1
|
Wu J, Wang N. Current progress of anti‑PD‑1/PDL1 immunotherapy for glioblastoma (Review). Mol Med Rep 2024; 30:221. [PMID: 39364736 PMCID: PMC11462401 DOI: 10.3892/mmr.2024.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/11/2023] [Indexed: 10/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common central nervous system malignancy in adults. GBM may be classified as grade IV diffuse astrocytoma according to the 2021 World Health Organization revised classification of central nervous system tumors, which means it is the most aggressive, invasive, undifferentiated type of tumor. Immune checkpoint blockade (ICB), particularly anti‑programmed cell death protein‑1 (PD‑1)/PD‑1 ligand‑1 immunotherapy, has been confirmed to be successful across several tumor types. However, in GBM, this treatment is still uncommon and the efficacy is unpredictable, and <10% of patients show long‑term responses. Recently, numerous studies have been conducted to explore what factors may indicate or affect the ICB response rate in GBM, including molecular alterations, immune expression signatures and immune infiltration. The present review aimed to summarize the current progress to improve the understanding of immunotherapy for GBM.
Collapse
Affiliation(s)
- Jianheng Wu
- Department of Neurosurgery, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| | - Nannan Wang
- Department of Gastroenterology, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| |
Collapse
|
2
|
Du R, Zhang J, Lukas RV, Tripathi S, Ahrendsen JT, Curran MA, Dmello C, Zhang P, Stupp R, Rao G, Heimberger AB. Is modulation of immune checkpoints on glioblastoma-infiltrating myeloid cells a viable therapeutic strategy? Neuro Oncol 2024:noae193. [PMID: 39427326 DOI: 10.1093/neuonc/noae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with immunosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implications, we aim to prioritize agents in this category of therapeutics for glioblastoma.
Collapse
Affiliation(s)
- Ruochen Du
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianzhong Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shashwat Tripathi
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA (J.T.A.)
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A Curran
- Department of Immunology, MD Anderson Cancer Center, the University of Texas, Houston, Texas, USA
| | - Crismita Dmello
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peng Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Liu SJ, Zou C, Pak J, Morse A, Pang D, Casey-Clyde T, Borah AA, Wu D, Seo K, O'Loughlin T, Lim DA, Ozawa T, Berger MS, Kamber RA, Weiss WA, Raleigh DR, Gilbert LA. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol 2024; 25:256. [PMID: 39375777 PMCID: PMC11457336 DOI: 10.1186/s13059-024-03404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Christopher Zou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Joanna Pak
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexandra Morse
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dillon Pang
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Timothy Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashir A Borah
- Arc Institute, Palo Alto, CA, 94304, USA
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Wu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas O'Loughlin
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, 10029, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roarke A Kamber
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Departments of Pediatrics, Neurology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Feng Q, Dong Z, Nie R, Wang X. Identifying Diffuse Glioma Subtypes Based on Pathway Enrichment Evaluation. Interdiscip Sci 2024; 16:727-740. [PMID: 38637440 DOI: 10.1007/s12539-024-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024]
Abstract
Gliomas are highly heterogeneous in molecular, histology, and microenvironment. However, a classification of gliomas by integrating different tumor microenvironment (TME) components remains unexplored. Based on the enrichment scores of 17 pathways involved in immune, stromal, DNA repair, and nervous system signatures in diffuse gliomas, we performed consensus clustering to uncover novel subtypes of gliomas. Consistently in three glioma datasets (TCGA-glioma, CGGA325, and CGGA301), we identified three subtypes: Stromal-enriched (Str-G), Nerve-enriched (Ner-G), and mixed (Mix-G). Ner-G was charactered by low immune infiltration levels, stromal contents, tumor mutation burden, copy number alterations, DNA repair activity, cell proliferation, epithelial-mesenchymal transformation, stemness, intratumor heterogeneity, androgen receptor expression and EGFR, PTEN, NF1 and MUC16 mutation rates, while high enrichment of neurons and nervous system pathways, and high tumor purity, estrogen receptor expression, IDH1 and CIC mutation rates, temozolomide response rate and overall and disease-free survival rates. In contrast, Str-G displayed contrastive characteristics to Ner-G. Our analysis indicates that the heterogeneity between glioma cells and neurons is lower than that between glioma cells and immune and stromal cells. Furthermore, the abundance of neurons is positively associated with clinical outcomes in gliomas, while the enrichment of immune and stromal cells has a negative association with them. Our classification method provides new insights into the tumor biology of gliomas, as well as clinical implications for the precise management of this disease.
Collapse
Affiliation(s)
- Qiushi Feng
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongfang Nie
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
6
|
Hawly J, Murcar MG, Schcolnik-Cabrera A, Issa ME. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev 2024; 43:1015-1035. [PMID: 38530545 DOI: 10.1007/s10555-024-10183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.
Collapse
Affiliation(s)
- Joseph Hawly
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouaneh, Lebanon
| | - Micaela G Murcar
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Mark E Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
7
|
Hainsworth AH, Blackburn TP, Bradshaw EM, Elahi FM, Gorelick PB, Isaacs JD, Wallin A, Williams SC. The promise of molecular science in brain health. What breakthroughs are anticipated in the next 20 years? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100364. [PMID: 39263555 PMCID: PMC11387710 DOI: 10.1016/j.cccb.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Brain health means optimal physiological brain function across the normal life-course. It encompasses not only healthy brain aging but also brain diseases, their diagnosis and treatment. In all these areas, molecular science has advanced our understanding. This multi-disciplinary review combines viewpoints from laboratory science, clinical medicine and the bioscience industry. First, we review the advances that molecular science has brought to brain health in the past twenty years. These include therapeutic antibodies for CNS diseases (multiple sclerosis, Alzheimer disease) and the dramatic introduction of RNA-targeted therapeutics. Second, we highlight areas where greater molecular understanding is needed. Salient examples are the relation of brain structure to cognitive symptoms, and molecular biomarkers for diagnosis, target discovery and testing of interventions. Finally, we speculate on aspects of molecular science that are likely to advance brain health in the next twenty years. These include: cell senescence and chronobiology; gene editing (notably, CRISPR) and RNA targeting (RNA interference, miRNA manipulation); brain-immune interactions; novel drug targets (AQP4, HIF1, Toll-like receptors); and novel chemistry to make new drugs (molecular machines, quantum molecular modelling and "click" chemistry). Early testing of the relationships between molecular pathways and clinical manifestations will drive much-needed breakthroughs in neurology and psychiatry.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Thomas P Blackburn
- Translational Pharmacology BioVentures, Leigh on Sea, Essex, SS9 2UA, UK
- TPBioVentures, Hoboken, NJ, USA
| | - Elizabeth M Bradshaw
- Carol and Gene Ludwig Center for Research on Neurodegeneration, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Fanny M Elahi
- Departments of Neurology and Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
- James J. Peter VA Medical Center, Bronx, NY, USA
| | - Philip B Gorelick
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 635 N. Michigan Avenue, Chicago, IL 60611, USA
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Steven Cr Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London. SE5 8AF, UK
| |
Collapse
|
8
|
Lu YJ, Vayalakkara RK, Dash BS, Hu SH, Premji TP, Wu CY, Shen YJ, Chen JP. Immunomodulatory R848-Loaded Anti-PD-L1-Conjugated Reduced Graphene Oxide Quantum Dots for Photothermal Immunotherapy of Glioblastoma. Pharmaceutics 2024; 16:1064. [PMID: 39204409 PMCID: PMC11358977 DOI: 10.3390/pharmaceutics16081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and presents unique challenges to developing novel treatments due to its immunosuppressive milieu where receptors like programmed death ligand 1 (PD-L1) are frequently elevated to prevent an effective anti-tumor immune response. To potentially shift the GBM environment from being immunosuppressive to immune-enhancing, we engineered a novel nanovehicle from reduced graphene oxide quantum dot (rGOQD), which are loaded with the immunomodulatory drug resiquimod (R848) and conjugated with an anti-PD-L1 antibody (aPD-L1). The immunomodulatory rGOQD/R8/aPDL1 nanoparticles can actively target the PD-L1 on the surface of ALTS1C1 murine glioblastoma cells and release R848 to enhance the T-cell-driven anti-tumor response. From in vitro experiments, the PD-L1-mediated intracellular uptake and the rGOQD-induced photothermal response after irradiation with near-infrared laser light led to the death of cancer cells and the release of damage-associated molecular patterns (DAMPs). The combinational effect of R848 and released DAMPs synergistically produces antigens to activate dendritic cells, which can prime T lymphocytes to infiltrate the tumor in vivo. As a result, T cells effectively target and attack the PD-L1-suppressed glioma cells and foster a robust photothermal therapy elicited anti-tumor immune response from a syngeneic mouse model of GBM with subcutaneously implanted ALTS1C1 cells.
Collapse
Affiliation(s)
- Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
- College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Reesha Kakkadavath Vayalakkara
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Thejas Pandaraparambil Premji
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Chun-Yuan Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Yang-Jin Shen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Yan Z, Huang L, Zhang X, Yu X, Huang R. Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth. Sci Rep 2024; 14:18444. [PMID: 39117725 PMCID: PMC11310191 DOI: 10.1038/s41598-024-67437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Glioblastoma (GBM) is associated with a median survival rate of less than 15 months, necessitating innovative treatment approaches. This study investigates the safety and efficacy of the low-frequency magnetic field (LFMF) OM-100 instrument in GBM therapy. In vitro experiments utilized normal astrocyte and GBM cell lines, determining that OM-100 at 100 kHz for 72 h selectively targeted GBM cells without harming normal cells. Subsequent analyses revealed OM-100's impact on cell viability, apoptosis, migration, invasion, reactive oxide species levels, and PD-L1 expression. In vivo studies on mice with U87-induced GBM demonstrated OM-100's synergy with anti-PD-1 therapy, leading to significant tumor volume reduction and increased apoptosis. Notably, OM-100 exhibited safety in healthy mice. Overall, OM-100 could enhance anti-PD-1 immunotherapy effectiveness probably by directly inhibiting tumor proliferation and migration as well as promoting PD-L1 expression, offering a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Zhaoxian Yan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lifa Huang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Xinyan Yu
- Department of Medical, Ci Xing Technology Co., Ltd, Hangzhou, 310051, Zhejiang, China
| | - Rui Huang
- Department of Medical, Ci Xing Technology Co., Ltd, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
10
|
Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer 2024; 23:150. [PMID: 39068459 PMCID: PMC11282869 DOI: 10.1186/s12943-024-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| |
Collapse
|
11
|
Jezierzański M, Nafalska N, Stopyra M, Furgoł T, Miciak M, Kabut J, Gisterek-Grocholska I. Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme-A Literature Review and Clinical Outcomes. Curr Oncol 2024; 31:3994-4002. [PMID: 39057168 PMCID: PMC11275351 DOI: 10.3390/curroncol31070296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive primary tumors of the central nervous system. It is associated with a very poor prognosis, with up to half of patients failing to survive the first year after diagnosis. It develops from glial tissue and belongs to the adult-type diffuse glioma group according to the WHO classification of 2021. Therapy for patients with GBM is currently based on surgical resection, radiation therapy, and chemotherapy, but despite many efforts, there has been minimal progress in tumor management. The most important chemotherapeutic agent in the treatment of this tumor is temozolomide (TMZ), a dacarbazine derivative that presents alkylating activity. It is usually administered to patients concurrently with radiation therapy after surgical resection of the tumor, which is defined as the Stupp protocol. Temozolomide demonstrates relatively good efficacy in therapy, but it could also present with several side effects. The resistance of GBM to the drug is currently the subject of work by specialists in the field of oncology, and its use in various regimens and patient groups may bring therapeutic benefits in the future. The aim of this review paper is to summarize the relevance of TMZ in the treatment of GBM based on recent reports.
Collapse
Affiliation(s)
- Marcin Jezierzański
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Natalia Nafalska
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Małgorzata Stopyra
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Tomasz Furgoł
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Michał Miciak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Jacek Kabut
- Department of Oncology and Radiotherapy, Silesian Medical University, Ceglana 35, 40-514 Katowice, Poland; (J.K.); (I.G.-G.)
| | - Iwona Gisterek-Grocholska
- Department of Oncology and Radiotherapy, Silesian Medical University, Ceglana 35, 40-514 Katowice, Poland; (J.K.); (I.G.-G.)
| |
Collapse
|
12
|
Wang Z, Fang Z, Gui Y, Xi B, Xie Z. Elevated HSPB1 Expression Is Associated with a Poor Prognosis in Glioblastoma Multiforme Patients. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38959943 DOI: 10.1055/s-0043-1777761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer. This study investigated the clinical predictive value of heat shock protein β1 (HSPB1) in patients with GBM. METHODS A correlation was established between HSPB1 expression and GBM progression using data from The Cancer Genome Atlas (TCGA) dataset, Chinese Glioma Genome Atlas dataset, Gene Expression Omnibus dataset, and Human Protein Atlas database. A survival analysis was conducted and an HSPB1-based nomogram was constructed to evaluate the prognostic value of HSPB1 in patients with GBM. RESULTS Based on TCGA data mining, we discovered that HSPB1 was significantly elevated in patients with GBM and may reflect their response to immunotherapy. In survival analysis, it appeared to have a predictive role in the prognosis of patients with GBM. Five signaling pathways were significantly enriched in the high HSPB1 expression phenotype according to the gene set enrichment analysis. In addition, a significant association was found between HSPB1 expression and immune checkpoints, tumor immune infiltration, tumor immune microenvironment, and immune cell markers in glioma. Overall, our results suggest that HSPB1 may regulate the function of immune cells, serve as a new immunotherapy target, and predict the response to immunotherapy in patients with GBM. CONCLUSION HSPB1 appears to serve as a potential predictor of the clinical prognosis and response to immunotherapy in patients with GBM. It may be possible to identify patients who are likely to benefit from immunotherapy by assessing the expression level of HSPB1.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhaohua Fang
- Department of Neurosurgery, Chongren County People's Hospital, Fuzhou, Jiangxi, China
| | - Yongping Gui
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Bin Xi
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. The Role of Mesenchymal Reprogramming in Malignant Clonal Evolution and Intra-Tumoral Heterogeneity in Glioblastoma. Cells 2024; 13:942. [PMID: 38891074 PMCID: PMC11171993 DOI: 10.3390/cells13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Peres N, Lepski GA, Fogolin CS, Evangelista GCM, Flatow EA, de Oliveira JV, Pinho MP, Bergami-Santos PC, Barbuto JAM. Profiling of Tumor-Infiltrating Immune Cells and Their Impact on Survival in Glioblastoma Patients Undergoing Immunotherapy with Dendritic Cells. Int J Mol Sci 2024; 25:5275. [PMID: 38791312 PMCID: PMC11121326 DOI: 10.3390/ijms25105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.
Collapse
Affiliation(s)
- Nataly Peres
- Department of Psychiatry, Medical School, Universidade de Sao Paulo, Sao Paulo 05403-010, Brazil;
| | - Guilherme A. Lepski
- LIM 26, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
- Department of Neurosurgery, Eberhard-Karls University, 72074 Tuebingen, Germany
| | - Carla S. Fogolin
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Gabriela C. M. Evangelista
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Elizabeth A. Flatow
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jaqueline V. de Oliveira
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Mariana P. Pinho
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
| | - Patricia C. Bergami-Santos
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
| | - José A. M. Barbuto
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
15
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
17
|
Lan Z, Li X, Zhang X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int J Mol Sci 2024; 25:3040. [PMID: 38474286 PMCID: PMC10931698 DOI: 10.3390/ijms25053040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumor in adults. Despite important advances in understanding the molecular pathogenesis and biology of this tumor in the past decade, the prognosis for GBM patients remains poor. GBM is characterized by aggressive biological behavior and high degrees of inter-tumor and intra-tumor heterogeneity. Increased understanding of the molecular and cellular heterogeneity of GBM may not only help more accurately define specific subgroups for precise diagnosis but also lay the groundwork for the successful implementation of targeted therapy. Herein, we systematically review the key achievements in the understanding of GBM molecular pathogenesis, mechanisms, and biomarkers in the past decade. We discuss the advances in the molecular pathology of GBM, including genetics, epigenetics, transcriptomics, and signaling pathways. We also review the molecular biomarkers that have potential clinical roles. Finally, new strategies, current challenges, and future directions for discovering new biomarkers and therapeutic targets for GBM will be discussed.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China; (Z.L.); (X.L.)
| |
Collapse
|
18
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
19
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
20
|
Xian W, Asad M, Wu S, Bai Z, Li F, Lu J, Zu G, Brintnell E, Chen H, Mao Y, Zhou G, Liao B, Wu J, Wang E, You L. Distinct immune escape and microenvironment between RG-like and pri-OPC-like glioma revealed by single-cell RNA-seq analysis. Front Med 2024; 18:147-168. [PMID: 37955814 DOI: 10.1007/s11684-023-1017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/24/2023] [Indexed: 11/14/2023]
Abstract
The association of neurogenesis and gliogenesis with glioma remains unclear. By conducting single-cell RNA-seq analyses on 26 gliomas, we reported their classification into primitive oligodendrocyte precursor cell (pri-OPC)-like and radial glia (RG)-like tumors and validated it in a public cohort and TCGA glioma. The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations, and the pri-OPC-like ones were prone to carrying TP53 mutations. Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes, suggesting their distinct immune evasion programs. Furthermore, the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners. Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes. For example, glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes, respectively. Their expression was positively correlated with those of immune checkpoint genes (e.g., LGALS33) and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells. This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.
Collapse
Affiliation(s)
- Weiwei Xian
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mohammad Asad
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Shuai Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhixin Bai
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fengjiao Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Erin Brintnell
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guomin Zhou
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, 200040, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 570100, China
| | - Jinsong Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
21
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Wang H, Yang J, Li X, Zhao H. Current state of immune checkpoints therapy for glioblastoma. Heliyon 2024; 10:e24729. [PMID: 38298707 PMCID: PMC10828821 DOI: 10.1016/j.heliyon.2024.e24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Glioblastoma (GBM), one of the most aggressive forms of brain cancer, has limited treatment options. Recent years have witnessed the remarkable success of checkpoint inhibitor immunotherapy across various cancer types. Against this backdrop, several clinical trials investigating checkpoint inhibitors for GBM are underway in multiple countries. Furthermore, the integration of immunotherapy with traditional treatment approaches is now emerging as a highly promising strategy. This review summarizes the latest advancements in checkpoint inhibitor immunotherapy for GBM treatment. We provide a concise yet comprehensive overview of current GBM immunotherapy options. Additionally, this review underscores combination strategies and potential biomarkers for predicting response and resistance in GBM immunotherapies.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jing Yang
- Department of Emergency Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Xiangjun Li
- School of medicine, Department of Breast surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
23
|
Amin T, Hossain A, Jerin N, Mahmud I, Rahman MA, Rafiqul Islam SM, Islam SMBUL. Immunoediting Dynamics in Glioblastoma: Implications for Immunotherapy Approaches. Cancer Control 2024; 31:10732748241290067. [PMID: 39353594 PMCID: PMC11459535 DOI: 10.1177/10732748241290067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that poses many therapeutic difficulties because of the high rate of proliferation, genetic variability, and its immunosuppressive microenvironment. The theory of cancer immunoediting, which includes the phases of elimination, equilibrium, and escape, offers a paradigm for comprehending interactions between the immune system and glioblastoma. Immunoediting indicates the process by which immune cells initially suppress tumor development, but thereafter select for immune-resistant versions leading to tumor escape and progression. The tumor microenvironment (TME) in glioblastoma is particularly immunosuppressive, with regulatory T cells and myeloid-derived suppressor cells being involved in immune escape. To achieve an efficient immunotherapy for glioblastoma, it is crucial to understand these mechanisms within the TME. Existing immunotherapeutic modalities such as chimeric antigen receptor T cells and immune checkpoint inhibitors have been met with some level of resistance because of the heterogeneous nature of the immune response to glioblastoma. Solving these issues is critical to develop novel strategies capable of modulating the TME and re-establishing normal immune monitoring. Further studies should be conducted to identify the molecular and cellular events that underlie the immunosuppressive tumor microenvironment in glioblastoma. Comprehending and modifying the stages of immunoediting in glioblastoma could facilitate the development of more potent and long-lasting therapies.
Collapse
Affiliation(s)
- Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Amana Hossain
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Nusrat Jerin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Imteaz Mahmud
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC, USA
| | - SM Rafiqul Islam
- Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, USA
| | - S M Bakhtiar UL Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
24
|
Ghimire P, Kinnersley B, Karami G, Arumugam P, Houlston R, Ashkan K, Modat M, Booth TC. Radiogenomic biomarkers for immunotherapy in glioblastoma: A systematic review of magnetic resonance imaging studies. Neurooncol Adv 2024; 6:vdae055. [PMID: 38680991 PMCID: PMC11046988 DOI: 10.1093/noajnl/vdae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background Immunotherapy is an effective "precision medicine" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma. Methods A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis. Results Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed. Conclusions Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.
Collapse
Affiliation(s)
- Prajwal Ghimire
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Ben Kinnersley
- Department of Oncology, University College London, London, UK
| | | | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
25
|
De Felice F, Cattaneo CG, Poto GE, Antropoli C, Brillantino A, Carbone L, Brunetti O, De Luca R, Desideri I, Incorvaia L, La Mendola R, Marmorino F, Parini D, Rodriquenz MG, Salvestrini V, Sebastiani F, Polom K, Marano L. Mapping the landscape of immunonutrition and cancer research: a comprehensive bibliometric analysis on behalf of NutriOnc Research Group. Int J Surg 2024; 110:395-405. [PMID: 37737933 PMCID: PMC10793798 DOI: 10.1097/js9.0000000000000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The ongoing global health challenge of cancer is driving the pursuit of innovative avenues for prevention, treatment, and enhanced outcomes. The convergence of nutrition and immune modulation, known as immunonutrition, is ready to act as a catalyst for transformative change in cancer research and therapy. Our study employs a bibliometric analysis to uncover the evolving trends within immunonutrition and cancer research across the past 25 years. Bibliometric data, including authors, journals, affiliations, and countries, were analyzed using the Bibliometrix R package. Clustering algorithms were applied to keywords to identify thematic areas and their evolution. A total of 489 documents were analyzed, showing an annual growth rate of 8.7%, with a collaboration index of 5.41, highlighting comprehensive multidisciplinary involvement within this landscape. Core authors demonstrated sustained productivity, while occasional authors indicated widespread interest. The Medical University of Warsaw led in institutional contributions. Country-wise, Italy, France, and the USA emerged as forerunners in fostering research productivity. Key journals like 'Clinical Nutrition' served as beacons, emphasizing the multidimensional nature of this topic. The analysis highlighted growing research output and several collaborations, indicating the importance of immunoenriched nutrition in cancer treatment. The interplay of core authors and diversified engagement harmoniously accentuates the cross-disciplinary nature of this burgeoning field. International collaboration facilitated knowledge exchange. Prominent documents shaped the field, emphasizing the significance of nutritional interventions. Thematic clusters revealed varied focuses, including pharmaconutrients, surgical approaches, inflammation, and specific cancers. The expanding research output suggests further development, particularly in exploring immunoenriched nutrition's impact on cancer types and patient populations. The multidisciplinary nature and international collaborations enhance the field's progress. Gaps in research underscore the need for original studies and personalized approaches. This study guides future research, informing evidence-based nutritional interventions and advancing cancer care practices.
Collapse
Affiliation(s)
- Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome
| | - Carlo G. Cattaneo
- Department of Radiotherapy, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome
| | - Gianmario E. Poto
- Italian Registry of Physicians and Surgeons, Regione Campania, Italy
| | | | | | - Ludovico Carbone
- Italian Registry of Physicians and Surgeons, Regione Campania, Italy
| | - Oronzo Brunetti
- Department of Surgical Oncology IRCCS Istituto Tumori “Giovanni Paolo II”-Bari
| | - Raffaele De Luca
- Department of Surgical Oncology IRCCS Istituto Tumori “Giovanni Paolo II”-Bari
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo
| | - Roberta La Mendola
- General and Upper GI Surgery Division, University of Verona, P.zza Aristide Stefani, Verona
| | - Federica Marmorino
- Unit of Oncology, University Hospital of Pisa Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Dario Parini
- General Surgery Unit, Santa Maria della Misericordia Hospital, Rovigo
| | - Maria G. Rodriquenz
- Unit of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia
| | - Viola Salvestrini
- CyberKnife Center, Istituto Fiorentino di Cura ed Assistenza (IFCA), Radiation Oncology
- Radiation Oncology Unit, Oncology Department, Careggi University Hospital, Florence
| | - Federica Sebastiani
- Section of Clinical Nutrition, AUSL - IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Karol Polom
- Clinic of Oncological, Transplantation and General Surgery, Gdansk Medical University, Gdansk
| | - Luigi Marano
- Academy of Applied Medical and Social Sciences - AMiSNS: Akademia Medycznych i Spolecznych Nauk Stosowanych - 2 Lotnicza street, Elbląg, Poland
| |
Collapse
|
26
|
Zhou Y, Cao Y, Liu W, Wang L, Kuang Y, Zhou Y, Chen Q, Cheng Z, Huang H, Zhang W, Jiang X, Wang B, Ren C. Leveraging a gene signature associated with disulfidptosis identified by machine learning to forecast clinical outcomes, immunological heterogeneities, and potential therapeutic targets within lower-grade glioma. Front Immunol 2023; 14:1294459. [PMID: 38162649 PMCID: PMC10757341 DOI: 10.3389/fimmu.2023.1294459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background Disulfidptosis, a newly defined type of programmed cell death, has emerged as a significant regulatory process in the development and advancement of malignant tumors, such as lower-grade glioma (LGG). Nevertheless, the precise biological mechanisms behind disulfidptosis in LGG are yet to be revealed, considering the limited research conducted in this field. Methods We obtained LGG data from the TCGA and CGGA databases and performed comprehensive weighted co-expression network analysis, single-sample gene set enrichment analysis, and transcriptome differential expression analyses. We discovered nine genes associated with disulfidptosis by employing machine learning methods like Cox regression, LASSO regression, and SVM-RFE. These were later used to build a predictive model for patients with LGG. To confirm the expression level, functional role, and impact on disulfidptosis of ABI3, the pivotal gene of the model, validation experiments were carried out in vitro. Results The developed prognostic model successfully categorized LGG patients into two distinct risk groups: high and low. There was a noticeable difference in the time the groups survived, which was statistically significant. The model's predictive accuracy was substantiated through two independent external validation cohorts. Additional evaluations of the immune microenvironment and the potential for immunotherapy indicated that this risk classification could function as a practical roadmap for LGG treatment using immune-based therapies. Cellular experiments demonstrated that suppressing the crucial ABI3 gene in the predictive model significantly reduced the migratory and invasive abilities of both SHG44 and U251 cell lines while also triggering cytoskeletal retraction and increased cell pseudopodia. Conclusion The research suggests that the prognostic pattern relying on genes linked to disulfidptosis can provide valuable insights into the clinical outcomes, tumor characteristics, and immune alterations in patients with LGG. This could pave the way for early interventions and suggests that ABI3 might be a potential therapeutic target for disulfidptosis.
Collapse
Affiliation(s)
- Yao Zhou
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yudong Cao
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weidong Liu
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lei Wang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yirui Kuang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhou
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Chen
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyu Cheng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Haoxuan Huang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenlong Zhang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingjun Jiang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binbin Wang
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Caiping Ren
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Ahmedna T, Khela H, Weber-Levine C, Azad TD, Jackson CM, Gabrielson K, Bettegowda C, Rincon-Torroella J. The Role of γδ T-Lymphocytes in Glioblastoma: Current Trends and Future Directions. Cancers (Basel) 2023; 15:5784. [PMID: 38136330 PMCID: PMC10741533 DOI: 10.3390/cancers15245784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.
Collapse
Affiliation(s)
- Taha Ahmedna
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harmon Khela
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Public Health Studies, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tej D. Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Trageser E, Martin T, Burdekin B, Hart C, Leary D, LaRue S, Boss MK. Efficacy of stereotactic radiation therapy for the treatment of confirmed or presumed canine glioma. Vet Comp Oncol 2023; 21:578-586. [PMID: 37423611 DOI: 10.1111/vco.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Intracranial gliomas are the second most common brain tumour in dogs. Radiation therapy provides a minimally invasive treatment option for this tumour type. Earlier publications reporting on the use of non-modulated radiation therapy suggested a poor prognosis for dogs with glioma, with median survival times ranging between 4 and 6 months; more recent literature utilizing stereotactic radiation therapy (SRT) demonstrates that the prognosis for canine gliomas may be more promising, with survival times closer to 12 months. A single institution retrospective study was performed between 2010 and 2020 investigating the outcomes of dogs with biopsy-confirmed glioma or a presumptive diagnosis of intra-cranial glioma based on MRI characteristics that were treated with SRT. Twenty-three client-owned dogs were included. Brachycephalic breeds were overrepresented, totalling 13 dogs (57%). SRT protocols included 16 Gy single fraction (n = 1, 4%), 18 Gy single fraction (n = 1, 4%), 24 Gy in 3 daily fractions (n = 20, 91%), or 27 Gy in four daily fractions (n = 1, 4%). Twenty-one dogs (91%) had improvement of their presenting clinical signs following SRT. Median overall survival time (MST) was 349 days (95% CI, 162-584). Median disease specific survival time was 413 days (95% CI, 217-717). When SRT is incorporated into the management plan for dogs with confirmed or presumed intracranial glioma, a median survival time of approximately 12 months may be achievable.
Collapse
Affiliation(s)
- Erin Trageser
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Braden Burdekin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Cullen Hart
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Susan LaRue
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
29
|
Srivastava R, Dodda M, Zou H, Li X, Hu B. Tumor Niches: Perspectives for Targeted Therapies in Glioblastoma. Antioxid Redox Signal 2023; 39:904-922. [PMID: 37166370 PMCID: PMC10654996 DOI: 10.1089/ars.2022.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Significance: Glioblastoma (GBM), the most common and lethal primary brain tumor with a median survival rate of only 15 months and a 5-year survival rate of only 6.8%, remains largely incurable despite the intensive multimodal treatment of surgical resection and radiochemotherapy. Developing effective new therapies is an unmet need for patients with GBM. Recent Advances: Targeted therapies, such as antiangiogenesis therapy and immunotherapy, show great promise in treating GBM based upon increasing knowledge about brain tumor biology. Single-cell transcriptomics reveals the plasticity, heterogeneity, and dynamics of tumor cells during GBM development and progression. Critical Issues: While antiangiogenesis therapy and immunotherapy have been highly effective in some types of cancer, the disappointing results from clinical trials represent continued challenges in applying these treatments to GBM. Molecular and cellular heterogeneity of GBM is developed temporally and spatially, which profoundly contributes to therapeutic resistance and tumor recurrence. Future Directions: Deciphering mechanisms of tumor heterogeneity and mapping tumor niche trajectories and functions will provide a foundation for the development of more effective therapies for GBM patients. In this review, we discuss five different tumor niches and the intercellular and intracellular communications among these niches, including the perivascular, hypoxic, invasive, immunosuppressive, and glioma-stem cell niches. We also highlight the cellular and molecular biology of these niches and discuss potential strategies to target these tumor niches for GBM therapy. Antioxid. Redox Signal. 39, 904-922.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Liu Y, Jin H, Liu H. Identification of T-cell exhaustion-related gene signature for predicting prognosis in glioblastoma multiforme. J Cell Mol Med 2023; 27:3503-3513. [PMID: 37635346 PMCID: PMC10660619 DOI: 10.1111/jcmm.17927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 08/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumour with a poor prognosis in adults. Identifying biomarkers that can aid in the molecular classification and risk stratification of GBM is critical. Here, we conducted a transcriptional profiling analysis of T-cell immunity in the tumour microenvironment of GBM patients and identified two novel T cell exhaustion (TEX)-related GBM subtypes (termed TEX-C1 and TEX-C2) using the consensus clustering. Our multi-omics analysis revealed distinct immunological, molecular and clinical characteristics for these two subtypes. Specifically, the TEX-C1 subtype had higher infiltration levels of immune cells and expressed higher levels of immune checkpoint molecules than the TEX-C2 subtype. Functional analysis revealed that upregulated genes in the TEX-C1 subtype were significantly enriched in immune response and signal transduction pathways, and upregulated genes in the TEX-C2 subtype were predominantly associated with cell fate and nervous system development pathways. Notably, patients with activated T-cell activity status in the TEX-C1 subgroup demonstrated a significantly worse prognosis than those with severe T cell exhaustion status in the TEX-C2 subgroup. Finally, we proposed a machine-learning-derived novel gene signature comprising 12 TEX-related genes (12TexSig) to indicate tumour subtyping. In the TCGA cohort, the 12TexSig demonstrated the ability to accurately predict the prognosis of GBM patients, and this prognostic value was further confirmed in two independent external cohorts. Taken together, our results suggest that the TEX-derived subtyping and gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of GBM patients, pending further prospective validation.
Collapse
Affiliation(s)
- Yue‐hui Liu
- Department of NeurologyAffiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Hong‐quan Jin
- Department of NeurologyAffiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Hai‐ping Liu
- College of Life Science and Food EngineeringInner Mongolia Minzu UniversityTongliaoChina
| |
Collapse
|
31
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Gardam B, Gargett T, Brown MP, Ebert LM. Targeting the dendritic cell-T cell axis to develop effective immunotherapies for glioblastoma. Front Immunol 2023; 14:1261257. [PMID: 37928547 PMCID: PMC10623138 DOI: 10.3389/fimmu.2023.1261257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that has seen few advances in treatments for over 20 years. In response to this desperate clinical need, multiple immunotherapy strategies are under development, including CAR-T cells, immune checkpoint inhibitors, oncolytic viruses and dendritic cell vaccines, although these approaches are yet to yield significant clinical benefit. Potential reasons for the lack of success so far include the immunosuppressive tumor microenvironment, the blood-brain barrier, and systemic changes to the immune system driven by both the tumor and its treatment. Furthermore, while T cells are essential effector cells for tumor control, dendritic cells play an equally important role in T cell activation, and emerging evidence suggests the dendritic cell compartment may be deeply compromised in glioblastoma patients. In this review, we describe the immunotherapy approaches currently under development for glioblastoma and the challenges faced, with a particular emphasis on the critical role of the dendritic cell-T cell axis. We suggest a number of strategies that could be used to boost dendritic cell number and function and propose that the use of these in combination with T cell-targeting strategies could lead to successful tumor control.
Collapse
Affiliation(s)
- Bryan Gardam
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tessa Gargett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Michael P. Brown
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Lisa M. Ebert
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
33
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
34
|
Sai Krishna AVS, Ramu A, Hariharan S, Sinha S, Donakonda S. Characterization of tumor microenvironment in glioblastoma multiforme identifies ITGB2 as a key immune and stromal related regulator in glial cell types. Comput Biol Med 2023; 165:107433. [PMID: 37660569 DOI: 10.1016/j.compbiomed.2023.107433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor characterized by inter and intra-tumor heterogeneity and complex tumor microenvironment. To uncover the molecular targets in this milieu, we systematically identified immune and stromal interactions at the glial cell type level that leverages on RNA-sequencing data of GBM patients from The Cancer Genome Atlas. The perturbed genes between the high vs low immune and stromal scored patients were subjected to weighted gene co-expression network analysis to identify the glial cell type specific networks in immune and stromal infiltrated patients. The intramodular connectivity analysis identified the highly connected genes in each module. Combining it with univariable and multivariable prognostic analysis revealed common vital gene ITGB2, between the immune and stromal infiltrated patients enriched in microglia and newly formed oligodendrocytes. We found following unique hub genes in immune infiltrated patients; COL6A3 (microglia), ITGAM (oligodendrocyte precursor cells), TNFSF9 (microglia), and in stromal infiltrated patients, SERPINE1 (microglia) and THBS1 (newly formed oligodendrocytes, oligodendrocyte precursor cells). To validate these hub genes, we used external GBM patient single cell RNA-sequencing dataset and this identified ITGB2 to be significantly enriched in microglia, newly formed oligodendrocytes, T-cells, macrophages and adipocyte cell types in both immune and stromal datasets. The tumor infiltration analysis of ITGB2 showed that it is correlated with myeloid dendritic cells, macrophages, monocytes, neutrophils, B-cells, fibroblasts and adipocytes. Overall, the systematic screening of tumor microenvironment components at glial cell types uncovered ITGB2 as a potential target in primary GBM.
Collapse
Affiliation(s)
- A V S Sai Krishna
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Alagammai Ramu
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Srimathangi Hariharan
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Swati Sinha
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
35
|
Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2023; 8:824-834. [PMID: 34918964 PMCID: PMC10589502 DOI: 10.1089/can.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Daniel Mehrabian
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Martin Rutkowski
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - W. Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John C. Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
36
|
Fan P, Xia J, Zhou M, Zhuo C, He H. Development and validation of a personalized classifier to predict the prognosis and response to immunotherapy in glioma based on glycolysis and the tumor microenvironment. PeerJ 2023; 11:e16066. [PMID: 37744243 PMCID: PMC10516100 DOI: 10.7717/peerj.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Background Glycolysis is closely associated with cancer progression and treatment outcomes. However, the role of glycolysis in the immune microenvironment, prognosis, and immunotherapy of glioma remains unclear. Methods This study investigated the role of glycolysis on prognosis and its relationship with the tumor microenvironment (TME). Subsequently, we developed and validated the glycolysis-related gene signature (GRS)-TME classifier using multiple independent cohorts. Furthermore, we also examined the prognostic value, somatic alterations, molecular characteristics, and potential benefits of immunotherapy based on GRS-TME classifier. Lastly, the effect of kinesin family member 20A (KIF20A) on the proliferation and migration of glioma cells was evaluated in vitro. Results Glycolysis was identified as a significant prognostic risk factor in glioma, and closely associated with an immunosuppressive microenvironment characterized by altered distribution of immune cells. Furthermore, a personalized GRS-TME classifier was developed and validated by combining the glycolysis (18 genes) and TME (seven immune cells) scores. Patients in the GRSlow/TMEhigh subgroup exhibited a more favorable prognosis compared to other subgroups. Distinct genomic alterations and signaling pathways were observed among different subgroups, which are closely associated with cell cycle, epithelial-mesenchymal transition, p53 signaling pathway, and interferon-alpha response. Additionally, we found that patients in the GRSlow/TMEhigh subgroup exhibit a higher response rate to immunotherapy, and the GRS-TME classifier can serve as a novel biomarker for predicting immunotherapy outcomes. Finally, high expression of KIF20A is associated with an unfavorable prognosis in glioma, and its knockdown can inhibit the proliferation and migration of glioma cells. Conclusions Our study developed a GRS-TME classifier for predicting the prognosis and potential benefits of immunotherapy in glioma patients. Additionally, we identified KIF20A as a prognostic and therapeutic biomarker for glioma.
Collapse
Affiliation(s)
- Pengfei Fan
- Department of Neurology, Changxing People’s Hospital, Huzhou, Zhejiang, China
| | - Jinjin Xia
- Department of Neurology, Changxing People’s Hospital, Huzhou, Zhejiang, China
| | - Meifeng Zhou
- Department of Neurology, Changxing People’s Hospital, Huzhou, Zhejiang, China
| | - Chao Zhuo
- Department of Pediatrics, Changxing People’s Hospital, Huzhou, Zhejiang, China
| | - Hui He
- Department of Pediatrics, Changxing People’s Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
37
|
Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal 2023; 21:239. [PMID: 37723542 PMCID: PMC10506313 DOI: 10.1186/s12964-023-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, and histological pathology of gliomas is characterized by high neuro-inflammation. The inflammatory microenvironment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological properties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for glioma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma and therapeutic insights. Video Abstract.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea.
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
38
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
Affiliation(s)
- Aran Merati
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spandana Kotian
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin Smithberger
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail K. Shelton
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C. Ryan Miller
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
39
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
40
|
Linares CA, Varghese A, Ghose A, Shinde SD, Adeleke S, Sanchez E, Sheriff M, Chargari C, Rassy E, Boussios S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int J Mol Sci 2023; 24:13215. [PMID: 37686020 PMCID: PMC10487469 DOI: 10.3390/ijms241713215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas are aggressive, primary central nervous system tumours arising from glial cells. Glioblastomas are the most malignant. They are known for their poor prognosis or median overall survival. The current standard of care is overwhelmed by the heterogeneous, immunosuppressive tumour microenvironment promoting immune evasion and tumour proliferation. The advent of immunotherapy with its various modalities-immune checkpoint inhibitors, cancer vaccines, oncolytic viruses and chimeric antigen receptor T cells and NK cells-has shown promise. Clinical trials incorporating combination immunotherapies have overcome the microenvironment resistance and yielded promising survival and prognostic benefits. Rolling these new therapies out in the real-world scenario in a low-cost, high-throughput manner is the unmet need of the hour. These will have practice-changing implications to the glioma treatment landscape. Here, we review the immunobiological hallmarks of the TME of gliomas, how the TME evades immunotherapies and the work that is being conducted to overcome this interplay.
Collapse
Affiliation(s)
- Christian A. Linares
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
| | - Anjana Varghese
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent ME16 9QQ, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sola Adeleke
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Matin Sheriff
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
41
|
Möckl A, Sevenich L. Take my breath away: TAM-ing anti-cancer immunity in hypoxic niches. Immunity 2023; 56:1704-1706. [PMID: 37557077 DOI: 10.1016/j.immuni.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Hypoxia is a major driver of tumor aggressiveness and therapy resistance in GBM. In this issue of Immunity, Sattiraju et al. functionally link hypoxia with diminished anti-cancer immunity caused by sequestration of immunosuppressive TAMs and CTLs in pseudopalisades in GBM.
Collapse
Affiliation(s)
- Aylin Möckl
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany; Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany; German Cancer Consortium (DKTK, Partner Site Frankfurt/Mainz) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
42
|
Zeng K, Zeng Y, Zhan H, Zhan Z, Wang L, Xie Y, Tang Y, Li C, Chen Y, Li S, Liu M, Chen X, Liang L, Deng F, Song Y, Zhou A. SEC61G assists EGFR-amplified glioblastoma to evade immune elimination. Proc Natl Acad Sci U S A 2023; 120:e2303400120. [PMID: 37523556 PMCID: PMC10410745 DOI: 10.1073/pnas.2303400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
Amplification of chromosome 7p11 (7p11) is the most common alteration in primary glioblastoma (GBM), resulting in gains of epidermal growth factor receptor (EGFR) copy number in 50 to 60% of GBM tumors. However, treatment strategies targeting EGFR have thus far failed in clinical trials, and the underlying mechanism remains largely unclear. We here demonstrate that EGFR amplification at the 7p11 locus frequently encompasses its neighboring genes and identifies SEC61G as a critical regulator facilitating GBM immune evasion and tumor growth. We found that SEC61G is always coamplified with EGFR and is highly expressed in GBM. As an essential subunit of the SEC61 translocon complex, SEC61G promotes translocation of newly translated immune checkpoint ligands (ICLs, including PD-L1, PVR, and PD-L2) into the endoplasmic reticulum and promotes their glycosylation, stabilization, and membrane presentation. Depletion of SEC61G promotes the infiltration and cytolytic activity of CD8+ T cells and thus inhibits GBM occurrence. Further, SEC61G inhibition augments the therapeutic efficiency of EGFR tyrosine kinase inhibitors in mice. Our study demonstrates a critical role of SEC61G in GBM immune evasion, which provides a compelling rationale for combination therapy of EGFR-amplified GBMs.
Collapse
Affiliation(s)
- Kunlin Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Hongchao Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Ziling Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Li Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yuxin Xie
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yanqing Tang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Cuiying Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yanwen Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Shangbiao Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou510285, China
| | - Ming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Xiaoxia Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Li Liang
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Aidong Zhou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou510285, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
43
|
Sattiraju A, Kang S, Giotti B, Chen Z, Marallano VJ, Brusco C, Ramakrishnan A, Shen L, Tsankov AM, Hambardzumyan D, Friedel RH, Zou H. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity 2023; 56:1825-1843.e6. [PMID: 37451265 PMCID: PMC10527169 DOI: 10.1016/j.immuni.2023.06.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Glioblastoma (GBM), a highly lethal brain cancer, is notorious for immunosuppression, but the mechanisms remain unclear. Here, we documented a temporospatial patterning of tumor-associated myeloid cells (TAMs) corresponding to vascular changes during GBM progression. As tumor vessels transitioned from the initial dense regular network to later scant and engorged vasculature, TAMs shifted away from perivascular regions and trafficked to vascular-poor areas. This process was heavily influenced by the immunocompetence state of the host. Utilizing a sensitive fluorescent UnaG reporter to track tumor hypoxia, coupled with single-cell transcriptomics, we revealed that hypoxic niches attracted and sequestered TAMs and cytotoxic T lymphocytes (CTLs), where they were reprogrammed toward an immunosuppressive state. Mechanistically, we identified chemokine CCL8 and cytokine IL-1β as two hypoxic-niche factors critical for TAM trafficking and co-evolution of hypoxic zones into pseudopalisading patterns. Therefore, perturbation of TAM patterning in hypoxic zones may improve tumor control.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sangjo Kang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhihong Chen
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valerie J Marallano
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Concetta Brusco
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dolores Hambardzumyan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Kao TJ, Lin CL, Yang WB, Li HY, Hsu TI. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis 2023; 22:114. [PMID: 37537607 PMCID: PMC10398973 DOI: 10.1186/s12944-023-01881-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Wen-Bin Yang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich, 81377, Germany
- Gene Center, Ludwig-Maximilians-University, Munich, 81377, Germany
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
45
|
Gurrieri L, Mercatali L, Ibrahim T, Fausti V, Dall'Agata M, Riva N, Ranallo N, Pasini G, Tazzari M, Foca F, Bartolini D, Riccioni L, Cavatorta C, Morigi FP, Bulgarelli J, Cocchi C, Ghini V, Tosatto L, Martinelli G, Pession A, Ridolfi L. Immuno markers in newly diagnosed glioblastoma patients underwent Stupp protocol after neurosurgery: a retrospective series. J Neurooncol 2023; 164:55-64. [PMID: 37584750 PMCID: PMC10462527 DOI: 10.1007/s11060-023-04357-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE The aims of our retrospective study investigated the role of immune system in glioblastoma (GBM), which is the most aggressive primary brain tumor in adults characterized by a poor prognosis. The recurrence rate remains high, probably due to "immune-desert" tumor microenvironment (TME) making GBM hidden from the anti-tumoral immune clearance. Considering this, we aimed to create a panel of prognostic markers from blood and tumor tissue correlating with overall survival (OS) and progression-free survival (PFS). METHODS Firstly, we analyzed the inflammatory markers NLR and PLR as the ratio of the absolute neutrophil count and absolute platelet count by the absolute lymphocyte count respectively, collected at different time points in the peripheral blood of 95 patients. Furthermore, in 31 patients of the same cohort, we analyzed the formalin-fixed paraffin embedded samples to further compare the impact of circulating and inflammatory markers within the TME. RESULTS Patients aged < 60 years and with methylated MGMT showed better OS. While, pre-chemotherapy Systemic Inflammatory Index (SII) < 480 was related to a better OS and PFS, we observed that only CD68+macrophage and CD66b+neutrophils expressed in vascular/perivascular area (V) showed a statistically significant prognostic role in median OS and PFS. CONCLUSIONS Thus, we underscored a role of SII as predictive value of response to STUPP protocol. Regarding the TME-related markers, we suggested to take into consideration for future studies with new immunotherapy combinations, each component relating to expression of immune infiltrating subsets.
Collapse
Affiliation(s)
- Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Laura Mercatali
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40138, Bologna, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Monia Dall'Agata
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Giuseppe Pasini
- Department of Medical Oncology, "Infermi" Hospital, 47921, Rimini, Italy
| | - Marcella Tazzari
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | | | - Luca Riccioni
- Pathology Unit, "Maurizio Bufalini" Hospital, 47521, Cesena, Italy
| | - Chiara Cavatorta
- Pathology Unit, "Maurizio Bufalini" Hospital, 47521, Cesena, Italy
| | | | - Jenny Bulgarelli
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Virginia Ghini
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Luigino Tosatto
- Neurosurgery, "Maurizio Bufalini" Hospital, 47521, Cesena, Italy
| | - Giovanni Martinelli
- Scientific Direcrorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Andrea Pession
- Division of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Laura Ridolfi
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
46
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
47
|
Castillo SP, Galvez-Cancino F, Liu J, Pollard SM, Quezada SA, Yuan Y. The tumour ecology of quiescence: Niches across scales of complexity. Semin Cancer Biol 2023; 92:139-149. [PMID: 37037400 DOI: 10.1016/j.semcancer.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 04/12/2023]
Abstract
Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Simon P Castillo
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Felipe Galvez-Cancino
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Jiali Liu
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Scotland Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sergio A Quezada
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
48
|
Chen Z, Cao W, Luo J, Abdelrahman Z, Lu Q, Wang H, Wang X. Gene set enrichment analysis identifies immune subtypes of kidney renal clear cell carcinoma with significantly different molecular and clinical properties. Front Immunol 2023; 14:1191365. [PMID: 37426638 PMCID: PMC10326845 DOI: 10.3389/fimmu.2023.1191365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most prevalent renal malignancy, marked by a high abundance of tumor-infiltrating lymphocytes (TILs) and an unfavorable prognosis upon metastasis. Numerous studies have demonstrated that KIRC possesses a tumor microenvironment that is highly heterogeneous, and this is associated with significant variations in the effectiveness of most first-line drugs administered to KIRC patients. Therefore, it is crucial to classify KIRC based on the tumor microenvironment, although these subtyping techniques are still inadequate. Methods By applying gene set enrichment scores of 28 immune signatures, we conducted a hierarchical clustering of KIRC and determined its immune subtypes. In addition, we conducted a comprehensive exploration of the molecular and clinical features of these subtypes, including survival prognosis, proliferation, stemness, angiogenesis, tumor microenvironment, genome instability, intratumor heterogeneity, and pathway enrichment. Results Through cluster analysis, two immune subtypes of KIRC were identified and termed Immunity-High (Immunity-H) and Immunity-Low (Immunity-L). This clustering outcome was consistent in four independent KIRC cohorts. The subtype Immunity-H exhibited elevated levels of TILs, tumor aneuploidy, homologous recombination deficiency, stemness, and proliferation potential, along with a poorer prognosis for survival. Despite this, the Immunity-L subtype demonstrated elevated intratumor heterogeneity and a stronger angiogenesis signature in contrast to Immunity-H. According to the results of pathway enrichment analysis, the Immunity-H subtype was found to be highly enriched in immunological, oncogenic, and metabolic pathways, whereas the Immunity-L subtype was highly enriched in angiogenic, neuroactive ligand-receptor interaction, and PPAR pathways. Conclusions Based on the enrichment of immune signatures in the tumor microenvironment, KIRC can be categorized into two immune subtypes. The two subtypes demonstrate considerably distinct molecular and clinical features. In KIRC, an increase in immune infiltration is linked to a poor prognosis. Patients with Immunity-H KIRC may exhibit active responses to PPAR and immune checkpoint inhibitors, whereas patients with Immunity-L may manifest favorable responses to anti-angiogenic agents and immune checkpoint inhibitors. The immunological classification provides molecular insights into KIRC immunity, as well as clinical implications for the management of this disease.
Collapse
Affiliation(s)
- Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxiu Cao
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Qiqi Lu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Huafen Wang
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
49
|
Garcia-Fabiani MB, Haase S, Banerjee K, McClellan B, Zhu Z, Mujeeb A, Li Y, Yu J, Kadiyala P, Taher A, Núñez FJ, Alghamri MS, Comba A, Mendez FM, Nicola Candia AJ, Salazar B, Koschmann C, Nunez FM, Edwards M, Qin T, Sartor MA, Lowenstein PR, Castro MG. H3.3-G34R Mutation-Mediated Epigenetic Reprogramming Leads to Enhanced Efficacy of Immune Stimulatory Gene Therapy in Pediatric High-Grade Gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544658. [PMID: 37398299 PMCID: PMC10312611 DOI: 10.1101/2023.06.13.544658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pediatric high-grade gliomas (pHGGs) are diffuse and highly aggressive CNS tumors which remain incurable, with a 5-year overall survival of less than 20%. Within glioma, mutations in the genes encoding the histones H3.1 and H3.3 have been discovered to be age-restricted and specific of pHGGs. This work focuses on the study of pHGGs harboring the H3.3-G34R mutation. H3.3-G34R tumors represent the 9-15% of pHGGs, are restricted to the cerebral hemispheres, and are found predominantly in the adolescent population (median 15.0 years). We have utilized a genetically engineered immunocompetent mouse model for this subtype of pHGG generated via the Sleeping Beauty-transposon system. The analysis of H3.3-G34R genetically engineered brain tumors by RNA-Sequencing and ChIP-Sequencing revealed alterations in the molecular landscape associated to H3.3-G34R expression. In particular, the expression of H3.3-G34R modifies the histone marks deposited at the regulatory elements of genes belonging to the JAK/STAT pathway, leading to an increased activation of this pathway. This histone G34R-mediated epigenetic modifications lead to changes in the tumor immune microenvironment of these tumors, towards an immune-permissive phenotype, making these gliomas susceptible to TK/Flt3L immune-stimulatory gene therapy. The application of this therapeutic approach increased median survival of H3.3-G34R tumor bearing animals, while stimulating the development of anti-tumor immune response and immunological memory. Our data suggests that the proposed immune-mediated gene therapy has potential for clinical translation for the treatment of patients harboring H3.3-G34R high grade gliomas.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current address: Leloir Institute Foundation, Buenos Aires, Argentina
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anzar Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jin Yu
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current address: Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ayman Taher
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felipe J. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Flor M. Mendez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alejandro J. Nicola Candia
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brittany Salazar
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carl Koschmann
- Department of Pediatrics, Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, MI 48109, USA
| | - Fernando M. Nunez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marta Edwards
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Bioengineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Patrick S, Lathoria K, Suri V, Sen E. Reduced YAP1 and FOLR1 in gliomas predict better response to chemotherapeutics. Cell Signal 2023:110738. [PMID: 37269960 DOI: 10.1016/j.cellsig.2023.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Gliomas harbouring mutations in IDH1 (isocitrate dehydrogenase 1) are characterized by greater sensitivity to chemotherapeutics. These mutants also exhibit diminished levels of transcriptional coactivator YAP1 (yes-associated protein 1). Enhanced DNA damage in IDH1 mutant cells, as evidenced by γH2AX formation (phosphorylation of histone variant H2A.X) and ATM (serine/threonine kinase; ataxia telangiectasia mutated) phosphorylation, was accompanied by reduced FOLR1 (folate receptor 1) expression. Diminished FOLR1, concomitant with heightened γH2AX levels, was also observed in patient-derived IDH1 mutant glioma tissues. Chromatin immunoprecipitation, overexpression of mutant YAP1, and treatment with YAP1-TEAD (TEA domain transcription factors) complex inhibitor verteporfin demonstrated regulation of FOLR1 expression by YAP1 and its partner transcription factor TEAD2. TCGA (The Cancer Genome Atlas) data analysis demonstrated better patient survival with reduced FOLR1 expression. Depletion of FOLR1 rendered IDH1 wild-type gliomas more susceptible to temozolomide-mediated death. Despite heightened DNA damage, IDH1 mutants exhibited reduced levels of IL6 (interleukin 6) and IL8 (interleukin 8) - pro-inflammatory cytokines known to be associated with persistent DNA damage. While both FOLR1 and YAP1 influenced DNA damage, only YAP1 was involved in regulating IL6 and IL8. ESTIMATE and CIBERSORTx analyses revealed the association between YAP1 expression and immune cell infiltration in gliomas. By identifying the influence of YAP1-FOLR1 link in DNA damage, our findings suggest that simultaneous depletion of both could amplify the potency of DNA damaging agents, while concomitantly reducing the release of inflammatory mediators and potentially affecting immune modulation. This study also highlights the novel role of FOLR1 as a probable prognostic marker in gliomas, predicting responsiveness to temozolomide and other DNA damaging agents.
Collapse
Affiliation(s)
| | | | - Vaishali Suri
- All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122052, India.
| |
Collapse
|