1
|
Park J, Bartzoka F, von Beck T, Li ZN, Mishina M, Hebert LS, Kain J, Liu F, Sharma S, Cao W, Eddins DJ, Kumar A, Kim JE, Lee JS, Wang Y, Schwartz EA, Brilot AF, Satterwhite E, Towers DM, McKnight E, Pohl J, Thompson MG, Gaglani M, Dawood FS, Naleway AL, Stevens J, Kennedy RB, Jacob J, Lavinder JJ, Levine MZ, Gangappa S, Ippolito GC, Sambhara S, Georgiou G. Molecular features of the serological IgG repertoire elicited by egg-based, cell-based, or recombinant haemagglutinin-based seasonal influenza vaccines: a comparative, prospective, observational cohort study. THE LANCET. MICROBE 2024:100935. [PMID: 39667375 DOI: 10.1016/j.lanmic.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Egg-based inactivated quadrivalent seasonal influenza vaccine (eIIV4), cell culture-based inactivated quadrivalent seasonal influenza vaccine (ccIIV4), and recombinant haemagglutinin (HA)-based quadrivalent seasonal influenza vaccine (RIV4) have been licensed for use in the USA. In this study, we used antigen-specific serum proteomics analysis to assess how the molecular composition and qualities of the serological antibody repertoires differ after seasonal influenza immunisation by each of the three vaccines and how different vaccination platforms affect the HA binding affinity and breadth of the serum antibodies that comprise the polyclonal response. METHODS In this comparative, prospective, observational cohort study, we included female US health-care personnel (mean age 47·6 years [SD 8]) who received a single dose of RIV4, eIIV4, or ccIIV4 during the 2018-19 influenza season at Baylor Scott & White Health (Temple, TX, USA). Eligible individuals were selected based on comparable day 28 serum microneutralisation titres and similar vaccination history. Laboratory investigators were blinded to assignment until testing was completed. The preplanned exploratory endpoints were assessed by deconvoluting the serological repertoire specific to A/Singapore/INFIMH-16-0019/2016 (H3N2) HA before (day 0) and after (day 28) immunisation using bottom-up liquid chromatography-mass spectrometry proteomics (referred to as Ig-Seq) and natively paired variable heavy chain-variable light chain high-throughput B-cell receptor sequencing (referred to as BCR-Seq). Features of the antigen-specific serological repertoire at day 0 and day 28 for the three vaccine groups were compared. Antibodies identified with high confidence in sera were recombinantly expressed and characterised in depth to determine the binding affinity and breadth to time-ordered H3 HA proteins. FINDINGS During September and October of the 2018-19 influenza season, 15 individuals were recruited and assigned to receive RIV4 (n=5), eIIV4 (n=5), or ccIIV4 (n=5). For all three cohorts, the serum antibody repertoire was dominated by back-boosted antibody lineages (median 98% [95% CI 88-99]) that were present in the serum before vaccination. Although vaccine platform-dependent differences were not evident in the repertoire diversity, somatic hypermutation, or heavy chain complementarity determining region 3 biochemical features, antibodies boosted by RIV4 showed substantially higher binding affinity to the vaccine H3/HA (median half-maximal effective concentration [EC50] to A/Singapore/INFIMH-16-0019/2016 HA: 0·037 μg/mL [95% CI 0·012-0·12] for RIV4; 4·43 μg/mL [0·030-100·0] for eIIV4; and 18·50 μg/mL [0·99-100·0] μg/mL for ccIIV4) and also the HAs from contemporary H3N2 strains than did those elicited by eIIV4 or ccIIV4 (median EC50 to A/Texas/50/2012 HA: 0·037 μg/mL [0·017-0·32] for RIV4; 1·10 μg/mL [0·045-100] for eIIV4; and 12·6 μg/mL [1·8-100] for ccIIV4). Comparison of B-cell receptor sequencing repertoires on day 7 showed that eIIV4 increased the median frequency of canonical egg glycan-targeting B cells (0·20% [95% CI 0·067-0·37] for eIIV4; 0·058% [0·050-0·11] for RIV4; and 0·035% [0-0·062] for ccIIV4), whereas RIV4 vaccination decreased the median frequency of B-cell receptors displaying stereotypical features associated with membrane proximal anchor-targeting antibodies (0·062% [95% CI 0-0·084] for RIV4; 0·12% [0·066-0·16] for eIIV4; and 0·18% [0·016-0·20] for ccIIV4). In exploratory analysis, we characterised the structure of a highly abundant monoclonal antibody that binds to both group 1 and 2 HAs and recognises the HA trimer interface, despite its sequence resembling the stereotypical sequence motif found in membrane-proximal anchor binding antibodies. INTERPRETATION Although all three licensed seasonal influenza vaccines elicit serological antibody repertoires with indistinguishable features shaped by heavy imprinting, the RIV4 vaccine selectively boosts higher affinity monoclonal antibodies to contemporary strains and elicits greater serum binding potency and breadth, possibly as a consequence of the multivalent structural features of the HA immunogen in this vaccine formulation. Collectively, our findings show advantages of RIV4 vaccines and more generally highlight the benefits of multivalent HA immunogens in promoting higher affinity serum antibody responses. FUNDING Centers for Disease Control and Prevention, National Institutes of Health, and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Juyeon Park
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Foteini Bartzoka
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Troy von Beck
- Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Zhu-Nan Li
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Luke S Hebert
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Feng Liu
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh Sharma
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Weiping Cao
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Devon J Eddins
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amrita Kumar
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jin Eyun Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Justin S Lee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yuanyuan Wang
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Evan A Schwartz
- Sauer Structural Biology Laboratory, Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Axel F Brilot
- Sauer Structural Biology Laboratory, Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Dalton M Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Eric McKnight
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark G Thompson
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health, Baylor College of Medicine and Texas A&M University College of Medicine, Temple, TX, USA
| | | | | | - James Stevens
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Joshy Jacob
- Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jason J Lavinder
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Min Z Levine
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | | | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Ferretti F, Kardar M. Universal characterization of epitope immunodominance from a multiscale model of clonal competition in germinal centers. Phys Rev E 2024; 109:064409. [PMID: 39020898 DOI: 10.1103/physreve.109.064409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 07/20/2024]
Abstract
We introduce a multiscale model for affinity maturation, which aims to capture the intraclonal, interclonal, and epitope-specific organization of the B-cell population in a germinal center. We describe the evolution of the B-cell population via a quasispecies dynamics, with species corresponding to unique B-cell receptors (BCRs), where the desired multiscale structure is reflected on the mutational connectivity of the accessible BCR space, and on the statistical properties of its fitness landscape. Within this mathematical framework, we study the competition among classes of BCRs targeting different antigen epitopes, and we construct an effective immunogenic space where epitope immunodominance relations can be universally characterized. We finally study how varying the relative composition of a mixture of antigens with variable and conserved domains allows for a parametric exploration of this space, and we identify general principles for the rational design of two-antigen cocktails.
Collapse
Affiliation(s)
- Federica Ferretti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A multiscale spatial modeling framework for the germinal center response. Front Immunol 2024; 15:1377303. [PMID: 38881901 PMCID: PMC11179717 DOI: 10.3389/fimmu.2024.1377303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymphoid organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events, including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanistic and applied research questions on the adaptive humoral immune response in the future.
Collapse
Affiliation(s)
- Derek P. Mu
- Montgomery Blair High School, Silver Spring, MD, United States
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Norbert E. Kaminski
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Schlotheuber LJ, Lüchtefeld I, Eyer K. Antibodies, repertoires and microdevices in antibody discovery and characterization. LAB ON A CHIP 2024; 24:1207-1225. [PMID: 38165819 PMCID: PMC10898418 DOI: 10.1039/d3lc00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic antibodies are paramount in treating a wide range of diseases, particularly in auto-immunity, inflammation and cancer, and novel antibody candidates recognizing a vast array of novel antigens are needed to expand the usefulness and applications of these powerful molecules. Microdevices play an essential role in this challenging endeavor at various stages since many general requirements of the overall process overlap nicely with the general advantages of microfluidics. Therefore, microfluidic devices are rapidly taking over various steps in the process of new candidate isolation, such as antibody characterization and discovery workflows. Such technologies can allow for vast improvements in time-lines and incorporate conservative antibody stability and characterization assays, but most prominently screenings and functional characterization within integrated workflows due to high throughput and standardized workflows. First, we aim to provide an overview of the challenges of developing new therapeutic candidates, their repertoires and requirements. Afterward, this review focuses on the discovery of antibodies using microfluidic systems, technological aspects of micro devices and small-scale antibody protein characterization and selection, as well as their integration and implementation into antibody discovery workflows. We close with future developments in microfluidic detection and antibody isolation principles and the field in general.
Collapse
Affiliation(s)
- Luca Johannes Schlotheuber
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ines Lüchtefeld
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
- ETH Laboratory for Tumor and Stem Cell Dynamics, Institute of Molecular Health Sciences, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A Multiscale Spatial Modeling Framework for the Germinal Center Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577491. [PMID: 38501122 PMCID: PMC10945589 DOI: 10.1101/2024.01.26.577491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymph organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanic and applied research questions in future.
Collapse
|
6
|
Mazzolini A, Mora T, Walczak AM. Inspecting the interaction between human immunodeficiency virus and the immune system through genetic turnover. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220056. [PMID: 37004725 PMCID: PMC10067267 DOI: 10.1098/rstb.2022.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/15/2022] [Indexed: 04/04/2023] Open
Abstract
Chronic infections of the human immunodeficiency virus (HIV) create a very complex coevolutionary process, where the virus tries to escape the continuously adapting host immune system. Quantitative details of this process are largely unknown and could help in disease treatment and vaccine development. Here we study a longitudinal dataset of ten HIV-infected people, where both the B-cell receptors and the virus are deeply sequenced. We focus on simple measures of turnover, which quantify how much the composition of the viral strains and the immune repertoire change between time points. At the single-patient level, the viral-host turnover rates do not show any statistically significant correlation, however, they correlate if one increases the amount of statistics by aggregating the information across patients. We identify an anti-correlation: large changes in the viral pool composition come with small changes in the B-cell receptor repertoire. This result seems to contradict the naïve expectation that when the virus mutates quickly, the immune repertoire needs to change to keep up. However, a simple model of antagonistically evolving populations can explain this signal. If it is sampled at intervals comparable with the sweep time, one population has had time to sweep while the second cannot start a counter-sweep, leading to the observed anti-correlation. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Andrea Mazzolini
- Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| |
Collapse
|
7
|
Yang L, Van Beek M, Wang Z, Muecksch F, Canis M, Hatziioannou T, Bieniasz PD, Nussenzweig MC, Chakraborty AK. Antigen presentation dynamics shape the antibody response to variants like SARS-CoV-2 Omicron after multiple vaccinations with the original strain. Cell Rep 2023; 42:112256. [PMID: 36952347 PMCID: PMC9986127 DOI: 10.1016/j.celrep.2023.112256] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 is not effectively neutralized by most antibodies elicited by two doses of mRNA vaccines, but a third dose increases anti-Omicron neutralizing antibodies. We reveal mechanisms underlying this observation by combining computational modeling with data from vaccinated humans. After the first dose, limited antigen availability in germinal centers (GCs) results in a response dominated by B cells that target immunodominant epitopes that are mutated in an Omicron-like variant. After the second dose, these memory cells expand and differentiate into plasma cells that secrete antibodies that are thus ineffective for such variants. However, these pre-existing antigen-specific antibodies transport antigen efficiently to secondary GCs. They also partially mask immunodominant epitopes. Enhanced antigen availability and epitope masking in secondary GCs together result in generation of memory B cells that target subdominant epitopes that are less mutated in Omicron. The third dose expands these cells and boosts anti-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leerang Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew Van Beek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Phillips AM, Maurer DP, Brooks C, Dupic T, Schmidt AG, Desai MM. Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody. eLife 2023; 12:83628. [PMID: 36625542 PMCID: PMC9995116 DOI: 10.7554/elife.83628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations - distributed across the variable light and heavy chains - that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the VH-VL interface is essential for binding a divergent H1. Collectively, this is the first work to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel P Maurer
- Ragon Institute of MGH, MIT, and HarvardCambridgeUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Caelan Brooks
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and HarvardCambridgeUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
| |
Collapse
|
9
|
Arulraj T, Binder SC, Meyer-Hermann M. Antibody Mediated Intercommunication of Germinal Centers. Cells 2022; 11:cells11223680. [PMID: 36429109 PMCID: PMC9688628 DOI: 10.3390/cells11223680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Antibody diversification and selection of B cells occur in dynamic structures called germinal centers (GCs). Passively administered soluble antibodies regulate the GC response by masking the antigen displayed on follicular dendritic cells (FDCs). This suggests that GCs might intercommunicate via naturally produced soluble antibodies, but the role of such GC-GC interactions is unknown. In this study, we performed in silico simulations of interacting GCs and predicted that intense interactions by soluble antibodies limit the magnitude and lifetime of GC responses. With asynchronous GC onset, we observed a higher inhibition of late formed GCs compared to early ones. We also predicted that GC-GC interactions can lead to a bias in the epitope recognition even in the presence of equally dominant epitopes due to differences in founder cell composition or initiation timing of GCs. We show that there exists an optimal range for GC-GC interaction strength that facilitates the affinity maturation towards an incoming antigenic variant during an ongoing GC reaction. These findings suggest that GC-GC interactions might be a contributing factor to the unexplained variability seen among individual GCs and a critical factor in the modulation of GC response to antigenic variants during viral infections.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
10
|
Yan Z, Qi H, Lan Y. The role of geometric features in a germinal center. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:8304-8333. [PMID: 35801467 DOI: 10.3934/mbe.2022387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The germinal center (GC) is a self-organizing structure produced in the lymphoid follicle during the T-dependent immune response and is an important component of the humoral immune system. However, the impact of the special structure of GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC including the appearance of two specific zones: the dark zone (DZ) and the light zone (LZ), the development of which serves to maintain an effective competition among different cells and promote affinity maturation. A phase transition is discovered in this process, which determines the critical GC volume for a successful growth in both the stochastic and the deterministic model. Further increase of the volume does not make much improvement on the performance. It is found that the critical volume is determined by the distance between the activated B cell receptor (BCR) and the target epitope of the antigen in the shape space. The observation is confirmed in both 2D and 3D simulations and explains partly the variability of the observed GC size.
Collapse
Affiliation(s)
- Zishuo Yan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hai Qi
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
11
|
Affinity maturation for an optimal balance between long-term immune coverage and short-term resource constraints. Proc Natl Acad Sci U S A 2022; 119:2113512119. [PMID: 35177475 PMCID: PMC8872716 DOI: 10.1073/pnas.2113512119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Humoral immunity relies on the mutation and selection of B cells to better recognize pathogens. This affinity maturation process produces cells with diverse recognition capabilities. Examining optimal immune strategies that maximize the long-term immune coverage at a minimal metabolic cost, we show when the immune system should mount a de novo response rather than rely on existing memory cells. Our theory recapitulates known modes of the B cell response, predicts the empirical form of the distribution of clone sizes, and rationalizes as a trade-off between metabolic and immune costs the antigenic imprinting effects that limit the efficacy of vaccines (original antigenic sin). Our predictions provide a framework to interpret experimental results that could be used to inform vaccination strategies. In order to target threatening pathogens, the adaptive immune system performs a continuous reorganization of its lymphocyte repertoire. Following an immune challenge, the B cell repertoire can evolve cells of increased specificity for the encountered strain. This process of affinity maturation generates a memory pool whose diversity and size remain difficult to predict. We assume that the immune system follows a strategy that maximizes the long-term immune coverage and minimizes the short-term metabolic costs associated with affinity maturation. This strategy is defined as an optimal decision process on a finite dimensional phenotypic space, where a preexisting population of cells is sequentially challenged with a neutrally evolving strain. We show that the low specificity and high diversity of memory B cells—a key experimental result—can be explained as a strategy to protect against pathogens that evolve fast enough to escape highly potent but narrow memory. This plasticity of the repertoire drives the emergence of distinct regimes for the size and diversity of the memory pool, depending on the density of de novo responding cells and on the mutation rate of the strain. The model predicts power-law distributions of clonotype sizes observed in data and rationalizes antigenic imprinting as a strategy to minimize metabolic costs while keeping good immune protection against future strains.
Collapse
|
12
|
Garg AK, Mittal S, Padmanabhan P, Desikan R, Dixit NM. Increased B Cell Selection Stringency In Germinal Centers Can Explain Improved COVID-19 Vaccine Efficacies With Low Dose Prime or Delayed Boost. Front Immunol 2021; 12:776933. [PMID: 34917089 PMCID: PMC8669483 DOI: 10.3389/fimmu.2021.776933] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.
Collapse
Affiliation(s)
- Amar K. Garg
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Soumya Mittal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Phillips AM, Lawrence KR, Moulana A, Dupic T, Chang J, Johnson MS, Cvijovic I, Mora T, Walczak AM, Desai MM. Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. eLife 2021; 10:71393. [PMID: 34491198 PMCID: PMC8476123 DOI: 10.7554/elife.71393] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States.,Quantitative Biology Initiative, Harvard University, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Jeffrey Chang
- Department of Physics, Harvard University, Cambridge, United States
| | - Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Ivana Cvijovic
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Thierry Mora
- Laboratoire de physique de ÍÉcole Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de ÍÉcole Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States.,Quantitative Biology Initiative, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| |
Collapse
|
14
|
Attaf N, Baaklini S, Binet L, Milpied P. Heterogeneity of germinal center B cells: New insights from single-cell studies. Eur J Immunol 2021; 51:2555-2567. [PMID: 34324199 DOI: 10.1002/eji.202149235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Upon antigen exposure, activated B cells in antigen-draining lymphoid organs form microanatomical structures, called germinal centers (GCs), where affinity maturation occurs. Within the GC microenvironment, GC B cells undergo proliferation and B cell receptor (BCR) genes somatic hypermutation in the dark zone (DZ), and affinity-based selection in the light zone (LZ). In the current paradigm of GC dynamics, high-affinity LZ B cells may be selected by cognate T- follicular helper cells to either differentiate into plasma cells or memory B cells, or re-enter the DZ and initiate a new round of proliferation and BCR diversification, before migrating back to the LZ. Given the diversity of cell states and potential cell fates that GC B cells may adopt, the two-state DZ-LZ paradigm has been challenged by studies that explored GC B-cell heterogeneity with a variety of single-cell technologies. Here, we review studies and single-cell technologies which have allowed to refine the working model of GC B-cell cellular and molecular heterogeneity during affinity maturation. This review also covers the use of single-cell quantitative data for mathematical modeling of GC reactions, and the application of single-cell genomics to the study of GC-derived malignancies.
Collapse
Affiliation(s)
- Noudjoud Attaf
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sabrina Baaklini
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Laurine Binet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, France
| |
Collapse
|
15
|
Sheng J, Wang S. Coevolutionary transitions emerging from flexible molecular recognition and eco-evolutionary feedback. iScience 2021; 24:102861. [PMID: 34401660 PMCID: PMC8353512 DOI: 10.1016/j.isci.2021.102861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/16/2021] [Accepted: 07/13/2021] [Indexed: 01/16/2023] Open
Abstract
Highly mutable viruses evolve to evade host immunity that exerts selective pressure and adapts to viral dynamics. Here, we provide a framework for identifying key determinants of the mode and fate of viral-immune coevolution by linking molecular recognition and eco-evolutionary dynamics. We find that conservation level and initial diversity of antigen jointly determine the timing and efficacy of narrow and broad antibody responses, which in turn control the transition between viral persistence, clearance, and rebound. In particular, clearance of structurally complex antigens relies on antibody evolution in a larger antigenic space than where selection directly acts; viral rebound manifests binding-mediated feedback between ecology and rapid evolution. Finally, immune compartmentalization can slow viral escape but also delay clearance. This work suggests that flexible molecular binding allows a plastic phenotype that exploits potentiating neutral variations outside direct contact, opening new and shorter paths toward highly adaptable states. A scale-crossing framework identifies key determinants of viral-immune coevolution Fast specific response influences slow broad response by shaping antigen dynamics Antibody footprint shift enables breadth acquisition and viral clearance Model explains divergent kinetics and outcomes of HCV infection in humans
Collapse
Affiliation(s)
- Jiming Sheng
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Arulraj T, Binder SC, Meyer-Hermann M. In Silico Analysis of the Longevity and Timeline of Individual Germinal Center Reactions in a Primary Immune Response. Cells 2021; 10:cells10071736. [PMID: 34359906 PMCID: PMC8306527 DOI: 10.3390/cells10071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Germinal centers (GCs) are transient structures in the secondary lymphoid organs, where B cells undergo affinity maturation to produce high affinity memory and plasma cells. The lifetime of GC responses is a critical factor limiting the extent of affinity maturation and efficiency of antibody responses. While the average lifetime of overall GC reactions in a lymphoid organ is determined experimentally, the lifetime of individual GCs has not been monitored due to technical difficulties in longitudinal analysis. In silico analysis of the contraction phase of GC responses towards primary immunization with sheep red blood cells suggested that if individual GCs had similar lifetimes, the data would be consistent only when new GCs were formed until a very late phase after immunization. Alternatively, there could be a large variation in the lifetime of individual GCs suggesting that both long and short-lived GCs might exist in the same lymphoid organ. Simulations predicted that such differences in the lifetime of GCs could arise due to variations in antigen availability and founder cell composition. These findings identify the potential factors limiting GC lifetime and contribute to an understanding of overall GC responses from the perspective of individual GCs in a primary immune response.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (T.A.); (S.C.B.)
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (T.A.); (S.C.B.)
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; (T.A.); (S.C.B.)
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
17
|
Molari M, Monasson R, Cocco S. Survival probability and size of lineages in antibody affinity maturation. Phys Rev E 2021; 103:052413. [PMID: 34134280 DOI: 10.1103/physreve.103.052413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/06/2021] [Indexed: 11/07/2022]
Abstract
Affinity maturation (AM) is the process through which the immune system is able to develop potent antibodies against new pathogens it encounters, and is at the base of the efficacy of vaccines. At its core AM is analogous to a Darwinian evolutionary process, where B cells mutate and are selected on the base of their affinity for an antigen (Ag), and Ag availability tunes the selective pressure. In cases when this selective pressure is high, the number of B cells might quickly decrease and the population might risk extinction in what is known as a population bottleneck. Here we study the probability for a B-cell lineage to survive this bottleneck scenario as a function of the progenitor affinity for the Ag. Using recursive relations and probability generating functions we derive expressions for the average extinction time and progeny size for lineages that go extinct. We then extend our results to the full population, both in the absence and presence of competition for T-cell help, and quantify the population survival probability as a function of Ag concentration and initial population size. Our study suggests the population bottleneck phenomenology might represent a limit case in the space of biologically plausible maturation scenarios, whose characterization could help guide the process of vaccine development.
Collapse
Affiliation(s)
- Marco Molari
- Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France
| | - Rémi Monasson
- Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France
| | - Simona Cocco
- Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
18
|
Eyer K, Castrillon C, Chenon G, Bibette J, Bruhns P, Griffiths AD, Baudry J. The Quantitative Assessment of the Secreted IgG Repertoire after Recall to Evaluate the Quality of Immunizations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1176-1184. [PMID: 32669311 PMCID: PMC7416324 DOI: 10.4049/jimmunol.2000112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
One of the major goals of vaccination is to prepare the body to rapidly secrete specific Abs during an infection. Assessment of the vaccine quality is often difficult to perform, as simple measurements like Ab titer only partly correlate with protection. Similarly, these simple measurements are not always sensitive to changes in the preceding immunization scheme. Therefore, we introduce in this paper a new, to our knowledge, method to assay the quality of immunization schemes for mice: shortly after a recall with pure Ag, we analyze the frequencies of IgG-secreting cells (IgG-SCs) in the spleen, as well as for each cells, the Ag affinity of the secreted Abs. We observed that after recall, appearance of the IgG-SCs within the spleen of immunized mice was fast (<24 h) and this early response was free of naive IgG-SCs. We further confirmed that our phenotypic analysis of IgG-SCs after recall strongly correlated with the different employed immunization schemes. Additionally, a phenotypic comparison of IgG-SCs presented in the spleen during immunization or after recall revealed similarities but also significant differences. The developed approach introduced a novel (to our knowledge), quantitative, and functional highly resolved alternative to study the quality of immunizations.
Collapse
Affiliation(s)
- Klaus Eyer
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France;
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Carlos Castrillon
- Unit of Antibodies in Therapy and Pathology, Pasteur Institute, UMR1222 INSERM, 75015 Paris, France
- Laboratoire de Biochimie, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France; and
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Guilhem Chenon
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Pasteur Institute, UMR1222 INSERM, 75015 Paris, France
| | - Andrew D Griffiths
- Laboratoire de Biochimie, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France; and
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France
| |
Collapse
|