1
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Dingare C, Cao D, Yang JJ, Sozen B, Steventon B. Mannose controls mesoderm specification and symmetry breaking in mouse gastruloids. Dev Cell 2024; 59:1523-1537.e6. [PMID: 38636516 DOI: 10.1016/j.devcel.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Patterning and growth are fundamental features of embryonic development that must be tightly coordinated. To understand how metabolism impacts early mesoderm development, we used mouse embryonic stem-cell-derived gastruloids, that co-expressed glucose transporters with the mesodermal marker T/Bra. We found that the glucose mimic, 2-deoxy-D-glucose (2-DG), blocked T/Bra expression and abolished axial elongation in gastruloids. However, glucose removal did not phenocopy 2-DG treatment despite a decline in glycolytic intermediates. As 2-DG can also act as a competitive inhibitor of mannose in protein glycosylation, we added mannose together with 2-DG and found that it could rescue the mesoderm specification both in vivo and in vitro. We further showed that blocking production and intracellular recycling of mannose abrogated mesoderm specification. Proteomics analysis demonstrated that mannose reversed glycosylation of the Wnt pathway regulator, secreted frizzled receptor Frzb. Our study showed how mannose controls mesoderm specification in mouse gastruloids.
Collapse
Affiliation(s)
- Chaitanya Dingare
- Deptartment of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK.
| | - Dominica Cao
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jenny Jingni Yang
- Deptartment of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA; Yale Stem Cell Centre, Yale University, New Haven, CT, USA; Department of Obstetrics, Gynaecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Benjamin Steventon
- Deptartment of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK.
| |
Collapse
|
3
|
Lozovska A, Korovesi AG, Dias A, Lopes A, Fowler DA, Martins GG, Nóvoa A, Mallo M. Tgfbr1 controls developmental plasticity between the hindlimb and external genitalia by remodeling their regulatory landscape. Nat Commun 2024; 15:2509. [PMID: 38509075 PMCID: PMC10954616 DOI: 10.1038/s41467-024-46870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.
Collapse
Affiliation(s)
- Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Artemis G Korovesi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandre Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Donald A Fowler
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
4
|
Martins-Costa C, Wilson V, Binagui-Casas A. Neuromesodermal specification during head-to-tail body axis formation. Curr Top Dev Biol 2024; 159:232-271. [PMID: 38729677 DOI: 10.1016/bs.ctdb.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/β-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.
Collapse
Affiliation(s)
- C Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - V Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - A Binagui-Casas
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Tsujimoto H, Hoshina A, Mae SI, Araoka T, Changting W, Ijiri Y, Nakajima-Koyama M, Sakurai S, Okita K, Mizuta K, Niwa A, Saito MK, Saitou M, Yamamoto T, Graneli C, Woollard KJ, Osafune K. Selective induction of human renal interstitial progenitor-like cell lineages from iPSCs reveals development of mesangial and EPO-producing cells. Cell Rep 2024; 43:113602. [PMID: 38237600 DOI: 10.1016/j.celrep.2023.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2023] [Accepted: 12/05/2023] [Indexed: 03/02/2024] Open
Abstract
Recent regenerative studies using human pluripotent stem cells (hPSCs) have developed multiple kidney-lineage cells and organoids. However, to further form functional segments of the kidney, interactions of epithelial and interstitial cells are required. Here we describe a selective differentiation of renal interstitial progenitor-like cells (IPLCs) from human induced pluripotent stem cells (hiPSCs) by modifying our previous induction method for nephron progenitor cells (NPCs) and analyzing mouse embryonic interstitial progenitor cell (IPC) development. Our IPLCs combined with hiPSC-derived NPCs and nephric duct cells form nephrogenic niche- and mesangium-like structures in vitro. Furthermore, we successfully induce hiPSC-derived IPLCs to differentiate into mesangial and erythropoietin-producing cell lineages in vitro by screening differentiation-inducing factors and confirm that p38 MAPK, hypoxia, and VEGF signaling pathways are involved in the differentiation of mesangial-lineage cells. These findings indicate that our IPC-lineage induction method contributes to kidney regeneration and developmental research.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Azusa Hoshina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wang Changting
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshihiro Ijiri
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - May Nakajima-Koyama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoko Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazusa Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ken Mizuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Niwa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Megumu K Saito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Cecilia Graneli
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolic (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
6
|
Qiu C, Martin BK, Welsh IC, Daza RM, Le TM, Huang X, Nichols EK, Taylor ML, Fulton O, O'Day DR, Gomes AR, Ilcisin S, Srivatsan S, Deng X, Disteche CM, Noble WS, Hamazaki N, Moens CB, Kimelman D, Cao J, Schier AF, Spielmann M, Murray SA, Trapnell C, Shendure J. A single-cell time-lapse of mouse prenatal development from gastrula to birth. Nature 2024; 626:1084-1093. [PMID: 38355799 PMCID: PMC10901739 DOI: 10.1038/s41586-024-07069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Truc-Mai Le
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Megan L Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Olivia Fulton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Diana R O'Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Saskia Ilcisin
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junyue Cao
- Laboratory of Single-Cell Genomics and Population dynamics, The Rockefeller University, New York, NY, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg, Lübeck, Kiel, Lübeck, Germany
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| |
Collapse
|
7
|
Mirdass C, Catala M, Bocel M, Nedelec S, Ribes V. Stem cell-derived models of spinal neurulation. Emerg Top Life Sci 2023; 7:423-437. [PMID: 38087891 DOI: 10.1042/etls20230087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Neurulation is a critical step in early embryonic development, giving rise to the neural tube, the primordium of the central nervous system in amniotes. Understanding this complex, multi-scale, multi-tissue morphogenetic process is essential to provide insights into normal development and the etiology of neural tube defects. Innovations in tissue engineering have fostered the generation of pluripotent stem cell-based in vitro models, including organoids, that are emerging as unique tools for delving into neurulation mechanisms, especially in the context of human development. Each model captures specific aspects of neural tube morphogenesis, from epithelialization to neural tissue elongation, folding and cavitation. In particular, the recent models of human and mouse trunk morphogenesis, such as gastruloids, that form a spinal neural plate-like or neural tube-like structure are opening new avenues to study normal and pathological neurulation. Here, we review the morphogenetic events generating the neural tube in the mammalian embryo and questions that remain unanswered. We discuss the advantages and limitations of existing in vitro models of neurulation and possible future technical developments.
Collapse
Affiliation(s)
- Camil Mirdass
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Martin Catala
- Institut de Biologie Paris Seine (IBPS) - Developmental Biology Laboratory, UMR7622 CNRS, INSERM ERL 1156, Sorbonne Université, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Mikaëlle Bocel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
8
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
9
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Lozovska A, Nóvoa A, Kuo YY, Jurberg AD, Martins GG, Hadjantonakis AK, Mallo M. Tgfbr1 regulates lateral plate mesoderm and endoderm reorganization during the trunk to tail transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554351. [PMID: 37662386 PMCID: PMC10473653 DOI: 10.1101/2023.08.22.554351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak to the tailbud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuro mesodermal-competent cells from the epiblast to the chordo-neural hinge to generate the tail bud. We now show that Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1 the two LPM layers do not converge at the end of the trunk, extending instead as separate layers enclosing the celomic cavity until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. However, this extended LPM, does not exhibit the molecular signatures characteristic of this tissue in the trunk. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior primitive streak fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.
Collapse
|
11
|
Pagella P, Söderholm S, Nordin A, Zambanini G, Ghezzi V, Jauregi-Miguel A, Cantù C. The time-resolved genomic impact of Wnt/β-catenin signaling. Cell Syst 2023; 14:563-581.e7. [PMID: 37473729 DOI: 10.1016/j.cels.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Wnt signaling orchestrates gene expression via its effector, β-catenin. However, it is unknown whether β-catenin binds its target genomic regions simultaneously and how this impacts chromatin dynamics to modulate cell behavior. Using a combination of time-resolved CUT&RUN against β-catenin, ATAC-seq, and perturbation assays in different cell types, we show that Wnt/β-catenin physical targets are tissue-specific, β-catenin "moves" on different loci over time, and its association to DNA accompanies changing chromatin accessibility landscapes that determine cell behavior. In particular, Wnt/β-catenin progressively shapes the chromatin of human embryonic stem cells (hESCs) as they undergo mesodermal differentiation, a behavior that we define as "plastic." In HEK293T cells, on the other hand, Wnt/β-catenin drives a transient chromatin opening, followed by re-establishment of the pre-stimulation state, a response that we define as "elastic." Future experiments shall assess whether other cell communication mechanisms, in addition to Wnt signaling, are ruled by time, cellular idiosyncrasies, and chromatin constraints. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Valeria Ghezzi
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
12
|
Suzuki T, Conant A, Curow C, Alexander A, Ioffe Y, Unternaehrer JJ. Role of epithelial-mesenchymal transition factor SNAI1 and its targets in ovarian cancer aggressiveness. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:25. [PMID: 38009093 PMCID: PMC10673625 DOI: 10.20517/2394-4722.2023.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the USA. For over twenty years, epithelial-mesenchymal transition (EMT) has been characterized extensively in development and disease. The dysregulation of this process in cancer has been identified as a mechanism by which epithelial tumors become more aggressive, allowing them to survive and invade distant tissues. This occurs in part due to the increased expression of the EMT transcription factor, SNAI1 (Snail). In the case of epithelial ovarian cancer, Snail has been shown to contribute to cancer invasion, stemness, chemoresistance, and metabolic changes. Thus, in this review, we focus on summarizing current findings on the role of EMT (specifically, factors downstream of Snail) in determining ovarian cancer aggressiveness.
Collapse
Affiliation(s)
- Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashlyn Conant
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Casey Curow
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- University of Redlands, Department of Biology, Redlands, CA 92373, USA
| | - Audrey Alexander
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Natural and Mathematical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Yevgeniya Ioffe
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
13
|
Qiu C, Martin BK, Welsh IC, Daza RM, Le TM, Huang X, Nichols EK, Taylor ML, Fulton O, O’Day DR, Gomes AR, Ilcisin S, Srivatsan S, Deng X, Disteche CM, Noble WS, Hamazaki N, Moens CB, Kimelman D, Cao J, Schier AF, Spielmann M, Murray SA, Trapnell C, Shendure J. A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535726. [PMID: 37066300 PMCID: PMC10104014 DOI: 10.1101/2023.04.05.535726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Truc-Mai Le
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Eva K. Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Megan L. Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Olivia Fulton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Diana R. O’Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Saskia Ilcisin
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christine M. Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junyue Cao
- Laboratory of Single-cell genomics and Population dynamics, The Rockefeller University, New York, NY, USA
| | - Alexander F. Schier
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Lübeck, Kiel, Lübeck, Germany
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
14
|
Chang YC, Manent J, Schroeder J, Wong SFL, Hauswirth GM, Shylo NA, Moore EL, Achilleos A, Garside V, Polo JM, Trainor P, McGlinn E. Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development. Nat Commun 2022; 13:7766. [PMID: 36522318 PMCID: PMC9755267 DOI: 10.1038/s41467-022-35303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Manent
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Schroeder
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Siew Fen Lisa Wong
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Gabriel M. Hauswirth
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Natalia A. Shylo
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Emma L. Moore
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Annita Achilleos
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.413056.50000 0004 0383 4764University of Nicosia, Nicosia, Cyprus
| | - Victoria Garside
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Paul Trainor
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas USA
| | - Edwina McGlinn
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
15
|
Martin BL. Mesoderm induction and patterning: Insights from neuromesodermal progenitors. Semin Cell Dev Biol 2022; 127:37-45. [PMID: 34840081 PMCID: PMC9130346 DOI: 10.1016/j.semcdb.2021.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
The discovery of mesoderm inducing signals helped usher in the era of molecular developmental biology, and today the mechanisms of mesoderm induction and patterning are still intensely studied. Mesoderm induction begins during gastrulation, but recent evidence in vertebrates shows that this process continues after gastrulation in a group of posteriorly localized cells called neuromesodermal progenitors (NMPs). NMPs reside within the post-gastrulation embryonic structure called the tailbud, where they make a lineage decision between ectoderm (spinal cord) and mesoderm. The majority of NMP-derived mesoderm generates somites, but also contributes to lateral mesoderm fates such as endothelium. The discovery of NMPs provides a new paradigm in which to study vertebrate mesoderm induction. This review will discuss mechanisms of mesoderm induction within NMPs, and how they have informed our understanding of mesoderm induction more broadly within vertebrates as well as animal species outside of the vertebrate lineage. Special focus will be given to the signaling networks underlying NMP-derived mesoderm induction and patterning, as well as emerging work on the significance of partial epithelial-mesenchymal states in coordinating cell fate and morphogenesis.
Collapse
Affiliation(s)
- Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
16
|
de Lemos L, Dias A, Nóvoa A, Mallo M. Epha1 is a cell-surface marker for the neuromesodermal competent population. Development 2022; 149:274735. [DOI: 10.1242/dev.198812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The vertebrate body is built during embryonic development by the sequential addition of new tissue as the embryo grows at its caudal end. During this process, progenitor cells within the neuromesodermal competent (NMC) region generate the postcranial neural tube and paraxial mesoderm. Here, we have applied a genetic strategy to recover the NMC cell population from mouse embryonic tissues and have searched their transcriptome for cell-surface markers that would give access to these cells without previous genetic modifications. We found that Epha1 expression is restricted to the axial progenitor-containing areas of the mouse embryo. Epha1-positive cells isolated from the mouse tailbud generate neural and mesodermal derivatives when cultured in vitro. This observation, together with their enrichment in the Sox2+/Tbxt+ molecular phenotype, indicates a direct association between Epha1 and the NMC population. Additional analyses suggest that tailbud cells expressing low Epha1 levels might also contain notochord progenitors, and that high Epha1 expression might be associated with progenitors entering paraxial mesoderm differentiation. Epha1 could thus be a valuable cell-surface marker for labeling and recovering physiologically active axial progenitors from embryonic tissues.
Collapse
Affiliation(s)
- Luisa de Lemos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
17
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
18
|
Zhu Y, Lohnes D. Regulation of axial elongation by Cdx. Dev Biol 2021; 483:118-127. [PMID: 34958748 DOI: 10.1016/j.ydbio.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
The primordia of the post-otic mouse embryo forms largely from a bipotential cell population containing neuromesodermal progenitors (NMP) which reside in the tail bud and contribute to the elaboration of the major body axis after gastrulation. The mechanisms by which the NMP population is both maintained and subsequently directed down mesodermal and neural lineages is incompletely understood. The vertebrate transcription factor Cdx2, is essential for axial elongation and has been implicated in maintaining the NMP niche and in specification of NMP derivatives. To better understand the role of the Cdx family in axial elongation, we employed a conditional mutant allele which evokes total loss of Cdx function, and enriched for tail bud progenitors through the use of a Pax2-GFP transgenic reporter. Using this approach, we identified 349 Cdx-dependent genes by RNA sequencing (RNA-seq). From these, Gene Ontology and chromatin immunoprecipitation analysis further revealed a number of putative direct Cdx candidate target genes implicated in axial elongation, including Sp8, Isl1, Evx1, Zic3 and Nr2f1. Additional analysis of available single-cell RNA-seq data from mouse tail buds revealed the co-expression of Sp8, Isl1, Evx1 and Zic3 with Cdx2 in putative NMP cells, while Nr2f1 was excluded from this population. These findings identify a number of novel Cdx targets and provide further insight into the critical roles for Cdx in elaborating the post-otic embryo.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
19
|
Binagui-Casas A, Dias A, Guillot C, Metzis V, Saunders D. Building consensus in neuromesodermal research: Current advances and future biomedical perspectives. Curr Opin Cell Biol 2021; 73:133-140. [PMID: 34717142 DOI: 10.1016/j.ceb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The development of the vertebrate body axis relies on the activity of different populations of axial progenitors, including neuromesodermal progenitors. Currently, the term 'Neuromesodermal progenitors' is associated with various definitions. Here, we use distinct terminologies to highlight advances in our understanding of this cell type at both the single-cell and population levels. We discuss how these recent insights prompt new opportunities to address a range of biomedical questions spanning cancer metastasis, congenital disorders, cellular metabolism, regenerative medicine, and evolution. Finally, we outline some of the major unanswered questions and propose future directions at the forefront of neuromesodermal research.
Collapse
Affiliation(s)
- Anahí Binagui-Casas
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| | - Charlène Guillot
- Department of Pathology, Brigham and Women's Hospital & Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA, USA; Institute of Genetics, Reproduction and Development, Medical school, University of Clermont Auvergne, 28, Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Vicki Metzis
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
20
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
21
|
Romanos M, Allio G, Roussigné M, Combres L, Escalas N, Soula C, Médevielle F, Steventon B, Trescases A, Bénazéraf B. Cell-to-cell heterogeneity in Sox2 and Bra expression guides progenitor motility and destiny. eLife 2021; 10:e66588. [PMID: 34607629 PMCID: PMC8492064 DOI: 10.7554/elife.66588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although cell-to-cell heterogeneity in gene and protein expression within cell populations has been widely documented, we know little about its biological functions. By studying progenitors of the posterior region of bird embryos, we found that expression levels of transcription factors Sox2 and Bra, respectively involved in neural tube (NT) and mesoderm specification, display a high degree of cell-to-cell heterogeneity. By combining forced expression and downregulation approaches with time-lapse imaging, we demonstrate that Sox2-to-Bra ratio guides progenitor's motility and their ability to stay in or exit the progenitor zone to integrate neural or mesodermal tissues. Indeed, high Bra levels confer high motility that pushes cells to join the paraxial mesoderm, while high levels of Sox2 tend to inhibit cell movement forcing cells to integrate the NT. Mathematical modeling captures the importance of cell motility regulation in this process and further suggests that randomness in Sox2/Bra cell-to-cell distribution favors cell rearrangements and tissue shape conservation.
Collapse
Affiliation(s)
- Michèle Romanos
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
- Institut de Mathématiques de Toulouse UMR 5219, Université de ToulouseToulouseFrance
| | - Guillaume Allio
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Myriam Roussigné
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Léa Combres
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Nathalie Escalas
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - Cathy Soula
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | - François Médevielle
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| | | | - Ariane Trescases
- Institut de Mathématiques de Toulouse UMR 5219, Université de ToulouseToulouseFrance
| | - Bertrand Bénazéraf
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance
| |
Collapse
|
22
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Guillot C, Djeffal Y, Michaut A, Rabe B, Pourquié O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. eLife 2021; 10:64819. [PMID: 34227938 PMCID: PMC8260230 DOI: 10.7554/elife.64819] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB. Posterior to anterior gradients of convergence speed and ingression along the PS lead to asymmetric exhaustion of PS mesodermal precursor territories. Through limited ingression and increased proliferation, NMPs are maintained and amplified as a cell population which constitute the main progenitors in the TB. Together, our studies provide a novel understanding of the PS and TB contribution through the NMPs to the formation of the body of amniote embryos.
Collapse
Affiliation(s)
- Charlene Guillot
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Yannis Djeffal
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Arthur Michaut
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Brian Rabe
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
24
|
Abstract
The axial skeleton of all vertebrates is composed of individual units known as vertebrae. Each vertebra has individual anatomical attributes, yet they can be classified in five different groups, namely cervical, thoracic, lumbar, sacral and caudal, according to shared characteristics and their association with specific body areas. Variations in vertebral number, size, morphological features and their distribution amongst the different regions of the vertebral column are a major source of the anatomical diversity observed among vertebrates. In this review I will discuss the impact of those variations on the anatomy of different vertebrate species and provide insights into the genetic origin of some remarkable morphological traits that often serve to classify phylogenetic branches or individual species, like the long trunks of snakes or the long necks of giraffes.
Collapse
|
25
|
Wang T, Liu W, Li C, Si G, Liang Z, Yin J. Mist1 promoted inflammation in colitis model via K+-ATPase NLRP3 inflammasome by SNAI1. Pathol Res Pract 2021; 224:153511. [PMID: 34214845 DOI: 10.1016/j.prp.2021.153511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory intestinal disease. Genetic susceptibility, gut microbiota and mucosal immune dysfunction play important roles in the pathogenesis and development of UC. We investigate the effect of Mist1 in model of colitis and its underlying mechanism. The expressions of Mist1 in patients with colitis tissue were up-regulated. Meanwhile, Mist1 mRNA and protein expressions in DSS-induced colitis mice model were also induced and Mist1 mRNA and protein expressions of LPS induced THP-1 cell were also up-regulated. we found Mist1 human protein promoted inflammation in DSS-induced colitis mice by NLRP3. So, we up-regulated Mist1 expression and over-expression of Mist1 promoted IL-1β and NLRP3 protein expression levels in vitro model. However, down-regulation of Mist1 suppressed IL-1β and NLRP3 protein expression levels in vitro model. Next, SNAI1 is a shooting point of Mist1 in the effects of Mist1 in colitis. The inhibition of SNAI1 reduced the effects of Mist1 on NLRP3 inflammasome in vitro model. Activation of SNAI1 induced the effects of Mist1 on NLRP3 inflammasome in vitro model. Lastly, anti-SNAI1 human protein lowered the effects of Mist1 human protein on NLRP3 inflammasome in DSS-induced colitis mice. We demonstrated that Mist1 promoted inflammation in colitis model via NLRP3 inflammasome by SNAI1, whereas the absence of these macrophages led to a significant improvement in colitis treatment.
Collapse
Affiliation(s)
- Tao Wang
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| | - Wenxiang Liu
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Chenyang Li
- Medical School of Chinese PLA, Beijing 100835, China
| | - Guowei Si
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Zhimin Liang
- Medical School of Chinese PLA, Beijing 100835, China
| | - Jian Yin
- Department of Gastroenterology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
26
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
27
|
Rashid DJ, Chapman SC. The long and the short of tails. Dev Dyn 2021; 250:1229-1235. [DOI: 10.1002/dvdy.311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dana J. Rashid
- Department of Microbiology and Immunology Montana State University Bozeman Montana USA
| | - Susan C. Chapman
- Department of Biological Sciences Clemson University Clemson South Carolina USA
| |
Collapse
|
28
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
29
|
Guibentif C, Griffiths JA, Imaz-Rosshandler I, Ghazanfar S, Nichols J, Wilson V, Göttgens B, Marioni JC. Diverse Routes toward Early Somites in the Mouse Embryo. Dev Cell 2021; 56:141-153.e6. [PMID: 33308481 PMCID: PMC7808755 DOI: 10.1016/j.devcel.2020.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
Somite formation is foundational to creating the vertebrate segmental body plan. Here, we describe three transcriptional trajectories toward somite formation in the early mouse embryo. Precursors of the anterior-most somites ingress through the primitive streak before E7 and migrate anteriorly by E7.5, while a second wave of more posterior somites develops in the vicinity of the streak. Finally, neuromesodermal progenitors (NMPs) are set aside for subsequent trunk somitogenesis. Single-cell profiling of T-/- chimeric embryos shows that the anterior somites develop in the absence of T and suggests a cell-autonomous function of T as a gatekeeper between paraxial mesoderm production and the building of the NMP pool. Moreover, we identify putative regulators of early T-independent somites and challenge the T-Sox2 cross-antagonism model in early NMPs. Our study highlights the concept of molecular flexibility during early cell-type specification, with broad relevance for pluripotent stem cell differentiation and disease modeling.
Collapse
Affiliation(s)
- Carolina Guibentif
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK; Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Jonathan A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of the Biological Sciences, University of Edinburgh, EH16 4UU Edinburgh, UK.
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, European Molecular Biology Laboratory, EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| |
Collapse
|
30
|
Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Rep 2020; 33:108311. [PMID: 33113369 PMCID: PMC7653682 DOI: 10.1016/j.celrep.2020.108311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.
Collapse
|