1
|
Seung HS. Predicting visual function by interpreting a neuronal wiring diagram. Nature 2024; 634:113-123. [PMID: 39358524 PMCID: PMC11446822 DOI: 10.1038/s41586-024-07953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
As connectomics advances, it will become commonplace to know far more about the structure of a nervous system than about its function. The starting point for many investigations will become neuronal wiring diagrams, which will be interpreted to make theoretical predictions about function. Here I demonstrate this emerging approach with the Drosophila optic lobe, analysing its structure to predict that three Dm3 (refs. 1-4) and three TmY (refs. 2,4) cell types are part of a circuit that serves the function of form vision. Receptive fields are predicted from connectivity, and suggest that the cell types encode the local orientation of a visual stimulus. Extraclassical5,6 receptive fields are also predicted, with implications for robust orientation tuning7, position invariance8,9 and completion of noisy or illusory contours10,11. The TmY types synapse onto neurons that project from the optic lobe to the central brain12,13, which are conjectured to compute conjunctions and disjunctions of oriented features. My predictions can be tested through neurophysiology, which would constrain the parameters and biophysical mechanisms in neural network models of fly vision14.
Collapse
Affiliation(s)
- H Sebastian Seung
- Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Huang S, Hu P, Zhao Z, Shi L. Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons. Animals (Basel) 2024; 14:1577. [PMID: 38891623 PMCID: PMC11171053 DOI: 10.3390/ani14111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Animals detect targets using a variety of visual cues, with the visual salience of these cues determining which environmental features receive priority attention and further processing. Surround modulation plays a crucial role in generating visual saliency, which has been extensively studied in avian tectal neurons. Recent work has reported that the suppression of tectal neurons induced by motion contrasting stimulus is stronger than that by luminance contrasting stimulus. However, the underlying mechanism remains poorly understood. In this study, we built a computational model (called Generalized Linear-Dynamic Modulation) which incorporates independent nonlinear tuning mechanisms for excitatory and inhibitory inputs. This model aims to describe how tectal neurons encode contrasting stimuli. The results showed that: (1) The dynamic nonlinear integration structure substantially improved the accuracy (significant difference (p < 0.001, paired t-test) in the goodness of fit between the two models) of the predicted responses to contrasting stimuli, verifying the nonlinear processing performed by tectal neurons. (2) The modulation difference between luminance and motion contrasting stimuli emerged from the predicted response by the full model but not by that with only excitatory synaptic input (spatial luminance: 89 ± 2.8% (GL_DM) vs. 87 ± 2.1% (GL_DMexc); motion contrasting stimuli: 87 ± 1.7% (GL_DM) vs. 83 ± 2.2% (GL_DMexc)). These results validate the proposed model and further suggest the role of dynamic nonlinear spatial integrations in contextual visual information processing, especially in spatial integration, which is important for object detection performed by birds.
Collapse
Affiliation(s)
- Shuman Huang
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
| | - Pingge Hu
- Department of Automation, Tsinghua University, Beijing 100084, China;
| | - Zhenmeng Zhao
- School of Software, Henan Normal University, Xinxiang 453007, China;
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
3
|
Chen SCY, Chen Y, Geisler WS, Seidemann E. Neural correlates of perceptual similarity masking in primate V1. eLife 2024; 12:RP89570. [PMID: 38592269 PMCID: PMC11003749 DOI: 10.7554/elife.89570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Visual detection is a fundamental natural task. Detection becomes more challenging as the similarity between the target and the background in which it is embedded increases, a phenomenon termed 'similarity masking'. To test the hypothesis that V1 contributes to similarity masking, we used voltage sensitive dye imaging (VSDI) to measure V1 population responses while macaque monkeys performed a detection task under varying levels of target-background similarity. Paradoxically, we find that during an initial transient phase, V1 responses to the target are enhanced, rather than suppressed, by target-background similarity. This effect reverses in the second phase of the response, so that in this phase V1 signals are positively correlated with the behavioral effect of similarity. Finally, we show that a simple model with delayed divisive normalization can qualitatively account for our findings. Overall, our results support the hypothesis that a nonlinear gain control mechanism in V1 contributes to perceptual similarity masking.
Collapse
Affiliation(s)
- Spencer Chin-Yu Chen
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
- Department of Neuroscience, University of Texas at AustinAustinUnited States
- Department of Neurosurgery, Rutgers UniversityNew BrunswickUnited States
| | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Wilson S Geisler
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| |
Collapse
|
4
|
Goris RLT, Coen-Cagli R, Miller KD, Priebe NJ, Lengyel M. Response sub-additivity and variability quenching in visual cortex. Nat Rev Neurosci 2024; 25:237-252. [PMID: 38374462 PMCID: PMC11444047 DOI: 10.1038/s41583-024-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.
Collapse
Affiliation(s)
- Robbe L T Goris
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA.
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Swartz Program in Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Nicholas J Priebe
- Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
5
|
Oleskiw TD, Lieber JD, Simoncelli EP, Movshon JA. Foundations of visual form selectivity for neurons in macaque V1 and V2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583307. [PMID: 38496618 PMCID: PMC10942284 DOI: 10.1101/2024.03.04.583307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We have measured the visually evoked activity of single neurons recorded in areas V1 and V2 of awake, fixating macaque monkeys, and captured their responses with a common computational model. We used a stimulus set composed of "droplets" of localized contrast, band-limited in orientation and spatial frequency; each brief stimulus contained a random superposition of droplets presented in and near the mapped receptive field. We accounted for neuronal responses with a 2-layer linear-nonlinear model, representing each receptive field by a combination of orientation- and scale-selective filters. We fit the data by jointly optimizing the model parameters to enforce sparsity and to prevent overfitting. We visualized and interpreted the fits in terms of an "afferent field" of nonlinearly combined inputs, dispersed in the 4 dimensions of space and spatial frequency. The resulting fits generally give a good account of the responses of neurons in both V1 and V2, capturing an average of 40% of the explainable variance in neuronal firing. Moreover, the resulting models predict neuronal responses to image families outside the test set, such as gratings of different orientations and spatial frequencies. Our results offer a common framework for understanding processing in the early visual cortex, and also demonstrate the ways in which the distributions of neuronal responses in V1 and V2 are similar but not identical.
Collapse
Affiliation(s)
- Timothy D Oleskiw
- Center for Neural Science, New York University; Center for Computational Neuroscience, Flatiron Institute
| | | | - Eero P Simoncelli
- Center for Computational Neuroscience, Flatiron Institute; Center for Neural Science, New York University
| | | |
Collapse
|
6
|
Kim I, Kupers ER, Lerma-Usabiaga G, Grill-Spector K. Characterizing Spatiotemporal Population Receptive Fields in Human Visual Cortex with fMRI. J Neurosci 2024; 44:e0803232023. [PMID: 37963768 PMCID: PMC10866195 DOI: 10.1523/jneurosci.0803-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time-varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants (both females and males). We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (1) from early to later areas within a visual stream, spatial and temporal windows of pRFs progressively increase in size and show greater compressive nonlinearities, (2) later visual areas show diverging spatial and temporal windows across streams, and (3) within early visual areas (V1-V3), both spatial and temporal windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses using fMRI.
Collapse
Affiliation(s)
- Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, 94305
| | - Eline R Kupers
- Department of Psychology, Stanford University, Stanford, CA, 94305
| | - Garikoitz Lerma-Usabiaga
- BCBL. Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
- IKERBASQUE. Basque Foundation for Science, 48009 Bilbao, Spain
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305
| |
Collapse
|
7
|
Kim I, Kupers ER, Lerma-Usabiaga G, Grill-Spector K. Characterizing spatiotemporal population receptive fields in human visual cortex with fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539164. [PMID: 37205541 PMCID: PMC10187260 DOI: 10.1101/2023.05.02.539164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants. We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (i) from early to later areas within a visual stream, spatial and temporal integration windows of pRFs progressively increase in size and show greater compressive nonlinearities, (ii) later visual areas show diverging spatial and temporal integration windows across streams, and (iii) within early visual areas (V1-V3), both spatial and temporal integration windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses in the human brain using fMRI.
Collapse
Affiliation(s)
- Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Eline R. Kupers
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Garikoitz Lerma-Usabiaga
- BCBL. Basque Center on Cognition, Brain and Language, San Sebastian, Spain
- IKERBASQUE. Basque foundation for science, Bilbao, Spain
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Gurbuz BT, Boyaci H. Tilt aftereffect spreads across the visual field. Vision Res 2023; 205:108174. [PMID: 36630779 DOI: 10.1016/j.visres.2022.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
The tilt aftereffect (TAE) is observed when adaptation to a tilted contour alters the perceived tilt of a subsequently presented contour. Thus far, TAE has been treated as a local aftereffect observed only at the location of the adapter. Whether and how TAE spreads to other locations in the visual field has not been systematically studied. Here, we sought an answer to this question by measuring TAE magnitudes at locations including but not limited to the adapter location. The adapter was a tilted grating presented at the same peripheral location throughout an experimental session. In a single trial, participants indicated the perceived tilt of a test grating presented after the adapter at one of fifteen locations in the same visual hemifield as the adapter. We found non-zero TAE magnitudes in all locations tested, showing that the effect spreads across the tested visual hemifield. Next, to establish a link between neuronal activity and behavioral results and to predict the possible neuronal origins of the spread, we built a computational model based on known characteristics of the visual cortex. The simulation results showed that the model could successfully capture the pattern of the behavioral results. Furthermore, the pattern of the optimized receptive field sizes suggests that mid-level visual areas, such as V4, could be critically involved in TAE and its spread across the visual field.
Collapse
Affiliation(s)
- Busra Tugce Gurbuz
- Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
| | - Huseyin Boyaci
- Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Li Y, Wang T, Yang Y, Dai W, Wu Y, Li L, Han C, Zhong L, Li L, Wang G, Dou F, Xing D. Cascaded normalizations for spatial integration in the primary visual cortex of primates. Cell Rep 2022; 40:111221. [PMID: 35977486 DOI: 10.1016/j.celrep.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes. We find three important response properties related to spatial integration that are significantly different between input and output layers: neurons in output layers have stronger surround suppression, smaller receptive field (RF), and higher sensitivity to grating annuli partially covering their RFs. These interlaminar differences can be explained by a descriptive model composed of two global divisions (normalization) and a local subtraction. Our results suggest suppressions with cascaded normalizations (CNs) are essential for spatial integration and laminar processing in the visual cortex. Interestingly, the features of spatial integration in convolutional neural networks, especially in lower layers, are different from our findings in V1.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lianfeng Li
- China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lvyan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Niu X, Huang S, Zhu M, Wang Z, Shi L. Surround Modulation Properties of Tectal Neurons in Pigeons Characterized by Moving and Flashed Stimuli. Animals (Basel) 2022; 12:ani12040475. [PMID: 35203185 PMCID: PMC8868286 DOI: 10.3390/ani12040475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Surround modulation is a basic visual attribute of sensory neurons in many species and has been extensively characterized in mammal primary visual cortex, lateral geniculate nucleus, and superior colliculus. Little attention has been paid to birds, which have a highly developed visual system. We undertook a systematic analysis on surround modulation properties of tectal neurons in pigeons (Columba livia). This study complements existing studies on surrounding modulation properties in non-mammalian species and deepens the understanding of mechanisms of figure–background segmentation performed by avians. Abstract Surround modulation has been abundantly studied in several mammalian brain areas, including the primary visual cortex, lateral geniculate nucleus, and superior colliculus (SC), but systematic analysis is lacking in the avian optic tectum (OT, homologous to mammal SC). Here, multi-units were recorded from pigeon (Columba livia) OT, and responses to different sizes of moving, flashed squares, and bars were compared. The statistical results showed that most tectal neurons presented suppressed responses to larger stimuli in both moving and flashed paradigms, and suppression induced by flashed squares was comparable with moving ones when the stimuli center crossed the near classical receptive field (CRF) center, which corresponded to the full surrounding condition. Correspondingly, the suppression grew weaker when the stimuli center moved across the CRF border, equivalent to partially surrounding conditions. Similarly, suppression induced by full surrounding flashed squares was more intense than by partially surrounding flashed bars. These results suggest that inhibitions performed on tectal neurons appear to be full surrounding rather than locally lateral. This study enriches the understanding of surround modulation properties of avian tectum neurons and provides possible hypotheses about the arrangement of inhibitions from other nuclei, both of which are important for clarifying the mechanism of target detection against clutter background performed by avians.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Shuman Huang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Zhizhong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
| | - Li Shi
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.N.); (S.H.); (M.Z.); (Z.W.)
- Department of Automation, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
11
|
Keller AJ, Dipoppa M, Roth MM, Caudill MS, Ingrosso A, Miller KD, Scanziani M. A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex. Neuron 2020; 108:1181-1193.e8. [PMID: 33301712 PMCID: PMC7850578 DOI: 10.1016/j.neuron.2020.11.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/17/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ. The underlying mechanisms remain unclear. Here, we use optical recordings, manipulations, and computational modeling to show that disinhibitory circuits consisting of vasoactive intestinal peptide (VIP)-expressing and somatostatin (SOM)-expressing inhibitory neurons modulate responses in mouse visual cortex depending on similarity between stimulus and surround, primarily by modulating recurrent excitation. When stimulus and surround are similar, VIP neurons are inactive, and activity of SOM neurons leads to suppression of excitatory neurons. However, when stimulus and surround differ, VIP neurons are active, inhibiting SOM neurons, which leads to relief of excitatory neurons from suppression. We have identified a canonical cortical disinhibitory circuit that contributes to contextual modulation and may regulate perceptual saliency.
Collapse
Affiliation(s)
- Andreas J Keller
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-0444, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Mario Dipoppa
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA.
| | - Morgane M Roth
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-0444, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Matthew S Caudill
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093-0634, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alessandro Ingrosso
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA.
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-0444, USA; Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093-0634, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|