1
|
Fahs HZ, Refai FS, Gopinadhan S, Moussa Y, Gan HH, Hunashal Y, Battaglia G, Cipriani PG, Ciancia C, Rahiman N, Kremb S, Xie X, Pearson YE, Butterfoss GL, Maizels RM, Esposito G, Page AP, Gunsalus KC, Piano F. A new class of natural anthelmintics targeting lipid metabolism. Nat Commun 2025; 16:305. [PMID: 39746976 PMCID: PMC11695593 DOI: 10.1038/s41467-024-54965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus. AFA shows significant efficacy in H. polygyrus infected mice. In C. elegans, AFA exposure affects all developmental stages, causing paralysis, impaired mitochondrial respiration, increased reactive oxygen species production and mitochondrial damage. In embryos, AFAs penetrate the eggshell and induce rapid developmental arrest. Genetic and biochemical tests reveal that AFAs inhibit POD-2, encoding an acetyl CoA carboxylase, the rate-limiting enzyme in lipid biosynthesis. These results uncover a new anthelmintic class affecting lipid metabolism.
Collapse
Affiliation(s)
- Hala Zahreddine Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Fathima S Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suma Gopinadhan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yasmine Moussa
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Yamanappa Hunashal
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Gennaro Battaglia
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", 80138, Naples, Italy
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Nabil Rahiman
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stephan Kremb
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Xin Xie
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yanthe E Pearson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Gennaro Esposito
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Fabio Piano
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Turmel-Couture S, Martel PO, Beaulieu L, Lechasseur X, Fotso Dzuna LV, Narbonne P. Bidirectional transfer of a small membrane-impermeable molecule between the Caenorhabditis elegans intestine and germline. J Biol Chem 2024; 300:107963. [PMID: 39510179 DOI: 10.1016/j.jbc.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) is a positive regulator of cell proliferation often upregulated in cancer. Its Caenorhabditis elegans ortholog MPK-1 stimulates germline stem cell (GSC) proliferation nonautonomously from the intestine or somatic gonad. How MPK-1 can perform this task from either of these two tissues however remains unclear. We reasoned that somatic MPK-1 activity could lead to the generation of proproliferative small molecules that could transfer from the intestine and/or somatic gonad to the germline. Here, in support of this hypothesis, we demonstrate that a significant fraction of the small membrane-impermeable fluorescent molecule, 5-carboxyfluorescein, transfers to the germline after its microinjection in the animal's intestine. The larger part of this transfer targets oocytes and requires the germline receptor mediated endocytosis 2 (RME-2) yolk receptor. A minor quantity of the dye is however distributed independently from RME-2 and more widely in the animal, including the distal germline, gonadal sheath, coelomocytes, and hypodermis. We further show that the intestine-to-germline transfer efficiency of this RME-2 independent fraction does not vary together with GSC proliferation rates or MPK-1 activity. Therefore, if germline proliferation was influenced by small membrane-impermeable molecules generated in the intestine, it is unlikely that proliferation would be regulated at the level of molecule transfer rate. Finally, we show that conversely, a similar fraction of germline injected 5-carboxyfluorescein transfers to the intestine, demonstrating transfer bidirectionality. Altogether, our results establish the possibility of an intestine-to-germline signaling axis mediated by small membrane-impermeable molecules that could promote GSC proliferation cell nonautonomously downstream of MPK-1 activity.
Collapse
Affiliation(s)
- Sarah Turmel-Couture
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Pier-Olivier Martel
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Lucie Beaulieu
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Xavier Lechasseur
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | | | - Patrick Narbonne
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.
| |
Collapse
|
3
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in Caenorhabditis elegans. Genetics 2024; 228:iyae114. [PMID: 39028799 PMCID: PMC11457940 DOI: 10.1093/genetics/iyae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Park K, Garde A, Thendral SB, Soh AW, Chi Q, Sherwood DR. De novo lipid synthesis and polarized prenylation drive cell invasion through basement membrane. J Cell Biol 2024; 223:e202402035. [PMID: 39007804 PMCID: PMC11248228 DOI: 10.1083/jcb.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
To breach the basement membrane, cells in development and cancer use large, transient, specialized lipid-rich membrane protrusions. Using live imaging, endogenous protein tagging, and cell-specific RNAi during Caenorhabditis elegans anchor cell (AC) invasion, we demonstrate that the lipogenic SREBP transcription factor SBP-1 drives the expression of the fatty acid synthesis enzymes POD-2 and FASN-1 prior to invasion. We show that phospholipid-producing LPIN-1 and sphingomyelin synthase SMS-1, which use fatty acids as substrates, produce lysosome stores that build the AC's invasive protrusion, and that SMS-1 also promotes protrusion localization of the lipid raft partitioning ZMP-1 matrix metalloproteinase. Finally, we discover that HMG-CoA reductase HMGR-1, which generates isoprenoids for prenylation, localizes to the ER and enriches in peroxisomes at the AC invasive front, and that the final transmembrane prenylation enzyme, ICMT-1, localizes to endoplasmic reticulum exit sites that dynamically polarize to deliver prenylated GTPases for protrusion formation. Together, these results reveal a collaboration between lipogenesis and a polarized lipid prenylation system that drives invasive protrusion formation.
Collapse
Affiliation(s)
- Kieop Park
- Department of Biology, Duke University, Durham, NC, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | | | - Adam W.J. Soh
- Department of Biology, Duke University, Durham, NC, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
5
|
Zhang X, Wang Y, Cai Z, Wan Z, Aihemaiti Y, Tu H. A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway. Front Immunol 2023; 14:1249436. [PMID: 37928537 PMCID: PMC10620905 DOI: 10.3389/fimmu.2023.1249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
6
|
Trimmer KA, Zhao P, Seemann J, Chen SY, Mondal S, Ben-Yakar A, Arur S. Spatial single-cell sequencing of meiosis I arrested oocytes indicates acquisition of maternal transcripts from the soma. Cell Rep 2023; 42:112544. [PMID: 37227820 PMCID: PMC10592488 DOI: 10.1016/j.celrep.2023.112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal RNAs are stored from minutes to decades in oocytes throughout meiosis I arrest in a transcriptionally quiescent state. Recent reports, however, propose a role for nascent transcription in arrested oocytes. Whether arrested oocytes launch nascent transcription in response to environmental or hormonal signals while maintaining the meiosis I arrest remains undetermined. We test this by integrating single-cell RNA sequencing, RNA velocity, and RNA fluorescence in situ hybridization on C. elegans meiosis I arrested oocytes. We identify transcripts that increase as the arrested meiosis I oocyte ages, but rule out extracellular signaling through ERK MAPK and nascent transcription as a mechanism for this increase. We report transcript acquisition from neighboring somatic cells as a mechanism of transcript increase during meiosis I arrest. These analyses provide a deeper view at single-cell resolution of the RNA landscape of a meiosis I arrested oocyte and as it prepares for oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Jacob Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Tolkin T, Mohammad A, Starich TA, Nguyen KCQ, Hall DH, Schedl T, Hubbard EJA, Greenstein D. Innexin function dictates the spatial relationship between distal somatic cells in the Caenorhabditis elegans gonad without impacting the germline stem cell pool. eLife 2022; 11:e74955. [PMID: 36098634 PMCID: PMC9473689 DOI: 10.7554/elife.74955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Gap-junctional signaling mediates myriad cellular interactions in metazoans. Yet, how gap junctions control the positioning of cells in organs is not well understood. Innexins compose gap junctions in invertebrates and affect organ architecture. Here, we investigate the roles of gap-junctions in controlling distal somatic gonad architecture and its relationship to underlying germline stem cells in Caenorhabditis elegans. We show that a reduction of soma-germline gap-junctional activity causes displacement of distal sheath cells (Sh1) towards the distal end of the gonad. We confirm, by live imaging, transmission electron microscopy, and antibody staining, that bare regions-lacking somatic gonadal cell coverage of germ cells-are present between the distal tip cell (DTC) and Sh1, and we show that an innexin fusion protein used in a prior study encodes an antimorphic gap junction subunit that mispositions Sh1. We determine that, contrary to the model put forth in the prior study based on this fusion protein, Sh1 mispositioning does not markedly alter the position of the borders of the stem cell pool nor of the progenitor cell pool. Together, these results demonstrate that gap junctions can control the position of Sh1, but that Sh1 position is neither relevant for GLP-1/Notch signaling nor for the exit of germ cells from the stem cell pool.
Collapse
Affiliation(s)
- Theadora Tolkin
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of MedicineNew YorkUnited States
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
| | - Ariz Mohammad
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - Todd A Starich
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of MedicineThe BronxUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineThe BronxUnited States
| | - Tim Schedl
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - E Jane Albert Hubbard
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of MedicineNew YorkUnited States
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Department of Pathology, NYU Grossman School of MedicineNew YorkUnited States
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
8
|
Li X, Singh N, Miller C, Washington I, Sosseh B, Gordon KL. The C. elegans gonadal sheath Sh1 cells extend asymmetrically over a differentiating germ cell population in the proliferative zone. eLife 2022; 11:e75497. [PMID: 36094368 PMCID: PMC9467509 DOI: 10.7554/elife.75497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The Caenorhabditis elegans adult hermaphrodite germline is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis, and ovulation. Recently, we discovered that the distal Sh1 sheath cells associate with mitotic germ cells as they exit the niche Gordon et al., 2020. Here, we report that these sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other.
Collapse
Affiliation(s)
- Xin Li
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Noor Singh
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Camille Miller
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - India Washington
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Bintou Sosseh
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
9
|
Venzon M, Das R, Luciano DJ, Burnett J, Park HS, Devlin JC, Kool ET, Belasco JG, Hubbard EJA, Cadwell K. Microbial byproducts determine reproductive fitness of free-living and parasitic nematodes. Cell Host Microbe 2022; 30:786-797.e8. [PMID: 35413267 PMCID: PMC9187612 DOI: 10.1016/j.chom.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Trichuris nematodes reproduce within the microbiota-rich mammalian intestine and lay thousands of eggs daily, facilitating their sustained presence in the environment and hampering eradication efforts. Here, we show that bacterial byproducts facilitate the reproductive development of nematodes. First, we employed a pipeline using the well-characterized, free-living nematode C. elegans to identify microbial factors with conserved roles in nematode reproduction. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Additionally, Trichuris muris eggs displayed defective hatching in the presence of fabH- or eutN-deficient E. coli due to reduced arginine or elevated aldehydes, respectively. T. muris reared in gnotobiotic mice colonized with these E. coli mutants displayed morphological defects and failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact the reproductive fitness of distantly related nematodes.
Collapse
Affiliation(s)
- Mericien Venzon
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ritika Das
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Burnett
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hyun Shin Park
- Seegene Inc., Ogeum-ro, Songpa-Gu, Seoul 05548, Republic of Korea
| | - Joseph Cooper Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute, and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - E Jane Albert Hubbard
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Ow MC, Nichitean AM, Hall SE. Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans. eLife 2021; 10:e61459. [PMID: 34236316 PMCID: PMC8291976 DOI: 10.7554/elife.61459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse UniversitySyracuseUnited States
| | | | - Sarah E Hall
- Department of Biology, Syracuse UniversitySyracuseUnited States
| |
Collapse
|
11
|
Mosquera JV, Bacher MC, Priess JR. Nuclear lipid droplets and nuclear damage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009602. [PMID: 34133414 PMCID: PMC8208577 DOI: 10.1371/journal.pgen.1009602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
Fat stored in the form of lipid droplets has long been considered a defining characteristic of cytoplasm. However, recent studies have shown that nuclear lipid droplets occur in multiple cells and tissues, including in human patients with fatty liver disease. The function(s) of stored fat in the nucleus has not been determined, and it is possible that nuclear fat is beneficial in some situations. Conversely, nuclear lipid droplets might instead be deleterious by disrupting nuclear organization or triggering aggregation of hydrophobic proteins. We show here that nuclear lipid droplets occur normally in C. elegans intestinal cells and germ cells, but appear to be associated with damage only in the intestine. Lipid droplets in intestinal nuclei can be associated with novel bundles of microfilaments (nuclear actin) and membrane tubules that might have roles in damage repair. To increase the normal, low frequency of nuclear lipid droplets in wild-type animals, we used a forward genetic screen to isolate mutants with abnormally large or abundant nuclear lipid droplets. Genetic analysis and cloning of three such mutants showed that the genes encode the lipid regulator SEIP-1/seipin, the inner nuclear membrane protein NEMP-1/Nemp1/TMEM194A, and a component of COPI vesicles called COPA-1/α-COP. We present several lines of evidence that the nuclear lipid droplet phenotype of copa-1 mutants results from a defect in retrieving mislocalized membrane proteins that normally reside in the endoplasmic reticulum. The seip-1 mutant causes most germ cells to have nuclear lipid droplets, the largest of which occupy more than a third of the nuclear volume. Nevertheless, the nuclear lipid droplets do not trigger apoptosis, and the germ cells differentiate into gametes that produce viable, healthy progeny. Thus, our results suggest that nuclear lipid droplets are detrimental to intestinal nuclei, but have no obvious deleterious effect on germ nuclei.
Collapse
Affiliation(s)
| | - Meghan C. Bacher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Starich T, Greenstein D. A Limited and Diverse Set of Suppressor Mutations Restore Function to INX-8 Mutant Hemichannels in the Caenorhabditis elegans Somatic Gonad. Biomolecules 2020; 10:E1655. [PMID: 33321846 PMCID: PMC7763923 DOI: 10.3390/biom10121655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
In Caenorhabditis elegans, gap junctions couple cells of the somatic gonad with the germline to support germ cell proliferation and gametogenesis. A strong loss-of-function mutation (T239I) affects the second extracellular loop (EL2) of the somatic INX-8 hemichannel subunit. These mutant hemichannels form non-functional gap junctions with germline-expressed innexins. We conducted a genetic screen for suppressor mutations that restore germ cell proliferation in the T239I mutant background and isolated seven intragenic mutations, located in diverse domains of INX-8 but not the EL domains. These second-site mutations compensate for the original channel defect to varying degrees, from nearly complete wild-type rescue, to partial rescue of germline proliferation. One suppressor mutation (E350K) supports the innexin cryo-EM structural model that the channel pore opening is surrounded by a cytoplasmic dome. Two suppressor mutations (S9L and I36N) may form leaky channels that support germline proliferation but cause the demise of somatic sheath cells. Phenotypic analyses of three of the suppressors reveal an equivalency in the rescue of germline proliferation and comparable delays in gametogenesis but a graded rescue of fertility. The mutations described here may be useful for elucidating the biochemical pathways that produce the active biomolecules transiting through soma-germline gap junctions.
Collapse
Affiliation(s)
- Todd Starich
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|