS/MS label-free quantification was performed and analyzed using Maxquant and Perseus software. Proteins were identified and annotated using Blast2GO tools. After 1 day of exposure, most of upregulated proteins are hemoglobin type 2, C and H type lectins, molecules related to cell adhesion, and response to oxidative stress. After 15 days, we found a similar pattern of upregulated proteins but some fibrinogen-related proteins (FREPs) and TEPs homologs were downregulated. Regarding the differentially expressed proteins during secondary response, the principal immune-related proteins upregulated were C and H type lectins, cellular adhesion molecules, biomphalysin, and FREP3. We noted a several upregulated biological processes during both responses that could be the one of the key points of efficacy in the immune response to parasite. Our data suggests different immune mechanisms used by B. straminea snails challenged with S. mansoni.
Collapse
Affiliation(s)
| | - Elverson Soares de Melo
- Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| | - Iasmim Lopes de Lima
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Rubens Emanoel Tavares da Rocha
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Michel Batista
- Carlos Chagas Institute FIOCRUZ Paraná, Mass Spectrometry Facility P02-004, Professor Algacyr Munhoz Mader street, 3775 - Curitiba Industrial City, Curitiba, PR, CEP: 81,350,010, Brazil
| | - Roberto Afonso da Silva
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Ana Paula Sampaio Feitosa
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Jose Luiz de Lima Filho
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Fábio André Brayner
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil.,Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| | - Luiz Carlos Alves
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil.,Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| |
Collapse
|
18
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
19
|
Portet A, Galinier R, Lassalle D, Faille A, Gourbal B, Duval D. Hemocyte siRNA uptake is increased by 5' cholesterol-TEG addition in Biomphalaria glabrata, snail vector of schistosome. PeerJ 2021; 9:e10895. [PMID: 33665030 PMCID: PMC7908872 DOI: 10.7717/peerj.10895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Biomphalaria glabrata is one of the snail intermediate hosts of Schistosoma mansoni, the causative agent of intestinal schistosomiasis disease. Numerous molecular studies using comparative approaches between susceptible and resistant snails to S. mansoni infection have helped identify numerous snail key candidates supporting such susceptible/resistant status. The functional approach using RNA interference (RNAi) remains crucial to validate the function of such candidates. CRISPR-Cas systems are still under development in many laboratories, and RNA interference remains the best tool to study B. glabrata snail genetics. Herein, we describe the use of modified small interfering RNA (siRNA) molecules to enhance cell delivery, especially into hemocytes, the snail immune cells. Modification of siRNA with 5′ Cholesteryl TriEthylene Glycol (Chol-TEG) promotes cellular uptake by hemocytes, nearly eightfold over that of unmodified siRNA. FACS analysis reveals that more than 50% of hemocytes have internalized Chol-TEG siRNA conjugated to Cy3 fluorophores, 2 hours only after in vivo injection into snails. Chol-TEG siRNA targeting BgTEP1 (ThioEster-containing Protein), a parasite binding protein, reduced BgTEP1 transcript expression by 70–80% compared to control. The level of BgTEP1 protein secreted in the hemolymph was also decreased. However, despite the BgTEP1 knock-down at both RNA and protein levels, snail compatibility with its sympatric parasite is not affected suggesting functional redundancy among the BgTEP genes family in snail-schistosoma interaction.
Collapse
Affiliation(s)
- Anaïs Portet
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France.,Department of Medicine, Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Galinier
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Damien Lassalle
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Alexandre Faille
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Benjamin Gourbal
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - David Duval
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| |
Collapse
|
20
|
Hambrook JR, Hanington PC. Immune Evasion Strategies of Schistosomes. Front Immunol 2021; 11:624178. [PMID: 33613562 PMCID: PMC7889519 DOI: 10.3389/fimmu.2020.624178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.
Collapse
Affiliation(s)
- Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
21
|
Schultz JH, Bu L, Kamel B, Adema CM. RNA-seq: The early response of the snail Physella acuta to the digenetic trematode Echinostoma paraensei. J Parasitol 2021; 106:490-505. [PMID: 32726421 DOI: 10.1645/19-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To analyze the response of the snail Physella acuta to Echinostoma paraensei, a compatible digenetic trematode, Illumina RNA-seq data were collected from snails with early infection (5 snails at 2 days post-exposure [DPE]) and established infection (4 snails, 8 DPE), and 7 control (unexposed) snails. A reference transcriptome (325,563 transcripts, including 98% of eukaryotic universal single-copy orthologs; BUSCO) and a draft P. acuta genome (employing available genomic Illumina reads; 799,945 scaffolds, includes 88% BUSCO genes) were assembled to guide RNA-seq analyses. Parasite exposure of P. acuta led to 10,195 differentially expressed (DE) genes at 2 DPE and 8,876 DE genes at 8 DPE with only 18% of up-regulated and 22% of down-regulated sequences shared between these time points. Gene ontology (GO) analysis yielded functional annotation of only 1.2% of DE genes but did not indicate major changes in biological activities of P. acuta between 2 and 8 DPE. Increased insights were achieved by analysis of expression profiles of 460 immune-relevant DE transcripts, identified by BLAST and InterProScan. Physella acuta has expanded gene families that encode immune-relevant domains, including CD109/TEP, GTPase IMAP, Limulus agglutination factor (dermatopontin), FReD (≥82 sequences with fibrinogen-related domains), and transcripts that combine C-type lectin (C-LECT) and C1q domains, novel among metazoa. Notably, P. acuta expressed sequences from these immune gene families at all time points, but the assemblages of unique transcripts from particular immune gene families differed between 2 and 8 DPE. The shift in profiles of DE immune genes, from early exposure to parasite establishment, suggests that compatible P. acuta initially respond to infection but switch to express immune genes that likely are less effective against E. paraensei but counter other types of (opportunistic) pathogens and parasites. We propose that the latter expression profile is part of an extended phenotype of E. paraensei, imposed upon P. acuta through parasite manipulation of the host, following successful parasite establishment in the snail after 2 DPE.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Bishoy Kamel
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
22
|
Lu L, Loker ES, Adema CM, Zhang SM, Bu L. Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008780. [PMID: 33052953 PMCID: PMC7588048 DOI: 10.1371/journal.pntd.0008780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Achieving a deeper understanding of the factors controlling the defense responses of invertebrate vectors to the human-infecting pathogens they transmit will provide needed new leads to pursue for control. Consequently, we provide new genomic and transcriptomic insights regarding FReDs (containing a fibrinogen domain) and FREPs (fibrinogen domain and one or two IgSF domains) from the planorbid snail Biomphalaria glabrata, a Neotropical vector of Schistosoma mansoni, causative agent of human intestinal schistosomiasis. Using new bioinformatics approaches to improve annotation applied to both genome and RNA-Seq data, we identify 73 FReD genes, 39 of which are FREPs. We provide details of domain structure and consider relationships and homologies of B. glabrata FBG and IgSF domains. We note that schistosome-resistant (BS-90) snails mount complex FREP responses following exposure to S. mansoni infection whereas schistosome-susceptible (M line) snails do not. We also identify several coding differences between BS-90 and M line snails in three FREPs (2, 3.1 and 3.2) repeatedly implicated in other studies of anti-schistosome responses. In combination with other results, our study provides a strong impetus to pursue particular FREPs (2, 3.1, 3.2 and 4) as candidate resistance factors to be considered more broadly with respect to schistosome control efforts, including involving other Biomphalaria species vectoring S. mansoni in endemic areas in Africa.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
23
|
Lassalle D, Tetreau G, Pinaud S, Galinier R, Crickmore N, Gourbal B, Duval D. Glabralysins, Potential New β-Pore-Forming Toxin Family Members from the Schistosomiasis Vector Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010065. [PMID: 31936048 PMCID: PMC7016736 DOI: 10.3390/genes11010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, we analyzed a new family of potential immune effectors and characterized five new genes that were named Glabralysins. The five Glabralysin genes showed different genomic structures and the high degree of amino acid identity between the Glabralysins, and the presence of the conserved ETX/MTX2 domain, support the hypothesis that they are pore-forming toxins. In addition, tertiary structure prediction confirms that they are structurally related to a subset of Cry toxins from Bacillus thuringiensis, including Cry23, Cry45, and Cry51. Finally, we investigated their gene expression profiles in snail tissues and demonstrated a mosaic transcription. We highlight the specificity in Glabralysin expression following immune stimulation with bacteria, yeast or trematode parasites. Interestingly, one Glabralysin was found to be expressed in immune-specialized hemocytes, and two others were induced following parasite exposure.
Collapse
Affiliation(s)
- Damien Lassalle
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Guillaume Tetreau
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Silvain Pinaud
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Richard Galinier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Benjamin Gourbal
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - David Duval
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
- Correspondence:
| |
Collapse
|