1
|
Islam MJ, Alom MS, Hossain MS, Ali MA, Akter S, Islam S, Ullah MO, Halim MA. Unraveling the impact of ORF3a Q57H mutation on SARS-CoV-2: insights from molecular dynamics. J Biomol Struct Dyn 2024; 42:9753-9766. [PMID: 37649361 DOI: 10.1080/07391102.2023.2252908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
ORF3a is a conserved accessory protein of SARS-CoV-2, linked to viral infection and pathogenesis, with acquired mutations at various locations. Previous studies have shown that the occurrence of the Q57H mutation is higher in comparison to other positions in ORF3a. This mutation is known to induce conformational changes, yet the extent of structural alteration and its role in the viral adaptation process remain unknown. Here we performed molecular dynamics (MD) simulations of wt-ORF3a, Q57H, and Q57A mutants to analyze structural changes caused by mutations compared to the native protein. The MD analysis revealed that Q57H and Q57A mutants show significant structural changes in the dimer conformation than the wt-ORF3a. This dimer conformer narrows down the ion channel cavity, which reduces Na + or K + permeability leading to decrease the antigenic response that can help the virus to escape the host immune system. Non-bonding interaction analysis shows the Q57H mutant has more interacting residues, resulting in more stability within dimer conformation than the wt-ORF3a and Q57A. Moreover, both mutant dimers (Q57H and Q57A) form a novel salt-bridge interaction at the same position between A:Asp142 and B:Lys61, whereas such an interaction is absent in the wt-ORF3a dimer. We have also noticed that the TM3 domain's flexibility in Q57H is increased because of strong inter-domain interactions of TM1 and TM2 within the dimer conformation. These unusual interactions and flexibility of Q57H mutant can have significant impacts on the SARS-CoV-2 adaptations, virulence, transmission, and immune system evasion. Our findings are consistent with the previous experimental data and provided details information on the structural perturbation in ORF3a caused by mutations, which can help better understand the structural change at the molecular level as well as the reason for the high virulence properties of this variant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Md Shahadat Hossain
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Md Ackas Ali
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| | - Shaila Akter
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Shafiqul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - M Obayed Ullah
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| |
Collapse
|
2
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
3
|
Alam ASMRU, Islam OK, Hasan MS, Islam MR, Mahmud S, Al‐Emran HM, Jahid IK, Crandall KA, Hossain MA. Dominant clade-featured SARS-CoV-2 co-occurring mutations reveal plausible epistasis: An in silico based hypothetical model. J Med Virol 2022; 94:1035-1049. [PMID: 34676891 PMCID: PMC8661685 DOI: 10.1002/jmv.27416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into eight fundamental clades with four of these clades (G, GH, GR, and GV) globally prevalent in 2020. To explain plausible epistatic effects of the signature co-occurring mutations of these circulating clades on viral replication and transmission fitness, we proposed a hypothetical model using in silico approach. Molecular docking and dynamics analyses showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase-2. RdRp mutation p.P323L significantly increased genome-wide mutations (p < 0.0001), allowing for more flexible RdRp (mutated)-NSP8 interaction that may accelerate replication. Superior RNA stability and structural variation at NSP3:C241T might impact protein, RNA interactions, or both. Another silent 5'-UTR:C241T mutation might affect translational efficiency and viral packaging. These four G-clade-featured co-occurring mutations might increase viral replication. Sentinel GH-clade ORF3a:p.Q57H variants constricted the ion-channel through intertransmembrane-domain interaction of cysteine(C81)-histidine(H57). The GR-clade N:p.RG203-204KR would stabilize RNA interaction by a more flexible and hypo-phosphorylated SR-rich region. GV-clade viruses seemingly gained the evolutionary advantage of the confounding factors; nevertheless, N:p.A220V might modulate RNA binding with no phenotypic effect. Our hypothetical model needs further retrospective and prospective studies to understand detailed molecular events and their relationship to the fitness of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Ovinu Kibria Islam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Md. Shazid Hasan
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Mir Raihanul Islam
- Division of Poverty, Health, and NutritionInternational Food Policy Research InstituteBangladesh
| | - Shafi Mahmud
- Department Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Hassan M. Al‐Emran
- Department of Biomedical EngineeringJashore University of Science and TechnologyJashoreBangladesh
| | - Iqbal Kabir Jahid
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public HealthThe George Washington UniversityWashington DCUSA
| | - M. Anwar Hossain
- Office of the Vice ChancellorJashore University of Science and TechnologyJashoreBangladesh
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
| |
Collapse
|