1
|
Rakhshan M, Schafer RJ, Moore T, Soltani A. Neural Mechanisms Underlying Robust Target Selection in Response to Microstimulation of the Oculomotor System. J Neurosci 2025; 45:e2356232024. [PMID: 39516041 DOI: 10.1523/jneurosci.2356-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Despite its prevalence in studying the causal roles of different brain circuits in cognitive processes, electrical microstimulation often results in inconsistent behavioral effects. These inconsistencies are assumed to be due to multiple mechanisms, including habituation, compensation by other brain circuits, and contralateral suppression. Considering the presence of reinforcement in most experimental paradigms, we hypothesized that interactions between reward feedback and microstimulation could contribute to inconsistencies in behavioral effects of microstimulation. To test this, we analyzed data from electrical microstimulation of the frontal eye field of male macaques during a value-based decision-making task and constructed network models to capture choice behavior. We found evidence for microstimulation-dependent adaptation in saccadic choice, such that in stimulated trials, monkeys' choices were biased toward the target in the response field of the microstimulated site (T in). In contrast, monkeys showed a bias away from T in in nonstimulated trials following microstimulation. Critically, this bias slowly decreased as a function of the time since the last stimulation. Moreover, microstimulation-dependent adaptation was influenced by reward outcomes in preceding trials. Despite these local effects, we found no evidence for the global effects of microstimulation on learning and sensitivity to the reward schedule. By simulating choice behavior across various network models, we found a model in which microstimulation and reward-value signals interact competitively through reward-dependent plasticity can best account for our observations. Our findings indicate a reward-dependent compensatory mechanism that enhances robustness to perturbations within the oculomotor system and could explain the inconsistent outcomes observed in previous microstimulation studies.
Collapse
Affiliation(s)
- Mohsen Rakhshan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816
- Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, Florida 32816
| | - Robert J Schafer
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
2
|
Sharma R, Thirugnanasambandam N. Theta-Gamma Decoupling - A neurophysiological marker of impaired reward processing in Parkinson's disease. Brain Res 2024; 1850:149406. [PMID: 39708901 DOI: 10.1016/j.brainres.2024.149406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Individuals with Parkinson's disease (PD) exhibit altered reward processing, reflected by a decreased amplitude of an event-related potential (ERP) marker called reward positivity (RewP). Most studies have used RewP to investigate reward behavior due to the high temporal resolution of EEG and its high sensitivity. However, traditional single-electrode ERP analyses often overlook the intricate dynamics of non-phase-locked oscillatory activity and the complex interactions within these neural oscillatory patterns. Studying oscillatory activity is crucial as it provides mechanistic insights into the functional, spatial, and temporal aspects of neuronal processing. To address this gap, we employed a data-driven approach to identify EEG-based markers associated with PD reward processing deficits. Using an openly available 64-channel EEG dataset of 28 age- and sex-matched PD and control participants during a reinforcement learning task, we conducted a comprehensive secondary analysis. First, we employed a cluster-based permutation method to extract ERP markers, finding a consistent decrease in reward positivity in PD, regardless of medication status. Additionally, through region of interest (ROI) analysis on time-frequency data, we identified specific oscillatory patterns during reward processing. PD patients exhibited attenuated theta power and increased gamma power compared to healthy controls (HC). Notably, within the PD group, those off medication showed anterior localization of high gamma power, while those on medication displayed higher posterior gamma power. Building upon these findings, we explored phase-amplitude coupling between theta phase and gamma amplitude measured by the modulation index. We observed a trend of decreased theta-gamma coupling in PD patients, with statistically significant differences between on and off medication conditions. These results highlight the potential role of theta-gamma coupling as a neuromodulatory target for improving goal-oriented behavior in PD. Our correlation analyses suggest that high gamma power is linked to longer disease duration, while reduced reward positivity and low theta-gamma coupling may serve as markers of the dopaminergic impact on reward processing. Thus, our study unveils the intricate time-frequency dynamics underlying reward processing deficits in PD, emphasizing the utility of a data-driven approach to elucidate neural mechanisms and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Rashi Sharma
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India.
| |
Collapse
|
3
|
Rakhshan M, Schafer RJ, Moore T, Soltani A. Neural mechanisms underlying robust target selection in response to microstimulation of the oculomotor system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620929. [PMID: 39554044 PMCID: PMC11565716 DOI: 10.1101/2024.10.29.620929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Despite its prevalence in studying the causal roles of different brain circuits in cognitive processes, electrical microstimulation often results in inconsistent behavioral effects. These inconsistencies are assumed to be due to multiple mechanisms, including habituation, compensation by other brain circuits, and contralateral suppression. Considering the presence of reinforcement in most experimental paradigms, we hypothesized that interactions between reward feedback and microstimulation could contribute to inconsistencies in behavioral effects of microstimulation. To test this, we analyzed data from electrical microstimulation of the frontal eye field of male macaques during a value-based decision-making task and constructed network models to capture choice behavior. We found evidence for microstimulation-dependent adaptation in saccadic choice, such that in stimulated trials, monkeys' choices were biased toward the target in the response field of the microstimulated site ( T in ). In contrast, monkeys showed a bias away from T in in non-stimulated trials following microstimulation. Critically, this bias slowly decreased as a function of the time since the last stimulation. Moreover, microstimulation-dependent adaptation was influenced by reward outcomes in preceding trials. Despite these local effects, we found no evidence for the global effects of microstimulation on learning and sensitivity to the reward schedule. By simulating choice behavior across various network models, we found a model in which microstimulation and reward-value signals interact competitively through reward-dependent plasticity can best account for our observations. Our findings indicate a reward-dependent compensatory mechanism that enhances robustness to perturbations within the oculomotor system and could explain the inconsistent outcomes observed in previous microstimulation studies.
Collapse
|
4
|
Bramson B, Toni I, Roelofs K. Emotion regulation from an action-control perspective. Neurosci Biobehav Rev 2023; 153:105397. [PMID: 37739325 DOI: 10.1016/j.neubiorev.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite increasing interest in emotional processes in cognitive science, theories on emotion regulation have remained rather isolated, predominantly focused on cognitive regulation strategies such as reappraisal. However, recent neurocognitive evidence suggests that early emotion regulation may involve sensorimotor control in addition to other emotion-regulation processes. We propose an action-oriented view of emotion regulation, in which feedforward predictions develop from action-selection mechanisms. Those can account for acute emotional-action control as well as more abstract instances of emotion regulation such as cognitive reappraisal. We argue the latter occurs in absence of overt motor output, yet in the presence of full-blown autonomic, visceral, and subjective changes. This provides an integrated framework with testable neuro-computational predictions and concrete starting points for intervention to improve emotion control in affective disorders.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands.
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| |
Collapse
|
5
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
6
|
Grover S, Fayzullina R, Bullard BM, Levina V, Reinhart RMG. A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations. Sci Transl Med 2023; 15:eabo2044. [PMID: 37224229 DOI: 10.1126/scitranslmed.abo2044] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Transcranial alternating current stimulation (tACS) has attracted interest as a technique for causal investigations into how rhythmic fluctuations in brain neural activity influence cognition and for promoting cognitive rehabilitation. We conducted a systematic review and meta-analysis of the effects of tACS on cognitive function across 102 published studies, which included 2893 individuals in healthy, aging, and neuropsychiatric populations. A total of 304 effects were extracted from these 102 studies. We found modest to moderate improvements in cognitive function with tACS treatment that were evident in several cognitive domains, including working memory, long-term memory, attention, executive control, and fluid intelligence. Improvements in cognitive function were generally stronger after completion of tACS ("offline" effects) than during tACS treatment ("online" effects). Improvements in cognitive function were greater in studies that used current flow models to optimize or confirm neuromodulation targets by stimulating electric fields generated in the brain by tACS protocols. In studies targeting multiple brain regions concurrently, cognitive function changed bidirectionally (improved or decreased) according to the relative phase, or alignment, of the alternating current in the two brain regions (in phase versus antiphase). We also noted improvements in cognitive function separately in older adults and in individuals with neuropsychiatric illnesses. Overall, our findings contribute to the debate surrounding the effectiveness of tACS for cognitive rehabilitation, quantitatively demonstrate its potential, and indicate further directions for optimal tACS clinical study design.
Collapse
Affiliation(s)
- Shrey Grover
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Renata Fayzullina
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Breanna M Bullard
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Victoria Levina
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert M G Reinhart
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Cognitive Neuroimaging Center, Boston University, Boston, MA, USA
- Center for Research in Sensory Communication and Emerging Neural Technology, Boston University, Boston, MA, USA
| |
Collapse
|
7
|
Social avoidance behavior modulates motivational responses to social reward-threat conflict signals: A preliminary fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:42-65. [PMID: 36127489 DOI: 10.3758/s13415-022-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
Social avoidance behavior (SAB) produces impairment in multiple domains and contributes to the development and maintenance of several psychiatric disorders. Social behaviors such as SAB are influenced by approach-avoidance (AA) motivational responses to affective facial expressions. Notably, affective facial expressions communicate varying degrees of social reward signals (happiness), social threat signals (anger), or social reward-threat conflict signals (co-occurring happiness and anger). SAB is associated with dysregulated modulation of automatic approach-avoidance (AA) motivational responses exclusively to social reward-threat conflict signals. However, no neuroimaging research has characterized SAB-related modulation of automatic and subjective AA motivational responses to social reward-threat conflict signals. We recruited 30 adults reporting clinical, moderate, or minimal SAB based on questionnaire cutoff scores. SAB groups were matched on age range and gender. During fMRI scanning, participants completed implicit and subjective approach-avoidance tasks (AATs), which involved more incidental or more explicit evaluation of facial expressions that parametrically varied in social reward signals (e.g., 50%Happy), social threat signals (e.g., 50%Angry), or social reward-threat conflict signals (e.g., 50%Happy + 50%Angry). In the implicit AAT, SAB was associated with slower automatic avoidance actions and weaker amygdala-pgACC connectivity exclusively as a function of social reward-threat conflict signals. In the subjective AAT, SAB was associated with smaller increases in approach ratings, smaller decreases in avoidance ratings, and weaker dlPFC-pgACC connectivity exclusively in response to social reward-threat conflict signals. Thus, SAB is associated with dysregulated modulation of automatic and subjective AA motivational sensitivity to social reward-threat conflict signals, which may be facilitated by overlapping neural systems.
Collapse
|
8
|
Early adolescent psychological distress and cognition, correlates of resting-state EEG, interregional phase-amplitude coupling. Int J Psychophysiol 2023; 183:130-137. [PMID: 36436723 DOI: 10.1016/j.ijpsycho.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Delineating neurobiological markers of youth mental health is crucial for early identification and treatment. One promising marker is phase-amplitude coupling (PAC), cross-frequency coupling between the phase of slower oscillatory activity and the amplitude of faster oscillatory activity in the brain. Prior research has demonstrated that PAC is associated with both cognition and mental health and can be modulated using neurostimulation. However, to date research investigating PAC has focused primarily on adults, and only within-region theta-gamma coupling in the context of mental health. We investigated associations between interregional resting-state PAC (posterior-anterior cortex), and cognition and psychological distress in N = 77 (Mage = 12.58 years, SD = 0.31; 51 % female) 12-year-olds. Firstly, while left theta-beta PAC showed a moderate positive correlation (r = 0.529, p < .01), right theta-gamma PAC showed a weak positive correlation, with psychological distress (r = 0.283, p < .05). In terms of cognition, moderate correlations were observed between: (i) increased left theta-beta PAC and increased psychomotor speed (r = -0.367, p < .05); (ii) increased left alpha-beta PAC and decreased attention (r = 0.355, p ≤0.01); and (iii) increased left alpha-beta PAC and decreased verbal learning and memory (r = -0.352, p < .01). Whereas weak associations were observed for: (i) increased left alpha-beta PAC and decreased executive functioning scores (r = 0.284, p < .05); and (ii) increased left alpha-gamma PAC and increased attention (r = -0.272, p < .05). The overall findings of this exploratory study are encouraging, although all the correlations were in the weak-to-moderate range and require replication. Further research may confirm interregional resting-state PAC as a biomarker that can help us better understand the link between mental health and cognition in adolescents and improve treatment of cognitive related deficits in mental illness.
Collapse
|
9
|
Nilsson SJ, Meder D, Madsen KH, Toni I, Siebner HR. Get to grips with motivation: Slipping and gripping movements are biased by approach-avoidance context. Front Psychol 2022; 13:989495. [PMID: 36329745 PMCID: PMC9623043 DOI: 10.3389/fpsyg.2022.989495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
People are better at approaching appetitive cues signaling reward and avoiding aversive cues signaling punishment than vice versa. This action bias has previously been shown in approach-avoidance tasks involving arm movements in response to appetitive or aversive cues. It is not known whether appetitive or aversive stimuli also bias more distal dexterous actions, such as gripping and slipping, in a similar manner. To test this hypothesis, we designed a novel task involving grip force control (gripping and slipping) to probe gripping-related approach and avoidance behavior. 32 male volunteers, aged 18–40 years, were instructed to either grip (“approach”) or slip (”avoid”) a grip-force device with their right thumb and index finger at the sight of positive or negative images. In one version of this pincer grip task, participants were responding to graspable objects and in another version of the task they were responding to happy or angry faces. Bayesian repeated measures Analysis of variance revealed extreme evidence for an interaction between response type and cue valence (Bayes factor = 296). Participants were faster to respond in affect-congruent conditions (“approach appetitive,” “avoid aversive”) than in affect-incongruent conditions (“approach aversive,” “avoid appetitive”). This bias toward faster response times for affect-congruent conditions was present regardless of whether it was a graspable object or a face signaling valence. Since our results mirror the approach and avoidance effects previously observed for arm movements, we conclude that a tendency favoring affectively congruent cue-response mappings is an inherent feature of motor control and thus also includes precision grip.
Collapse
Affiliation(s)
- Sofie Johanna Nilsson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
- *Correspondence: Sofie Johanna Nilsson,
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
- DTU Compute, Technical University of Denmark, Lyngby, Denmark
| | - Ivan Toni
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Hartwig Roman Siebner,
| |
Collapse
|
10
|
Riddle J, Frohlich F. Mental Activity as the Bridge between Neural Biomarkers and Symptoms of Psychiatric Illness. Clin EEG Neurosci 2022:15500594221112417. [PMID: 35861807 DOI: 10.1177/15500594221112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Research Domain Criteria (RDoC) initiative challenges researchers to build neurobehavioral models of psychiatric illness with the hope that such models identify better targets that will yield more effective treatment. However, a guide for building such models was not provided and symptom heterogeneity within Diagnostic Statistical Manual categories has hampered progress in identifying endophenotypes that underlie mental illness. We propose that the best chance to discover viable biomarkers and treatment targets for psychiatric illness is to investigate a triangle of relationships: severity of a specific psychiatric symptom that correlates to mental activity that correlates to a neural activity signature. We propose that this is the minimal model complexity required to advance the field of psychiatry. With an understanding of how neural activity relates to the experience of the patient, a genuine understanding for how treatment imparts its therapeutic effect is possible. After the discovery of this three-fold relationship, causal testing is required in which the neural activity pattern is directly enhanced or suppressed to provide causal, instead of just correlational, evidence for the biomarker. We suggest using non-invasive brain stimulation (NIBS) as these techniques provide tools to precisely manipulate spatial and temporal activity patterns. We detail how this approach enabled the discovery of two orthogonal electroencephalography (EEG) activity patterns associated with anhedonia and anxiosomatic symptoms in depression that can serve as future treatment targets. Altogether, we propose a systematic approach for building neurobehavioral models for dimensional psychiatry.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Neurology, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biomedical Engineering, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Riddle J, Alexander ML, Schiller CE, Rubinow DR, Frohlich F. Reward-Based Decision-Making Engages Distinct Modes of Cross-Frequency Coupling. Cereb Cortex 2022; 32:2079-2094. [PMID: 34622271 PMCID: PMC9113280 DOI: 10.1093/cercor/bhab336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortex exerts control over sensory and motor systems via cross-frequency coupling. However, it is unknown whether these signals play a role in reward-based decision-making and whether such dynamic network configuration is altered in a major depressive episode. We recruited men and women with and without depression to perform a streamlined version of the Expenditure of Effort for Reward Task during recording of electroencephalography. Goal-directed behavior was quantified as willingness to exert physical effort to obtain reward, and reward-evaluation was the degree to which the decision to exert effort was modulated by incentive level. We found that the amplitude of frontal-midline theta oscillations was greatest in participants with the greatest reward-evaluation. Furthermore, coupling between frontal theta phase and parieto-occipital gamma amplitude was positively correlated with reward-evaluation. In addition, goal-directed behavior was positively correlated with coupling between frontal delta phase to motor beta amplitude. Finally, we performed a factor analysis to derive 2 symptom dimensions and found that mood symptoms positively tracked with reward-evaluation and motivation symptoms negatively tracked with goal-directed behavior. Altogether, these results provide evidence that 2 aspects of reward-based decision-making are instantiated by different modes of prefrontal top-down control and are modulated in different symptom dimensions of depression.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Crystal Edler Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
13
|
Takeuchi N. Perspectives on Rehabilitation Using Non-invasive Brain Stimulation Based on Second-Person Neuroscience of Teaching-Learning Interactions. Front Psychol 2022; 12:789637. [PMID: 35069374 PMCID: PMC8769209 DOI: 10.3389/fpsyg.2021.789637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in second-person neuroscience have allowed the underlying neural mechanisms involved in teaching-learning interactions to be better understood. Teaching is not merely a one-way transfer of information from teacher to student; it is a complex interaction that requires metacognitive and mentalizing skills to understand others’ intentions and integrate information regarding oneself and others. Physiotherapy involving therapists instructing patients on how to improve their motor skills is a clinical field in which teaching-learning interactions play a central role. Accumulating evidence suggests that non-invasive brain stimulation (NIBS) modulates cognitive functions; however, NIBS approaches to teaching-learning interactions are yet to be utilized in rehabilitation. In this review, I evaluate the present research into NIBS and its role in enhancing metacognitive and mentalizing abilities; I then review hyperscanning studies of teaching-learning interactions and explore the potential clinical applications of NIBS in rehabilitation. Dual-brain stimulation using NIBS has been developed based on findings of brain-to-brain synchrony in hyperscanning studies, and it is delivered simultaneously to two individuals to increase inter-brain synchronized oscillations at the stimulated frequency. Artificial induction of brain-to-brain synchrony has the potential to promote instruction-based learning. The brain-to-brain interface, which induces inter-brain synchronization by adjusting the patient’s brain activity, using NIBS, to the therapist’s brain activity, could have a positive effect on both therapist-patient interactions and rehabilitation outcomes. NIBS based on second-person neuroscience has the potential to serve as a useful addition to the current neuroscientific methods used in complementary interventions for rehabilitation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan
| |
Collapse
|
14
|
Ulloa JL. The Control of Movements via Motor Gamma Oscillations. Front Hum Neurosci 2022; 15:787157. [PMID: 35111006 PMCID: PMC8802912 DOI: 10.3389/fnhum.2021.787157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.
Collapse
Affiliation(s)
- José Luis Ulloa
- Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas (CICC), Facultad de Psicología, Universidad de Talca, Talca, Chile
| |
Collapse
|
15
|
Riddle J, Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Res 2021; 1765:147491. [PMID: 33887251 PMCID: PMC8206031 DOI: 10.1016/j.brainres.2021.147491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Neural oscillations at the network level synchronize activity between regions and temporal scales. Transcranial alternating current stimulation (tACS), the delivery of low-amplitude electric current to the scalp, provides a tool for investigating the causal role of neural oscillations in cognition. The parameter space for tACS is vast and optimization is required in terms of temporal and spatial targeting. We review emerging techniques and suggest novel approaches that capitalize on the non-sinusoidal and transient nature of neural oscillations and leverage the flexibility provided by a customizable electrode montage and electrical waveform. The customizability and safety profile of tACS make it a promising tool for precision intervention in psychiatric illnesses.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021; 15:628229. [PMID: 34305549 PMCID: PMC8297546 DOI: 10.3389/fnhum.2021.628229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
17
|
Riddle J, McFerren A, Frohlich F. Causal role of cross-frequency coupling in distinct components of cognitive control. Prog Neurobiol 2021; 202:102033. [PMID: 33741402 PMCID: PMC8184612 DOI: 10.1016/j.pneurobio.2021.102033] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 01/13/2023]
Abstract
Cognitive control is the capacity to guide motor and perceptual systems towards abstract goals. High-frequency neural oscillations related to motor activity in the beta band (13-30 Hz) and to visual processing in the gamma band (>30 Hz) are known to be modulated by cognitive control signals. One proposed mechanism for cognitive control is via cross-frequency coupling whereby low frequency network oscillations in prefrontal cortex (delta from 2-3 Hz and theta from 4-8 Hz) guide the expression of motor-related activity in action planning and guide perception-related activity in memory access. However, there is no causal evidence for cross-frequency coupling in these dissociable components of cognitive control. To address this important gap in knowledge, we delivered cross-frequency transcranial alternating current stimulation (CF-tACS) during performance of a task that manipulated cognitive control demands along two dimensions: the abstraction of the rules of the task (nested levels of action selection) that increased delta-beta coupling and the number of rules (set-size held in memory) that increased theta-gamma coupling. As hypothesized, we found that CF-tACS increased the targeted phase-amplitude coupling and modulated task performance of the associated cognitive control component. These findings provide causal evidence that prefrontal cortex orchestrates different components of cognitive control via two different cross-frequency coupling modalities.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amber McFerren
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Defensive freezing and its relation to approach-avoidance decision-making under threat. Sci Rep 2021; 11:12030. [PMID: 34103543 PMCID: PMC8187589 DOI: 10.1038/s41598-021-90968-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Successful responding to acutely threatening situations requires adequate approach-avoidance decisions. However, it is unclear how threat-induced states-like freezing-related bradycardia-impact the weighing of the potential outcomes of such value-based decisions. Insight into the underlying computations is essential, not only to improve our models of decision-making but also to improve interventions for maladaptive decisions, for instance in anxiety patients and first-responders who frequently have to make decisions under acute threat. Forty-two participants made passive and active approach-avoidance decisions under threat-of-shock when confronted with mixed outcome-prospects (i.e., varying money and shock amounts). Choice behavior was best predicted by a model including individual action-tendencies and bradycardia, beyond the subjective value of the outcome. Moreover, threat-related bradycardia (high-vs-low threat) interacted with subjective value, depending on the action-context (passive-vs-active). Specifically, in action-contexts incongruent with participants' intrinsic action-tendencies, stronger bradycardia related to diminished effects of subjective value on choice across participants. These findings illustrate the relevance of testing approach-avoidance decisions in relatively ecologically valid conditions of acute and primarily reinforced threat. These mechanistic insights into approach-avoidance conflict-resolution may inspire biofeedback-related techniques to optimize decision-making under threat. Critically, the findings demonstrate the relevance of incorporating internal psychophysiological states and external action-contexts into models of approach-avoidance decision-making.
Collapse
|
19
|
Livermore JJA, Klaassen FH, Bramson B, Hulsman AM, Meijer SW, Held L, Klumpers F, de Voogd LD, Roelofs K. Approach-Avoidance Decisions Under Threat: The Role of Autonomic Psychophysiological States. Front Neurosci 2021; 15:621517. [PMID: 33867915 PMCID: PMC8044748 DOI: 10.3389/fnins.2021.621517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Acutely challenging or threatening situations frequently require approach-avoidance decisions. Acute threat triggers fast autonomic changes that prepare the body to freeze, fight or flee. However, such autonomic changes may also influence subsequent instrumental approach-avoidance decisions. Since defensive bodily states are often not considered in value-based decision-making models, it remains unclear how they influence the decision-making process. Here, we aim to bridge this gap by discussing the existing literature on the potential role of threat-induced bodily states on decision making and provide a new neurocomputational framework explaining how these effects can facilitate or bias approach-avoid decisions under threat. Theoretical accounts have stated that threat-induced parasympathetic activity is involved in information gathering and decision making. Parasympathetic dominance over sympathetic activity is particularly seen during threat-anticipatory freezing, an evolutionarily conserved response to threat demonstrated across species and characterized by immobility and bradycardia. Although this state of freezing has been linked to altered information processing and action preparation, a full theoretical treatment of the interactions with value-based decision making has not yet been achieved. Our neural framework, which we term the Threat State/Value Integration (TSI) Model, will illustrate how threat-induced bodily states may impact valuation of competing incentives at three stages of the decision-making process, namely at threat evaluation, integration of rewards and threats, and action initiation. Additionally, because altered parasympathetic activity and decision biases have been shown in anxious populations, we will end with discussing how biases in this system can lead to characteristic patterns of avoidance seen in anxiety-related disorders, motivating future pre-clinical and clinical research.
Collapse
Affiliation(s)
- James J. A. Livermore
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Felix H. Klaassen
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Bob Bramson
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Anneloes M. Hulsman
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Sjoerd W. Meijer
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Leslie Held
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Floris Klumpers
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Lycia D. de Voogd
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Karin Roelofs
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
20
|
Sacks DD, Schwenn PE, McLoughlin LT, Lagopoulos J, Hermens DF. Phase-Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence. Front Hum Neurosci 2021; 15:622313. [PMID: 33841115 PMCID: PMC8032979 DOI: 10.3389/fnhum.2021.622313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Identifying biomarkers of developing mental disorder is crucial to improving early identification and treatment-a key strategy for reducing the burden of mental disorders. Cross-frequency coupling between two different frequencies of neural oscillations is one such promising measure, believed to reflect synchronization between local and global networks in the brain. Specifically, in adults phase-amplitude coupling (PAC) has been shown to be involved in a range of cognitive processes, including working and long-term memory, attention, language, and fluid intelligence. Evidence suggests that increased PAC mediates both temporary and lasting improvements in working memory elicited by transcranial direct-current stimulation and reductions in depressive symptoms after transcranial magnetic stimulation. Moreover, research has shown that abnormal patterns of PAC are associated with depression and schizophrenia in adults. PAC is believed to be closely related to cortico-cortico white matter (WM) microstructure, which is well established in the literature as a structural mechanism underlying mental health. Some cognitive findings have been replicated in adolescents and abnormal patterns of PAC have also been linked to ADHD in young people. However, currently most research has focused on cross-sectional adult samples. Whereas initial hypotheses suggested that PAC was a state-based measure due to an early focus on cognitive, task-based research, current evidence suggests that PAC has both state-based and stable components. Future longitudinal research focusing on PAC throughout adolescent development could further our understanding of the relationship between mental health and cognition and facilitate the development of new methods for the identification and treatment of youth mental health.
Collapse
Affiliation(s)
- Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul E Schwenn
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Larisa T McLoughlin
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|