1
|
Mallick K, Khan MF, Banerjee S. The anxiolytic effects of cannabinoids: A comprehensive review. Pharmacol Biochem Behav 2024; 243:173828. [PMID: 39032530 DOI: 10.1016/j.pbb.2024.173828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cannabinoids, notably cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), have emerged as promising candidates for anxiety disorder treatment, supported by both preclinical and clinical evidence. CBD exhibits notable anxiolytic effects with a favourable safety profile, though concerns regarding mild side effects and drug interactions remain. Conversely, THC, the primary psychoactive compound, presents a range of side effects, underscoring the importance of careful dosage management and individualized treatment strategies. So far there are no FDA approved cannabinoid medications for anxiety. The review highlights challenges in cannabinoid research, including dosage variability, variable preclinical data, and limited long-term data. Despite these limitations, cannabinoids represent a promising avenue for anxiety management, with the potential for further optimization in formulation, dosing protocols, and consideration of interactions with conventional therapies. Addressing these challenges could pave the way for novel and personalized approaches to treating anxiety disorders using cannabinoid-based therapies.
Collapse
Affiliation(s)
- Keya Mallick
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mohd Faiz Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Albani S, Eswaran VSB, Piergentili A, de Souza PCT, Lampert A, Rossetti G. Depletion of membrane cholesterol modifies structure, dynamic and activation of Na v1.7. Int J Biol Macromol 2024; 278:134219. [PMID: 39097041 DOI: 10.1016/j.ijbiomac.2024.134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Cholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.
Collapse
Affiliation(s)
- Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany
| | | | - Alessia Piergentili
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Paulo Cesar Telles de Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale, Supérieure de Lyon, 46 All'ee d'Italie, 69364 Lyon, France
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Hollingworth D, Thomas F, Page DA, Fouda MA, De Castro RLR, Sula A, Mykhaylyk VB, Kelly G, Ulmschneider MB, Ruben PC, Wallace BA. Structural basis for the rescue of hyperexcitable cells by the amyotrophic lateral sclerosis drug Riluzole. Nat Commun 2024; 15:8426. [PMID: 39341837 PMCID: PMC11438954 DOI: 10.1038/s41467-024-52539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Neuronal hyperexcitability is a key element of many neurodegenerative disorders including the motor neuron disease Amyotrophic Lateral Sclerosis (ALS), where it occurs associated with elevated late sodium current (INaL). INaL results from incomplete inactivation of voltage-gated sodium channels (VGSCs) after their opening and shapes physiological membrane excitability. However, dysfunctional increases can cause hyperexcitability-associated diseases. Here we reveal the atypical binding mechanism which explains how the neuroprotective ALS-treatment drug riluzole stabilises VGSCs in their inactivated state to cause the suppression of INaL that leads to reversed cellular overexcitability. Riluzole accumulates in the membrane and enters VGSCs through openings to their membrane-accessible fenestrations. Riluzole binds within these fenestrations to stabilise the inactivated channel state, allowing for the selective allosteric inhibition of INaL without the physical block of Na+ conduction associated with traditional channel pore binding VGSC drugs. We further demonstrate that riluzole can reproduce these effects on a disease variant of the non-neuronal VGSC isoform Nav1.4, where pathologically increased INaL is caused directly by mutation. Overall, we identify a model for VGSC inhibition that produces effects consistent with the inhibitory action of riluzole observed in models of ALS. Our findings will aid future drug design and supports research directed towards riluzole repurposing.
Collapse
Affiliation(s)
- David Hollingworth
- School of Natural Sciences, Birkbeck University of London, London, United Kingdom
| | - Frances Thomas
- School of Natural Sciences, Birkbeck University of London, London, United Kingdom
| | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Raquel Lopez-Rios De Castro
- Department of Chemistry, King's College London, London, United Kingdom
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, United Kingdom
| | - Altin Sula
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Vitaliy B Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, London, UK
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - B A Wallace
- School of Natural Sciences, Birkbeck University of London, London, United Kingdom.
| |
Collapse
|
4
|
Hassan MT, Tayara H, Chong KT. NaII-Pred: An ensemble-learning framework for the identification and interpretation of sodium ion inhibitors by fusing multiple feature representation. Comput Biol Med 2024; 178:108737. [PMID: 38879934 DOI: 10.1016/j.compbiomed.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
High-affinity ligand peptides for ion channels are essential for controlling the flow of ions across the plasma membrane. These peptides are now being investigated as possible therapeutic possibilities for a variety of illnesses, including cancer and cardiovascular disease. So, the identification and interpretation of ligand peptide inhibitors to control ion flow across cells become pivotal for exploration. In this work, we developed an ensemble-based model, NaII-Pred, for the identification of sodium ion inhibitors. The ensemble model was trained, tested, and evaluated on three different datasets. The NaII-Pred method employs six different descriptors and a hybrid feature set in conjunction with five conventional machine learning classifiers to create 35 baseline models. Through an ensemble approach, the top five baseline models trained on the hybrid feature set were integrated to yield the final predictive model, NaII-Pred. Our proposed model, NaII-Pred, outperforms the baseline models and the current predictors on both datasets. We believe NaII-Pred will play a critical role in screening and identifying potential sodium ion inhibitors and will be an invaluable tool.
Collapse
Affiliation(s)
- Mir Tanveerul Hassan
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
5
|
Shin HJ, Ko A, Kim SH, Lee JS, Kang HC. Unusual Voltage-Gated Sodium and Potassium Channelopathies Related to Epilepsy. J Clin Neurol 2024; 20:402-411. [PMID: 38951973 PMCID: PMC11220354 DOI: 10.3988/jcn.2023.0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE There is extensive literature on monogenic epilepsies caused by mutations in familiar channelopathy genes such as SCN1A. However, information on other less-common channelopathy genes is scarce. This study aimed to explore the genetic and clinical characteristics of patients diagnosed with unusual voltage-gated sodium and potassium channelopathies related to epilepsy. METHODS This observational, retrospective study analyzed pediatric patients with epilepsy who carried pathogenic variants of unusual voltage-gated sodium and potassium channelopathy genes responsible for seizure-associated phenotypes. Targeted next-generation sequencing (NGS) panel tests were performed between November 2016 and June 2022 at Severance Children's Hospital, Seoul, South Korea. Clinical characteristics and the treatment responses to different types of antiseizure medications were further analyzed according to different types of gene mutation. RESULTS This study included 15 patients with the following unusual voltage-gated sodium and potassium channelopathy genes: SCN3A (n=1), SCN4A (n=1), KCNA1 (n=1), KCNA2 (n=4), KCNB1 (n=6), KCNC1 (n=1), and KCNMA1 (n=1). NGS-based genetic testing identified 13 missense mutations (87%), 1 splice-site variant (7%), and 1 copy-number variant (7%). Developmental and epileptic encephalopathy was diagnosed in nine (60%) patients. Seizure freedom was eventually achieved in eight (53%) patients, whereas seizures persisted in seven (47%) patients. CONCLUSIONS Our findings broaden the genotypic and phenotypic spectra of less-common voltage-gated sodium and potassium channelopathies associated with epilepsy.
Collapse
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Kalsoom I, Shehzadi K, Li HS, Wen HL, Yu MJ. Unraveling the Mechanisms of Cannabidiol's Pharmacological Actions: A Comprehensive Research Overview. Top Curr Chem (Cham) 2024; 382:20. [PMID: 38829467 DOI: 10.1007/s41061-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.
Collapse
Affiliation(s)
- Iqra Kalsoom
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Han-Sheng Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Hong-Liang Wen
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Ming-Jia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| |
Collapse
|
7
|
Page DA, Ruben PC. Cannabidiol potentiates hyperpolarization-activated cyclic nucleotide-gated (HCN4) channels. J Gen Physiol 2024; 156:e202313505. [PMID: 38652080 PMCID: PMC11040500 DOI: 10.1085/jgp.202313505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to β-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.
Collapse
Affiliation(s)
- Dana A. Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
8
|
Mancini M, Calculli A, Di Martino D, Pisani A. Interplay between endocannabinoids and dopamine in the basal ganglia: implications for pain in Parkinson's disease. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:33. [PMID: 38745258 PMCID: PMC11094869 DOI: 10.1186/s44158-024-00169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Pain is a complex phenomenon, and basal ganglia circuitry integrates many aspects of pain including motor, emotional, autonomic, and cognitive responses. Perturbations in dopamine (DA) signaling are implicated in the pathogenesis of chronic pain due to its involvement in both pain perception and relief. Several lines of evidence support the role of endocannabinoids (eCBs) in the regulation of many electrical and chemical aspects of DAergic neuron function including excitability, synaptic transmission, integration, and plasticity. However, eCBs play an even more intricate and intimate relationship with DA, as indicated by the adaptive changes in the eCB system following DA depletion. Although the precise mechanisms underlying DA control on pain are not fully understood, given the high correlation of eCB and DAergic system, it is conceivable that eCBs may be part of these mechanisms.In this brief survey, we describe the reciprocal regulation of eCB-DA neurotransmission with a particular emphasis on the actions of eCBs on ionic and synaptic signaling in DAergic neurons mediated by CB receptors or independent on them. Furthermore, we analyze the eCB-DA imbalance which characterizes pain condition and report the implications of reduced DA levels for pain in Parkinson's disease. Lastly, we discuss the potential of the eCB-DA system in the development of future therapeutic strategies for the treatment of pain.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy
| | - Alessandra Calculli
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy
- IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Deborah Di Martino
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy
- IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, c/o Mondino Foundation Via Mondino, 2, Pavia, 27100, Italy.
- IRCCS Mondino Foundation, Pavia, 27100, Italy.
| |
Collapse
|
9
|
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, Jiang D. Structural mechanism of voltage-gated sodium channel slow inactivation. Nat Commun 2024; 15:3691. [PMID: 38693179 PMCID: PMC11063143 DOI: 10.1038/s41467-024-48125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Wright NJD. A review of the direct targets of the cannabinoids cannabidiol, Δ9-tetrahydrocannabinol, N-arachidonoylethanolamine and 2-arachidonoylglycerol. AIMS Neurosci 2024; 11:144-165. [PMID: 38988890 PMCID: PMC11230856 DOI: 10.3934/neuroscience.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Marijuana has been used by humans for thousands of years for both medicinal and recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 1960s, the structure of the principal psychoactive ingredient Δ9-tetrahydrocannabinol was determined, and over the next few decades, two cannabinoid receptors were characterized along with the human endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. This has helped substantially to change society's attitude towards this potential source of useful drugs. However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just due to interactions with the two cannabinoid receptors but by acting directly on many other targets including various G-protein receptors and cation channels, such as the transient receptor potential channels for example. This mini-review attempts to survey the effects of these 4 important cannabinoids on these currently identified targets.
Collapse
|
11
|
Ghovanloo MR, Effraim PR, Tyagi S, Zhao P, Dib-Hajj SD, Waxman SG. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Commun Biol 2024; 7:120. [PMID: 38263462 PMCID: PMC10805714 DOI: 10.1038/s42003-024-05781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Cannabinol (CBN), an incompletely understood metabolite for ∆9-tetrahydrocannabinol, has been suggested as an analgesic. CBN interacts with endocannabinoid (CB) receptors, but is also reported to interact with non-CB targets, including various ion channels. We assessed CBN effects on voltage-dependent sodium (Nav) channels expressed heterologously and in native dorsal root ganglion (DRG) neurons. Our results indicate that CBN is a functionally-selective, but structurally-non-selective Nav current inhibitor. CBN's main effect is on slow inactivation. CBN slows recovery from slow-inactivated states, and hyperpolarizes steady-state inactivation, as channels enter deeper and slower inactivated states. Multielectrode array recordings indicate that CBN attenuates DRG neuron excitability. Voltage- and current-clamp analysis of freshly isolated DRG neurons via our automated patch-clamp platform confirmed these findings. The inhibitory effects of CBN on Nav currents and on DRG neuron excitability add a new dimension to its actions and suggest that this cannabinoid may be useful for neuropathic pain.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
12
|
Pökl M, Sridhar A, Frampton DJA, Linhart VA, Delemotte L, Liin SI. Subtype-specific modulation of human K V 7 channels by the anticonvulsant cannabidiol through a lipid-exposed pore-domain site. Br J Pharmacol 2023; 180:2956-2972. [PMID: 37377025 DOI: 10.1111/bph.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) is used clinically as an anticonvulsant. Its precise mechanism of action has remained unclear. CBD was recently demonstrated to enhance the activity of the neuronal KV 7.2/7.3 channel, which may be one important contributor to CBD anticonvulsant effect. Curiously, CBD inhibits the closely related cardiac KV 7.1/KCNE1 channel. Whether and how CBD affects other KV 7 subtypes remains uninvestigated and the CBD interaction sites mediating these diverse effects remain unknown. EXPERIMENTAL APPROACH Here, we used electrophysiology, molecular dynamics simulations, molecular docking and site-directed mutagenesis to address these questions. KEY RESULTS We found that CBD modulates the activity of all human KV 7 subtypes and that the effects are subtype dependent. CBD enhanced the activity of KV 7.2-7.5 subtypes, seen as a V50 shift towards more negative voltages or increased maximum conductance. In contrast, CBD inhibited the KV 7.1 and KV 7.1/KCNE1 channels, seen as a V50 shift towards more positive voltages and reduced conductance. In KV 7.2 and KV 7.4, we propose a CBD interaction site at the subunit interface in the pore domain that overlaps with the interaction site of other compounds, notably the anticonvulsant retigabine. However, CBD relies on other residues for its effects than the conserved tryptophan that is critical for retigabine effects. We propose a similar, though not identical CBD site in KV 7.1, with a non-conserved phenylalanine being important. CONCLUSIONS AND IMPLICATIONS We identify novel targets of CBD, contributing to a better understanding of CBD clinical effects and provide mechanistic insights into how CBD modulates different KV 7 subtypes.
Collapse
Affiliation(s)
- Michael Pökl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Damon J A Frampton
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Veronika A Linhart
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Bosquez-Berger T, Gudorf JA, Kuntz CP, Desmond JA, Schlebach JP, VanNieuwenhze MS, Straiker A. Structure-Activity Relationship Study of Cannabidiol-Based Analogs as Negative Allosteric Modulators of the μ-Opioid Receptor. J Med Chem 2023; 66:9466-9494. [PMID: 37437224 PMCID: PMC11299522 DOI: 10.1021/acs.jmedchem.3c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The US faces an unprecedented surge in fatal drug overdoses. Naloxone, the only antidote for opiate overdose, competes at the mu opioid receptor (μOR) orthosteric site. Naloxone struggles against fentanyl-class synthetic opioids that now cause ∼80% of deaths. Negative allosteric modulators (NAMs) targeting secondary sites may noncompetitively downregulate μOR activation. (-)-Cannabidiol ((-)-CBD) is a candidate μOR NAM. To explore its therapeutic potential, we evaluated the structure-activity relationships among CBD analogs to identify NAMs with increased potency. Using a cyclic AMP assay, we characterize reversal of μOR activation by 15 CBD analogs, several of which proved more potent than (-)-CBD. Comparative docking investigations suggest that potent compounds interact with a putative allosteric pocket to stabilize the inactive μOR conformation. Finally, these compounds enhance naloxone displacement of fentanyl from the orthosteric site. Our results suggest that CBD analogs offer considerable potential for the development of next-generation antidotes for opioid overdose.
Collapse
Affiliation(s)
- Taryn Bosquez-Berger
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, United States
| | - Jessica A Gudorf
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jacob A Desmond
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jonathan P Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Alex Straiker
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Huang J, Fan X, Jin X, Jo S, Zhang HB, Fujita A, Bean BP, Yan N. Cannabidiol inhibits Na v channels through two distinct binding sites. Nat Commun 2023; 14:3613. [PMID: 37330538 PMCID: PMC10276812 DOI: 10.1038/s41467-023-39307-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychoactive phytocannabinoid in cannabis, is an effective treatment for some forms of epilepsy and pain. At high concentrations, CBD interacts with a huge variety of proteins, but which targets are most relevant for clinical actions is still unclear. Here we show that CBD interacts with Nav1.7 channels at sub-micromolar concentrations in a state-dependent manner. Electrophysiological experiments show that CBD binds to the inactivated state of Nav1.7 channels with a dissociation constant of about 50 nM. The cryo-EM structure of CBD bound to Nav1.7 channels reveals two distinct binding sites. One is in the IV-I fenestration near the upper pore. The other binding site is directly next to the inactivated "wedged" position of the Ile/Phe/Met (IFM) motif on the short linker between repeats III and IV, which mediates fast inactivation. Consistent with producing a direct stabilization of the inactivated state, mutating residues in this binding site greatly reduced state-dependent binding of CBD. The identification of this binding site may enable design of compounds with improved properties compared to CBD itself.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Hanxiong Bear Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Ghovanloo MR, Arnold JC, Ruben PC. Editorial: Cannabinoid interactions with ion channels, receptors, and the bio-membrane. Front Physiol 2023; 14:1211230. [PMID: 37228821 PMCID: PMC10203607 DOI: 10.3389/fphys.2023.1211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT, United States
| | - Jonathon C. Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
16
|
Niloy N, Hediyal TA, Vichitra C, Sonali S, Chidambaram SB, Gorantla VR, Mahalakshmi AM. Effect of Cannabis on Memory Consolidation, Learning and Retrieval and Its Current Legal Status in India: A Review. Biomolecules 2023; 13:biom13010162. [PMID: 36671547 PMCID: PMC9855787 DOI: 10.3390/biom13010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Cannabis is one of the oldest crops grown, traditionally held religious attachments in various cultures for its medicinal use much before its introduction to Western medicine. Multiple preclinical and clinical investigations have explored the beneficial effects of cannabis in various neurocognitive and neurodegenerative diseases affecting the cognitive domains. Tetrahydrocannabinol (THC), the major psychoactive component, is responsible for cognition-related deficits, while cannabidiol (CBD), a non-psychoactive phytocannabinoid, has been shown to elicit neuroprotective activity. In the present integrative review, the authors focus on the effects of cannabis on the different cognitive domains, including learning, consolidation, and retrieval. The present study is the first attempt in which significant focus has been imparted on all three aspects of cognition, thus linking to its usage. Furthermore, the investigators have also depicted the current legal position of cannabis in India and the requirement for reforms.
Collapse
Affiliation(s)
- Nandi Niloy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Anatomical Science, St. George’s University, University Centre, St. Georges FZ818, Grenada
- Correspondence: (V.R.G.); (A.M.M.)
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Correspondence: (V.R.G.); (A.M.M.)
| |
Collapse
|
17
|
Reddy DS. Therapeutic and clinical foundations of cannabidiol therapy for difficult-to-treat seizures in children and adults with refractory epilepsies. Exp Neurol 2023; 359:114237. [PMID: 36206806 DOI: 10.1016/j.expneurol.2022.114237] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Novel and effective antiseizure medications are needed to treat refractory and rare forms of epilepsy. Cannabinoids, which are obtained from the cannabis plant, have a long history of medical use, including for neurologic conditions. In 2018, the US Food and Drug Administration approved the first phytocannabinoid, cannabidiol (CBD, Epidiolex), which is now indicated for severe seizures associated with three rare forms of developmental and epileptic encephalopathy: Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. Compelling evidence supports the efficacy of CBD in experimental models and patients with epilepsy. In randomized clinical trials, highly-purified CBD has demonstrated efficacy with an acceptable safety profile in children and adults with difficult-to-treat seizures. Although the underlying antiseizure mechanisms of CBD in humans have not yet been elucidated, the identification of novel antiseizure targets of CBD preclinically indicates multimodal mechanisms that include non-cannabinoid pathways. In addition to antiseizure effects, CBD possesses strong anti-inflammatory and neuroprotective activities, which might contribute to protective effects in epilepsy and other conditions. This article provides a succinct overview of therapeutic approaches and clinical foundations of CBD, emphasizing the clinical utility of CBD for the treatment of seizures associated with refractory and rare epilepsies. CBD has shown to be a safe and effective antiseizure medicine, demonstrating a broad spectrum of efficacy across multiple seizure types, including those associated with severe epilepsies with childhood onset. Despite such promise, there are many perils with CBD that hampers its widespread use, including limited understanding of pharmacodynamics, limited exposure-response relationship, limited information for seizure freedom with continued use, complex pharmacokinetics with drug interactions, risk of adverse effects, and lack of expert therapeutic guidelines. These scientific issues need to be resolved by further investigations, which would decide the unique role of CBD in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University, Bryan, TX, USA; Engineering Medicine, Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX, USA; Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Milligan CJ, Anderson LL, McGregor IS, Arnold JC, Petrou S. Beyond CBD: Inhibitory effects of lesser studied phytocannabinoids on human voltage-gated sodium channels. Front Physiol 2023; 14:1081186. [PMID: 36891145 PMCID: PMC9986306 DOI: 10.3389/fphys.2023.1081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Cannabis contains cannabidiol (CBD), the main non-psychoactive phytocannabinoid, but also many other phytocannabinoids that have therapeutic potential in the treatment of epilepsy. Indeed, the phytocannabinoids cannabigerolic acid (CBGA), cannabidivarinic acid (CBDVA), cannabichromenic acid (CBCA) and cannabichromene (CBC) have recently been shown to have anti-convulsant effects in a mouse model of Dravet syndrome (DS), an intractable form of epilepsy. Recent studies demonstrate that CBD inhibits voltage-gated sodium channel function, however, whether these other anti-convulsant phytocannabinoids affect these classic epilepsy drug-targets is unknown. Voltage-gated sodium (NaV) channels play a pivotal role in initiation and propagation of the neuronal action potential and NaV1.1, NaV1.2, NaV1.6 and NaV1.7 are associated with the intractable epilepsies and pain conditions. Methods: In this study, using automated-planar patch-clamp technology, we assessed the profile of the phytocannabinoids CBGA, CBDVA, cannabigerol (CBG), CBCA and CBC against these human voltage-gated sodium channels subtypes expressed in mammalian cells and compared the effects to CBD. Results: CBD and CBGA inhibited peak current amplitude in the low micromolar range in a concentration-dependent manner, while CBG, CBCA and CBC revealed only modest inhibition for this subset of sodium channels. CBDVA inhibited NaV1.6 peak currents in the low micromolar range in a concentration-dependent fashion, while only exhibiting modest inhibitory effects on NaV1.1, NaV1.2, and NaV1.7 channels. CBD and CBGA non-selectively inhibited all channel subtypes examined, whereas CBDVA was selective for NaV1.6. In addition, to better understand the mechanism of this inhibition, we examined the biophysical properties of these channels in the presence of each cannabinoid. CBD reduced NaV1.1 and NaV1.7 channel availability by modulating the voltage-dependence of steady-state fast inactivation (SSFI, V0.5 inact), and for NaV1.7 channel conductance was reduced. CBGA also reduced NaV1.1 and NaV1.7 channel availability by shifting the voltage-dependence of activation (V0.5 act) to a more depolarized potential, and for NaV1.7 SSFI was shifted to a more hyperpolarized potential. CBDVA reduced channel availability by modifying conductance, SSFI and recovery from SSFI for all four channels, except for NaV1.2, where V0.5 inact was unaffected. Discussion: Collectively, these data advance our understanding of the molecular actions of lesser studied phytocannabinoids on voltage-gated sodium channel proteins.
Collapse
Affiliation(s)
- Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Lyndsey L Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Choudhury K, Howard RJ, Delemotte L. An α-π transition in S6 shapes the conformational cycle of the bacterial sodium channel NavAb. J Gen Physiol 2022; 155:213748. [PMID: 36515966 PMCID: PMC9754703 DOI: 10.1085/jgp.202213214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels play an important role in electrical signaling in excitable cells. In response to changes in membrane potential, they cycle between nonconducting and conducting conformations. With recent advances in structural biology, structures of sodium channels have been captured in several distinct conformations, which are thought to represent different functional states. However, it has been difficult to capture the intrinsically transient open state. We recently showed that a proposed open state of the bacterial sodium channel NavMs was not conductive and that a conformational change involving a transition to a π-helix in the pore-lining S6 helix converted this structure into a conducting state. However, the relevance of this structural feature in other sodium channels, and its implications for the broader gating cycle, remained unclear. Here, we propose a comparable open state of another class of bacterial channel from Aliarcobacter butzleri (NavAb) with characteristic pore hydration, ion permeation, and drug binding properties. Furthermore, we show that a π-helix transition can lead to pore opening and that such a conformational change blocks fenestrations in the inner helix bundle. We also discover that a region in the C-terminal domain can undergo a disordering transition proposed to be important for pore opening. These results support a role for a π-helix transition in the opening of NavAb, enabling new proposals for the structural annotation and drug modulation mechanisms in this important sodium channel model.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Correspondence to Lucie Delemotte:
| |
Collapse
|
20
|
Bigsby S, Neapetung J, Campanucci VA. Voltage-gated sodium channels in diabetic sensory neuropathy: Function, modulation, and therapeutic potential. Front Cell Neurosci 2022; 16:994585. [PMID: 36467605 PMCID: PMC9713017 DOI: 10.3389/fncel.2022.994585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Voltage-gated sodium channels (Na V ) are the main contributors to action potential generation and essential players in establishing neuronal excitability. Na V channels have been widely studied in pain pathologies, including those that develop during diabetes. Diabetic sensory neuropathy (DSN) is one of the most common complications of the disease. DSN is the result of sensory nerve damage by the hyperglycemic state, resulting in a number of debilitating symptoms that have a significant negative impact in the quality of life of diabetic patients. Among those symptoms are tingling and numbness of hands and feet, as well as exacerbated pain responses to noxious and non-noxious stimuli. DSN is also a major contributor to the development of diabetic foot, which may lead to lower limb amputations in long-term diabetic patients. Unfortunately, current treatments fail to reverse or successfully manage DSN. In the current review we provide an updated report on Na V channels including structure/function and contribution to DSN. Furthermore, we summarize current research on the therapeutic potential of targeting Na V channels in pain pathologies, including DSN.
Collapse
Affiliation(s)
| | | | - Verónica A. Campanucci
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Ghovanloo MR, Dib-Hajj SD, Goodchild SJ, Ruben PC, Waxman SG. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol. Front Physiol 2022; 13:1066455. [PMID: 36439273 PMCID: PMC9691960 DOI: 10.3389/fphys.2022.1066455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Phytocannabinoids, found in the plant, Cannabis sativa, are an important class of natural compounds with physiological effects. These compounds can be generally divided into two classes: psychoactive and non-psychoactive. Those which do not impart psychoactivity are assumed to predominantly function via endocannabinoid receptor (CB) -independent pathways and molecular targets, including other receptors and ion channels. Among these targets, the voltage-gated sodium (Nav) channels are particularly interesting due to their well-established role in electrical signalling in the nervous system. The interactions between the main non-psychoactive phytocannabinoid, cannabidiol (CBD), and Nav channels were studied in detail. In addition to CBD, cannabigerol (CBG), is another non-psychoactive molecule implicated as a potential therapeutic for several conditions, including pain via interactions with Nav channels. In this mini review, we provide an update on the interactions of Nav channels with CBD and CBG.
Collapse
Affiliation(s)
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
22
|
Cannabidiol as a modulator of α7 nicotinic receptors. Cell Mol Life Sci 2022; 79:564. [DOI: 10.1007/s00018-022-04600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/03/2022]
|
23
|
Ghovanloo MR, Estacion M, Higerd-Rusli GP, Zhao P, Dib-Hajj S, Waxman SG. Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability. Br J Pharmacol 2022; 179:4010-4030. [PMID: 35297036 DOI: 10.1111/bph.15833] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabigerol (CBG), a non-psychotropic phytocannabinoid and a precursor of ∆9 -tetrahydrocannabinol and cannabidiol, has been suggested to act as an analgesic. A previous study reported that CBG (10 μM) blocks voltage-gated sodium (Nav ) currents in CNS neurons, although the underlying mechanism is not well understood. Genetic and functional studies have validated Nav 1.7 channels as an opportune target for analgesic drug development. The effects of CBG on Nav 1.7 channels, which may contribute to its analgesic properties, have not been previously investigated. EXPERIMENTAL APPROACH To determine the effects of CBG on Nav channels, we used stably transfected HEK cells and primary dorsal root ganglion (DRG) neurons to characterize compound effects using experimental and computational techniques. These included patch-clamp, multielectrode array, and action potential modelling. KEY RESULTS CBG is a ~10-fold state-dependent Nav channel inhibitor (KI -KR : ~2-20 μM) with an average Hill-slope of ~2. We determined that, at lower concentrations, CBG predominantly blocks sodium Gmax and slows recovery from inactivation. However, as the concentration is increased, CBG also induces a hyperpolarizing shift in the half-voltage of inactivation. Our modelling and multielectrode array recordings suggest that CBG attenuates DRG excitability. CONCLUSIONS AND IMPLICATIONS Inhibition of Nav 1.7 channels in DRG neurons may underlie CBG-induced neuronal hypoexcitability. As most Nav 1.7 channels are inactivated at the resting membrane potential of DRG neurons, they are more likely to be inhibited by lower CBG concentrations, suggesting functional selectivity against Nav 1.7 channels, compared with other Nav channels (via Gmax block).
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Grant P Higerd-Rusli
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
24
|
Herrera-Bravo J, Farías JG, Contreras FP, Herrera-Belén L, Beltrán JF. PEP-PREDNa+: A web server for prediction of highly specific peptides targeting voltage-gated Na+ channels using machine learning techniques. Comput Biol Med 2022; 145:105414. [DOI: 10.1016/j.compbiomed.2022.105414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
|
25
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
26
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson's disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
27
|
Xu F, Sun G, Peng Z, Liu J, Li Z, Yan J. Cannabidiol promotes apoptosis of osteosarcoma cells in vitro and in vivo by activating the SP1-CBX2 axis. Am J Transl Res 2022; 14:1188-1203. [PMID: 35273722 PMCID: PMC8902565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumor that often occurs in children, adolescents, and young adults. Cannabidiol plays an essential role in cancer treatment. However, its effects on osteosarcoma have not yet been addressed. In the present study, we investigated the pharmacological effects of cannabidiol on osteosarcoma. We found that cannabidiol effectively suppressed the proliferation and colony formation of osteosarcoma cells. Further studies showed that cannabidiol significantly promoted cell apoptosis and changes in cell apoptosis-related gene proteins in vitro. In addition, cannabidiol administration inhibited tumor growth and promoted the apoptosis of osteosarcoma cells in a mouse xenograft model. The in vitro study also demonstrated that SP1 contributes to chromobox protein homolog 2 (CBX2) reduction in cannabidiol-treated MG63 and HOS cells, and that cannabidiol may recruit SP1 into the CBX2 promoter regions to downregulate CBX2 expression at the transcriptional level and promote osteosarcoma cell apoptosis. Further, the result showed that cannabidiol suppressed osteosarcoma cell migration. In summary, cannabidiol effectively promoted the apoptosis of osteosarcoma cells in vitro and in vivo and suppressed tumor growth in a mouse xenograft model by regulating the SP1-CBX2 axis. This finding provides novel therapeutic strategies for osteosarcoma in the clinic.
Collapse
Affiliation(s)
- Fangxing Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of EducationHarbin 150081, Heilongjiang Province, China
| | - Guiyuan Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical UniversityHarbin 150081, Heilongjiang Province, China
| | - Zhibin Peng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of EducationHarbin 150081, Heilongjiang Province, China
| | - Jingsong Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of EducationHarbin 150081, Heilongjiang Province, China
| | - Zecheng Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| |
Collapse
|
28
|
Bruno A, Dolcetti E, Centonze D. Theoretical and Therapeutic Implications of the Spasticity-Plus Syndrome Model in Multiple Sclerosis. Front Neurol 2022; 12:802918. [PMID: 35197915 PMCID: PMC8859110 DOI: 10.3389/fneur.2021.802918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
In patients with multiple sclerosis (MS), a typical pattern of muscle tone alteration, known as spasticity, is frequently observed in combination with other signs or symptoms such as spasms, cramps, pain, bladder dysfunction, sleep disturbances, fatigue, and tremor. Recently, the concept of spasticity-plus syndrome (SPS) has been proposed to take into account the frequent coexistence of all these complaints in patients with MS and a common pathophysiological basis for this putative new clinical entity has been proposed. Muscle tone, sleep, bladder function, and the pain pathway are controlled by cannabinoid CB1 (CB1R) and CB2 receptors (CB2R) that are particularly enriched in the brainstem. Axons with smaller diameters are particularly susceptible to conduction block and the irritative, ephaptic, consequences of demyelination and their involvement in the demyelination process caused by MS in the brainstem might underlie the various clinical manifestations of SPS. The adoption of SPS in clinical practice could be useful to improve symptomatic treatments in a significant proportion of patients with MS, possibly limiting the adverse events produced by polypharmacotherapy.
Collapse
Affiliation(s)
- Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Department of Neurorehabilitation, Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Department of Neurorehabilitation, Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Department of Neurorehabilitation, Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- *Correspondence: Diego Centonze
| |
Collapse
|
29
|
Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys J 2022; 121:11-22. [PMID: 34890580 PMCID: PMC8758419 DOI: 10.1016/j.bpj.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A. Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sarah McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Corresponding author
| |
Collapse
|
30
|
Sugaya Y, Kano M. Endocannabinoid-Mediated Control of Neural Circuit Excitability and Epileptic Seizures. Front Neural Circuits 2022; 15:781113. [PMID: 35046779 PMCID: PMC8762319 DOI: 10.3389/fncir.2021.781113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
Research on endocannabinoid signaling has greatly advanced our understanding of how the excitability of neural circuits is controlled in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses excitability by inhibiting glutamate release, while that at inhibitory synapses promotes excitability by inhibiting GABA release, although there are some exceptions in genetically epileptic animal models. In the epileptic brain, the physiological distributions of endocannabinoid signaling molecules are disrupted during epileptogenesis, contributing to the occurrence of spontaneous seizures. However, it is still unknown how endocannabinoid signaling changes during seizures and how the redistribution of endocannabinoid signaling molecules proceeds during epileptogenesis. Recent development of cannabinoid sensors has enabled us to investigate endocannabinoid signaling in much greater spatial and temporal details than before. Application of cannabinoid sensors to epilepsy research has elucidated activity-dependent changes in endocannabinoid signaling during seizures. Furthermore, recent endocannabinoid research has paved the way for the clinical use of cannabidiol for the treatment of refractory epilepsy, such as Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Cannabidiol significantly reduces seizures and is considered to have comparable tolerability to conventional antiepileptic drugs. In this article, we introduce recent advances in research on the roles of endocannabinoid signaling in epileptic seizures and discuss future directions.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- *Correspondence: Masanobu Kano,
| |
Collapse
|
31
|
Lindner JS, Rajayer SR, Martiszus BJ, Smith SM. Cinacalcet inhibition of neuronal action potentials preferentially targets the fast inactivated state of voltage-gated sodium channels. Front Physiol 2022; 13:1066467. [PMID: 36601343 PMCID: PMC9806421 DOI: 10.3389/fphys.2022.1066467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Voltage-gated sodium channel (VGSC) activation is essential for action potential generation in the brain. Allosteric calcium-sensing receptor (CaSR) agonist, cinacalcet, strongly and ubiquitously inhibits VGSC currents in neocortical neurons via an unidentified, G-protein-dependent inhibitory molecule. Here, using whole-cell patch VGSC clamp methods, we investigated the voltage-dependence of cinacalcet-mediated inhibition of VGSCs and the channel state preference of cinacalcet. The rate of inhibition of VGSC currents was accelerated at more depolarized holding potentials. Cinacalcet shifted the voltage-dependence of both fast and slow inactivation of VGSC currents in the hyperpolarizing direction. Utilizing a simple model, the voltage-dependence of VGSC current inhibition may be explained if the affinity of the inhibitory molecule to the channel states follows the sequence: fast-inactivated > slow-inactivated > resting. The state dependence of VGSC current inhibition contributes to the non-linearity of action potential block by cinacalcet. This dynamic and abundant signaling pathway by which cinacalcet regulates VGSC currents provides an important voltage-dependent mechanism for modulating central neuronal excitability.
Collapse
Affiliation(s)
- Jamie S Lindner
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Salil R Rajayer
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Briana J Martiszus
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stephen M Smith
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR, United States.,Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
32
|
Cannabidiol Selectively Binds to the Voltage-Gated Sodium Channel Na v1.4 in Its Slow-Inactivated State and Inhibits Sodium Current. Biomedicines 2021; 9:biomedicines9091141. [PMID: 34572327 PMCID: PMC8465134 DOI: 10.3390/biomedicines9091141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Cannabidiol (CBD), one of the cannabinoids from the cannabis plant, can relieve the myotonia resulting from sodium channelopathy, which manifests as repetitive discharges of muscle membrane. We investigated the binding kinetics of CBD to Nav1.4 channels on the muscle membrane. The binding affinity of CBD to the channel was evaluated using whole-cell recording. The CDOCKER program was employed to model CBD docking onto the Nav1.4 channel to determine its binding sites. Our results revealed no differential inhibition of sodium current by CBD when the channels were in activation or fast inactivation status. However, differential inhibition was observed with a dose-dependent manner after a prolonged period of depolarization, leaving the channel in a slow-inactivated state. Moreover, CBD binds selectively to the slow-inactivated state with a significantly faster binding kinetics (>64,000 M−1 s−1) and a higher affinity (Kd of fast inactivation vs. slow-inactivation: >117.42 μM vs. 51.48 μM), compared to the fast inactivation state. Five proposed CBD binding sites in a bundle crossing region of the Nav1.4 channels pore was identified as Val793, Leu794, Phe797, and Cys759 in domain I/S6, and Ile1279 in domain II/S6. Our findings imply that CBD favorably binds to the Nav1.4 channel in its slow-inactivated state.
Collapse
|
33
|
Depuydt AS, Rihon J, Cheneval O, Vanmeert M, Schroeder CI, Craik DJ, Lescrinier E, Peigneur S, Tytgat J. Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacol Transl Sci 2021; 4:1379-1389. [PMID: 34423272 DOI: 10.1021/acsptsci.1c00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 01/18/2023]
Abstract
T-type calcium (CaV3) channels play a crucial role in the generation and propagation of action potentials in excitable cells and are considered potential drug targets for the treatment of neurological and cardiovascular diseases. Given the limited pharmacological repertoire for these channels, there is a great need for novel potent and selective CaV3 channel inhibitors. In this study, we used Xenopus oocytes to heterologously express CaV3.1 channels and characterized the interaction with a small cyclic peptide, PnCS1. Using molecular modeling, PnCS1 was docked into the cryo-electron microscopy structure of the human CaV3.1 channel and molecular dynamics were performed on the resultant complex. The binding site of the peptide was mapped with the involvement of critical amino acids located in the pore region and fenestrations of the channel. More specifically, we found that PnCS1 reclines in the central cavity of the pore domain of the CaV3.1 channel and resides stably between the selectivity filter and the intracellular gate, blocking the conduction pathway of the channel. Using Multiple Attribute Positional Scanning approaches, we developed a series of PnCS1 analogues. These analogues had a reduced level of inhibition, confirming the importance of specific residues and corroborating our modeling. In summary, functional studies of PnCS1 on the CaV3.1 channel combined with molecular dynamics results provide the basis for understanding the molecular interactions of PnCS1 with CaV3.1 and are fundamental to structure-based drug discovery for treating CaV3 channelopathies.
Collapse
Affiliation(s)
- Anne-Sophie Depuydt
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, Leuven 3000, Belgium
| | - Jérôme Rihon
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Olivier Cheneval
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland Australia
| | - Michiel Vanmeert
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Christina I Schroeder
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland Australia.,National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, 4072 Queensland Australia
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, Leuven 3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, Leuven 3000, Belgium
| |
Collapse
|
34
|
Cannabidiol Inhibition of Murine Primary Nociceptors: Tight Binding to Slow Inactivated States of Na v1.8 Channels. J Neurosci 2021; 41:6371-6387. [PMID: 34131037 DOI: 10.1523/jneurosci.3216-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1 s current injections in control to 1-3 action potentials with 2 μm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [K d (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as -40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.
Collapse
|
35
|
Ghovanloo MR, Ruben PC. Cannabidiol and Sodium Channel Pharmacology: General Overview, Mechanism, and Clinical Implications. Neuroscientist 2021; 28:318-334. [PMID: 34027742 PMCID: PMC9344566 DOI: 10.1177/10738584211017009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels initiate action potentials in excitable tissues. Altering these channels' function can lead to many pathophysiological conditions. Nav channels are composed of several functional and structural domains that could be targeted pharmacologically as potential therapeutic means against various neurological conditions. Mutations in Nav channels have been suggested to underlie various clinical syndromes in different tissues and in association with conditions ranging from epileptic to muscular problems. Treating those mutations that increase the excitability of Nav channels requires inhibitors that could effectively reduce channel firing. The main non-psychotropic constituent of the cannabis plant, cannabidiol (CBD), has recently gained interest as a viable compound to treat some of the conditions that are associated with Nav malfunctions. In this review, we discuss an overview of Nav channels followed by an in-depth description of the interactions of CBD and Nav channels. We conclude with some clinical implications of CBD use against Nav hyperexcitability based on a series of preclinical studies published to date, with a focus on Nav/CBD interactions.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
| | - Peter C Ruben
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
36
|
Ghovanloo MR, Choudhury K, Bandaru TS, Fouda MA, Rayani K, Rusinova R, Phaterpekar T, Nelkenbrecher K, Watkins AR, Poburko D, Thewalt J, Andersen OS, Delemotte L, Goodchild SJ, Ruben PC. Cannabidiol inhibits the skeletal muscle Nav1.4 by blocking its pore and by altering membrane elasticity. J Gen Physiol 2021; 153:211970. [PMID: 33836525 PMCID: PMC8042605 DOI: 10.1085/jgp.202012701] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD's localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada.,Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Koushik Choudhury
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Tagore S Bandaru
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Tejas Phaterpekar
- Department of Molecular Biology and Biochemistry/Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Karen Nelkenbrecher
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Abeline R Watkins
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Damon Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jenifer Thewalt
- Department of Molecular Biology and Biochemistry/Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Samuel J Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
37
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
38
|
Zhorov BS. Structure of Sodium and Calcium Channels
with Ligands. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Martin LJ, Banister SD, Bowen MT. Understanding the complex pharmacology of cannabidiol: Mounting evidence suggests a common binding site with cholesterol. Pharmacol Res 2021; 166:105508. [PMID: 33610721 DOI: 10.1016/j.phrs.2021.105508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Cannabidiol is claimed to bind to a large number of protein targets based on in vitro assays. This suggests opportunities for a wide range of therapeutic applications. On the other hand, the existence of phytochemical 'nuisance compounds' suggests some measure of caution - these compounds are capable of altering membrane biophysical properties and changing protein function without directly contacting a binding site. Like cannabidiol, cholesterol alters membrane properties, but it also binds directly to membrane proteins through abundant cholesterol recognition sites. We present the evidence that cannabidiol and cholesterol may bind to the same site on some proteins. As a starting point for further research, we also used blind docking to show that cannabidiol binds to a cholesterol binding site on the CB1 receptor. Elucidation of the mechanism(s) of action of cannabidiol will assist the prioritisation of in vitro hits across targets, improve the success rate of medicinal chemistry campaigns, and ultimately benefit patient populations by focusing resources on programs with the most translational potential.
Collapse
Affiliation(s)
- Lewis J Martin
- The University of Sydney, Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia; The University of Sydney, Faculty of Science, School of Psychology, NSW, Australia
| | - Samuel D Banister
- The University of Sydney, Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Michael T Bowen
- The University of Sydney, Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia; The University of Sydney, Faculty of Science, School of Psychology, NSW, Australia.
| |
Collapse
|
40
|
Ghovanloo MR, Atallah J, Escudero CA, Ruben PC. Biophysical Characterization of a Novel SCN5A Mutation Associated With an Atypical Phenotype of Atrial and Ventricular Arrhythmias and Sudden Death. Front Physiol 2020; 11:610436. [PMID: 33414724 PMCID: PMC7783455 DOI: 10.3389/fphys.2020.610436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Sudden cardiac death (SCD) is an unexpected death that occurs within an hour of the onset of symptoms. Hereditary primary electrical disorders account for up to 1/3 of all SCD cases in younger individuals and include conditions such as catecholaminergic polymorphic ventricular tachycardia (CPVT). These disorders are caused by mutations in the genes encoding cardiac ion channels, hence they are known as cardiac channelopathies. We identified a novel variant, T1857I, in the C-terminus of Nav1.5 (SCN5A) linked to a family with a CPVT-like phenotype characterized by atrial tachy-arrhythmias and polymorphic ventricular ectopy occurring at rest and with adrenergic stimulation, and a strong family history of SCD. Objective Our goal was to functionally characterize the novel Nav1.5 variant and determine a possible link between channel gating and clinical phenotype. Methods We first used electrocardiogram recordings to visualize the patient cardiac electrical properties. Then, we performed voltage-clamp of transiently transfected CHO cells. Lastly, we used the ventricular/atrial models to visualize gating defects on cardiac excitability. Results Voltage-dependences of both activation and inactivation were right-shifted, the overlap between activation and inactivation predicted increased window currents, the recovery from fast inactivation was slowed, there was no significant difference in late currents, and there was no difference in use-dependent inactivation. The O’Hara-Rudy model suggests ventricular after depolarizations and atrial Grandi-based model suggests a slight prolongation of atrial action potential duration. Conclusion We conclude that T1857I likely causes a net gain-of-function in Nav1.5 gating, which may in turn lead to ventricular after depolarization, predisposing carriers to tachy-arrhythmias.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Joseph Atallah
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carolina A Escudero
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|