1
|
Rees JM, Kirk K, Gattoni G, Hockman D, Sleight VA, Ritter DJ, Benito-Gutierrez È, Knapik EW, Crump JG, Fabian P, Gillis JA. A pre-vertebrate endodermal origin of calcitonin-producing neuroendocrine cells. Development 2024; 151:dev202821. [PMID: 39109637 PMCID: PMC11698069 DOI: 10.1242/dev.202821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 09/17/2024]
Abstract
Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.
Collapse
Affiliation(s)
- Jenaid M. Rees
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Katie Kirk
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | | | - Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN 37240, USA
| | | | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN 37240, USA
- Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN 37232, USA
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Fabian
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Zhang Z, Luo J, Liu H, Wang S, An X, Li X, Wang W. Sonic hedgehog (shh) gene from Pseudopleuronectes yokohamae (Teleostei: Pleuronectidae): Molecular cloning, characterization, and expression profile during early embryonic, juvenile, and adult stages. JOURNAL OF FISH BIOLOGY 2024; 105:1314-1326. [PMID: 38965864 DOI: 10.1111/jfb.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024]
Abstract
The hedgehog signaling pathway plays an important role in early development and growth of most vertebrates. Sonic hedgehog (shh) gene is a critical regulator of embryonic development in many species, including humans. However, it is not clear what roles shh can play in the development of fish. In this paper, shh gene was cloned from Pseudopleuronectes yokohamae. The full-length complementary DNA (cDNA) of P. yokohamae sonic hedgehog gene (Pyshh) comprises 3194 bp, with a 1317-bp open reading frame (ORF) that encodes a polypeptide of 438 amino acids with a typical HH-signal domain and Hint-N domain. The conserved sequences of the protein among species were predicted by using multiple sequence comparison. The phylogenetic tree construction showed that PySHH is clustered in a branch of Pleuronectidae. To explore the expression of Pyshh gene in various tissues of P. yokohamae, we used real-time fluorescence quantitative PCR technology to detect it. The results showed that Pyshh gene is widely distributed in various tissues of P. yokohamae juveniles, different tissues of adult males and females, and is particularly expressed in immune organs. The Pyshh gene expression was higher in the muscle and brain of juvenile fish, and higher in bone, gill, and skin of male fish than that of female fish, suggesting that Pyshh might be involved in the formation of immune organs of P. yokohamae. The expression of Pyshh gene significantly upregulated from the gastrula stage to the hatching stage. Western blotting of the expression levels of PySHH during different embryonic development stages revealed that PySHH levels increased gradually during development stages from oosperm stage to hatching stage. These results indicate that Pyshh is highly conserved among species and plays a critical role in the complex process of embryonic development. Its precise regulation is essential for the proper formation of many organs and tissues in the body, and disruptions in its function may have serious consequences for the formation of immune organs in fish.
Collapse
Affiliation(s)
- Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Jun Luo
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
- Dalian Sunasia Tourism Holding Co., LTD, Dalian, China
| | - Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xilin An
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China
| |
Collapse
|
3
|
Kuroda S, Lalonde RL, Mansour TA, Mosimann C, Nakamura T. Multiple embryonic sources converge to form the pectoral girdle skeleton in zebrafish. Nat Commun 2024; 15:6313. [PMID: 39060278 PMCID: PMC11282072 DOI: 10.1038/s41467-024-50734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The morphological transformation of the pectoral/shoulder girdle is fundamental to the water-to-land transition in vertebrate evolution. Although previous studies have resolved the embryonic origins of tetrapod shoulder girdles, those of fish pectoral girdles remain uncharacterized, creating a gap in the understanding of girdle transformation mechanisms from fish to tetrapods. Here, we identify the embryonic origins of the zebrafish pectoral girdle, including the cleithrum as an ancestral girdle element lost in extant tetrapods. Our combinatorial approach of photoconversion and genetic lineage tracing demonstrates that cleithrum development combines four adjoining embryonic populations. A comparison of these pectoral girdle progenitors with extinct and extant vertebrates highlights that cleithrum loss, indispensable for neck evolution, is associated with the disappearance of its unique developmental environment at the head/trunk interface. Overall, our study establishes an embryological framework for pectoral/shoulder girdle formation and provides evolutionary trajectories from their origin in water to diversification on land.
Collapse
Affiliation(s)
- Shunya Kuroda
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1164, Japan.
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Mansour
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Bayramov AV, Yastrebov SA, Mednikov DN, Araslanova KR, Ermakova GV, Zaraisky AG. Paired fins in vertebrate evolution and ontogeny. Evol Dev 2024; 26:e12478. [PMID: 38650470 DOI: 10.1111/ede.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Yastrebov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry N Mednikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Rees JM, Palmer MA, Gillis JA. Fgf signalling is required for gill slit formation in the skate, Leucoraja erinacea. Dev Biol 2024; 506:85-94. [PMID: 38040078 PMCID: PMC11195640 DOI: 10.1016/j.ydbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michael A Palmer
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, UK; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
6
|
Brazeau MD, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, Friedman M. Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle. Nature 2023; 623:550-554. [PMID: 37914937 PMCID: PMC10651482 DOI: 10.1038/s41586-023-06702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.
Collapse
Affiliation(s)
- Martin D Brazeau
- Department of Life Sciences, Imperial College London, Ascot, UK.
- The Natural History Museum, London, UK.
| | - Marco Castiello
- Department of Life Sciences, Imperial College London, Ascot, UK
- London Academy of Excellence, London, United Kingdom
| | - Amin El Fassi El Fehri
- Department of Life Sciences, Imperial College London, Ascot, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Louis Hamilton
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Alexander O Ivanov
- Department of Sedimentary Geology, Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | | | - Matt Friedman
- The Natural History Museum, London, UK
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Tseng KC, Crump JG. Craniofacial developmental biology in the single-cell era. Development 2023; 150:dev202077. [PMID: 37812056 PMCID: PMC10617621 DOI: 10.1242/dev.202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Collapse
Affiliation(s)
- Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Gillis JA. Scales, scutes, and embryonic origins of the vertebrate dermal skeleton. Proc Natl Acad Sci U S A 2023; 120:e2310552120. [PMID: 37531377 PMCID: PMC10433271 DOI: 10.1073/pnas.2310552120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Affiliation(s)
- J. Andrew Gillis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
9
|
Stundl J, Martik ML, Chen D, Raja DA, Franěk R, Pospisilova A, Pšenička M, Metscher BD, Braasch I, Haitina T, Cerny R, Ahlberg PE, Bronner ME. Ancient vertebrate dermal armor evolved from trunk neural crest. Proc Natl Acad Sci U S A 2023; 120:e2221120120. [PMID: 37459514 PMCID: PMC10372632 DOI: 10.1073/pnas.2221120120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 07/20/2023] Open
Abstract
Bone is an evolutionary novelty of vertebrates, likely to have first emerged as part of ancestral dermal armor that consisted of osteogenic and odontogenic components. Whether these early vertebrate structures arose from mesoderm or neural crest cells has been a matter of considerable debate. To examine the developmental origin of the bony part of the dermal armor, we have performed in vivo lineage tracing in the sterlet sturgeon, a representative of nonteleost ray-finned fish that has retained an extensive postcranial dermal skeleton. The results definitively show that sterlet trunk neural crest cells give rise to osteoblasts of the scutes. Transcriptional profiling further reveals neural crest gene signature in sterlet scutes as well as bichir scales. Finally, histological and microCT analyses of ray-finned fish dermal armor show that their scales and scutes are formed by bone, dentin, and hypermineralized covering tissues, in various combinations, that resemble those of the first armored vertebrates. Taken together, our results support a primitive skeletogenic role for the neural crest along the entire body axis, that was later progressively restricted to the cranial region during vertebrate evolution. Thus, the neural crest was a crucial evolutionary innovation driving the origin and diversification of dermal armor along the entire body axis.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Megan L. Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Donglei Chen
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Desingu Ayyappa Raja
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Roman Franěk
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00Prague, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Brian D. Metscher
- Department of Evolutionary Biology, Theoretical Biology Unit, University of Vienna, 1010Vienna, Austria
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI48824
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00Prague, Czech Republic
| | - Per E. Ahlberg
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
10
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Truong BT, Shull LC, Lencer E, Bend EG, Field M, Blue EE, Bamshad MJ, Skinner C, Everman D, Schwartz CE, Flanagan-Steet H, Artinger KB. PRDM1 DNA-binding zinc finger domain is required for normal limb development and is disrupted in split hand/foot malformation. Dis Model Mech 2023; 16:dmm049977. [PMID: 37083955 PMCID: PMC10151829 DOI: 10.1242/dmm.049977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra Lencer
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | - Eric G. Bend
- Greenwood Genetics Center, Greenwood, SC 29646, USA
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, AUS
| | - Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Onai T, Aramaki T, Takai A, Kakiguchi K, Yonemura S. Cranial cartilages: Players in the evolution of the cranium during evolution of the chordates in general and of the vertebrates in particular. Evol Dev 2023; 25:197-208. [PMID: 36946416 DOI: 10.1111/ede.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Toshihiro Aramaki
- Laboratory for Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akira Takai
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics, Research, Osaka, Japan
| | - Kisa Kakiguchi
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics, Research, Hyogo, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics, Research, Hyogo, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima, Japan
| |
Collapse
|
13
|
Rees JM, Sleight VA, Clark SJ, Nakamura T, Gillis JA. Ectodermal Wnt signaling, cell fate determination, and polarity of the skate gill arch skeleton. eLife 2023; 12:e79964. [PMID: 36940244 PMCID: PMC10027317 DOI: 10.7554/elife.79964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
The gill skeleton of cartilaginous fishes (sharks, skates, rays, and holocephalans) exhibits a striking anterior-posterior polarity, with a series of fine appendages called branchial rays projecting from the posterior margin of the gill arch cartilages. We previously demonstrated in the skate (Leucoraja erinacea) that branchial rays derive from a posterior domain of pharyngeal arch mesenchyme that is responsive to Sonic hedgehog (Shh) signaling from a distal gill arch epithelial ridge (GAER) signaling centre. However, how branchial ray progenitors are specified exclusively within posterior gill arch mesenchyme is not known. Here, we show that genes encoding several Wnt ligands are expressed in the ectoderm immediately adjacent to the skate GAER, and that these Wnt signals are transduced largely in the anterior arch environment. Using pharmacological manipulation, we show that inhibition of Wnt signalling results in an anterior expansion of Shh signal transduction in developing skate gill arches, and in the formation of ectopic anterior branchial ray cartilages. Our findings demonstrate that ectodermal Wnt signalling contributes to gill arch skeletal polarity in skate by restricting Shh signal transduction and chondrogenesis to the posterior arch environment and highlights the importance of signalling interactions at embryonic tissue boundaries for cell fate determination in vertebrate pharyngeal arches.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of AberdeenAberdeenUnited Kingdom
| | | | - Tetsuya Nakamura
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - J Andrew Gillis
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
14
|
Onai T. Organization of the body wall in lampreys informs the evolution of the vertebrate paired appendages. J Morphol 2023; 284:e21559. [PMID: 36688403 DOI: 10.1002/jmor.21559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Vertebrate paired appendages are one of the most important evolutionary novelties in vertebrates. During embryogenesis, the skeletal elements of paired appendages differentiate from the somatic mesoderm, which is a layer of lateral plate mesoderm. However, the presence of the somatic mesoderm in the common ancestor of vertebrates has been controversial. To address this problem, it is necessary but insufficient to understand the developmental process of lateral plate mesoderm formation in lamprey (jawless vertebrates) embryos. Here, I show the presence of the somatic mesoderm in lamprey (Lethenteron camtschaticum) embryos using plastic sectioning and transmission electron microscopy analysis. During the early pharyngeal stages, the somatic mesoderm transforms from the lateral plate mesoderm in the trunk region. Soon after, when the cardiac structures were morphologically distinct, the somatic mesoderm was recognized through the cardiac to more caudal regions. These findings indicated that the somatic mesoderm evolved before the emergence of paired appendages. I also discuss the developmental changes in the body wall organization in the common ancestor of vertebrates, which is likely related to the evolution of the paired appendages.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
15
|
da Silva JPCB, Vaz DFB. Morphology and phylogenetic significance of the pelvic articular region in elasmobranchs (Chondrichthyes). Cladistics 2023; 39:155-197. [PMID: 36856203 DOI: 10.1111/cla.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 03/02/2023] Open
Abstract
The morphology of paired fins is commonly overlooked in morphological studies, particularly the pelvic girdle and fins. Consequently, previous phylogenetic studies incorporating morphological data used few skeletal characters from this complex. In this paper, the phylogenetic significance of pelvic articular characters for elasmobranchs is discussed in light of the morphological variation observed in 130 species, the most comprehensive study exploring the morphology of the pelvic girdle done so far. The 10 morphological characters proposed herein for the pelvic articulation were incorporated into a molecular matrix of NADH2 sequences and submitted to an analysis of maximum parsimony employing extended implied weighting. The most stable tree was selected based on the distortion coefficients, SPR distances (subtree pruning and regrafting) and fit values. Some of the striking synapomorphies recovered within elasmobranchs include the presence of an articular surface for the first enlarged pelvic radial supporting Elasmobranchii and the pelvic articular region for the basipterygium extending from the posterolatral margin of the pelvic girdle over its lateral surface in Echinorhinus + Hexanchiformes. Additionally, the proposed characters and their distributions are discussed considering the relationships recovered and also compared with previous morphological and molecular phylogenetic hypotheses.
Collapse
Affiliation(s)
- João Paulo C B da Silva
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Castelo Branco, João Pessoa, 58051-900, Brazil
| | - Diego F B Vaz
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02143, USA.,Biorepository Collaboratorium Guam EPSCoR, Marine Laboratory, University of Guam, 303 University Dr, UOG Station, Mangilao, GU, 96923, USA
| |
Collapse
|
16
|
Distinct proliferative and middle ear skeletal-patterning functions for SHH-expressing epithelia in the chick hyoid arch. Dev Biol 2022; 489:98-108. [PMID: 35714752 DOI: 10.1016/j.ydbio.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
During chick craniofacial development, the second (hyoid) pharyngeal arch expands to close the neck and gives rise to skeletal elements, including the columella of the middle ear (a homologue of the mammalian stapes). Sonic hedgehog (SHH) signalling has been implicated in hyoid arch expansion and columella formation, but spatial and temporal aspects of these signalling interactions within the hyoid arch remain poorly understood. Here, we show that SHH is initially expressed in the posterior endoderm of the hyoid arch, and that this domain subsequently splits into a distal domain at the site of arch expansion (the posterior epithelial margin, PEM), and a proximal domain that lines the foregut (the proximal hyoid epithelium, PHE). Pharmacological manipulations and heterotopic grafting experiments demonstrate that SHH signalling is required for hyoid arch expansion and skeletogenesis, and reveal distinct roles for the PEM and PHE in these processes. The PEM promotes mesenchymal cell proliferation during arch expansion but is not sufficient to repattern the columella. Conversely, the PHE promotes mesenchymal cell survival, and PHE grafts induce partial duplication of the columella. This work demonstrates crucial and distinct roles for endodermal SHH signalling in hyoid arch morphogenesis and patterning of the middle ear skeleton.
Collapse
|
17
|
Gillis JA, Bennett S, Criswell KE, Rees J, Sleight VA, Hirschberger C, Calzarette D, Kerr S, Dasen J. Big insight from the little skate: Leucoraja erinacea as a developmental model system. Curr Top Dev Biol 2022; 147:595-630. [PMID: 35337464 DOI: 10.1016/bs.ctdb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Marine Biological Laboratory, Woods Hole, MA, United States.
| | - Scott Bennett
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Jenaid Rees
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Dan Calzarette
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Sarah Kerr
- Wesleyan University, Middletown, CT, United States
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU School of Medicine, Neuroscience Institute, NY, United States
| |
Collapse
|
18
|
Fabian P, Tseng KC, Thiruppathy M, Arata C, Chen HJ, Smeeton J, Nelson N, Crump JG. Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. Nat Commun 2022; 13:13. [PMID: 35013168 PMCID: PMC8748784 DOI: 10.1038/s41467-021-27594-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
The cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.
Collapse
Affiliation(s)
- Peter Fabian
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Kuo-Chang Tseng
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Mathi Thiruppathy
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Claire Arata
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Hung-Jhen Chen
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Joanna Smeeton
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Nellie Nelson
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad California Institute for Regenerative Medicine Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA.
| |
Collapse
|
19
|
Schwaner MJ, Hsieh ST, Braasch I, Bradley S, Campos CB, Collins CE, Donatelli CM, Fish FE, Fitch OE, Flammang BE, Jackson BE, Jusufi A, Mekdara PJ, Patel A, Swalla BJ, Vickaryous M, McGowan CP. Future Tail Tales: A Forward-Looking, Integrative Perspective on Tail Research. Integr Comp Biol 2021; 61:521-537. [PMID: 33999184 PMCID: PMC8680820 DOI: 10.1093/icb/icab082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis Tails are a defining characteristic of chordates and show enormous diversity in function and shape. Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in morphology and function. For example, tails can be short or long, thin or thick, and feathered or spiked, and they can be used for propulsion, communication, or balancing, and they mediate in predator-prey outcomes. Depending on the species of animal the tail is attached to, it can have extraordinarily multi-functional purposes. Despite its morphological diversity and broad functional roles, tails have not received similar scientific attention as, for example, the paired appendages such as legs or fins. This forward-looking review article is a first step toward interdisciplinary scientific synthesis in tail research. We discuss the importance of tail research in relation to five topics: (1) evolution and development, (2) regeneration, (3) functional morphology, (4) sensorimotor control, and (5) computational and physical models. Within each of these areas, we highlight areas of research and combinations of long-standing and new experimental approaches to move the field of tail research forward. To best advance a holistic understanding of tail evolution and function, it is imperative to embrace an interdisciplinary approach, re-integrating traditionally siloed fields around discussions on tail-related research.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S T Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - I Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - S Bradley
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C B Campos
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C E Collins
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - F E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - O E Fitch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - B E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - B E Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909, USA
| | - A Jusufi
- Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - P J Mekdara
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Patel
- Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa
| | - B J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - M Vickaryous
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C P McGowan
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
20
|
Hirschberger C, Sleight VA, Criswell KE, Clark SJ, Gillis JA. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Mol Biol Evol 2021; 38:4187-4204. [PMID: 33905525 PMCID: PMC8476176 DOI: 10.1093/molbev/msab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral (DV) patterning mechanisms within the developing mandibular, hyoid, and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralizing BMP and endothelin signaling pathways and their effectors, the joint markers nkx3.2 and gdf5 and prochondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, whereas differences in notch signaling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the DV axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
Collapse
Affiliation(s)
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | | | | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
21
|
Kuroda S, Adachi N, Kusakabe R, Kuratani S. Developmental fates of shark head cavities reveal mesodermal contributions to tendon progenitor cells in extraocular muscles. ZOOLOGICAL LETTERS 2021; 7:3. [PMID: 33588955 PMCID: PMC7885385 DOI: 10.1186/s40851-021-00170-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 05/09/2023]
Abstract
Vertebrate extraocular muscles (EOMs) function in eye movements. The EOMs of modern jawed vertebrates consist primarily of four recti and two oblique muscles innervated by three cranial nerves. The developmental mechanisms underlying the establishment of this complex and the evolutionarily conserved pattern of EOMs are unknown. Chondrichthyan early embryos develop three pairs of overt epithelial coeloms called head cavities (HCs) in the head mesoderm, and each HC is believed to differentiate into a discrete subset of EOMs. However, no direct evidence of these cell fates has been provided due to the technical difficulty of lineage tracing experiments in chondrichthyans. Here, we set up an in ovo manipulation system for embryos of the cloudy catshark Scyliorhinus torazame and labeled the epithelial cells of each HC with lipophilic fluorescent dyes. This experimental system allowed us to trace the cell lineage of EOMs with the highest degree of detail and reproducibility to date. We confirmed that the HCs are indeed primordia of EOMs but showed that the morphological pattern of shark EOMs is not solely dependent on the early pattern of the head mesoderm, which transiently appears as tripartite HCs along the simple anteroposterior axis. Moreover, we found that one of the HCs gives rise to tendon progenitor cells of the EOMs, which is an exceptional condition in our previous understanding of head muscles; the tendons associated with head muscles have generally been supposed to be derived from cranial neural crest (CNC) cells, another source of vertebrate head mesenchyme. Based on interspecies comparisons, the developmental environment is suggested to be significantly different between the two ends of the rectus muscles, and this difference is suggested to be evolutionarily conserved in jawed vertebrates. We propose that the mesenchymal interface (head mesoderm vs CNC) in the environment of developing EOM is required to determine the processes of the proximodistal axis of rectus components of EOMs.
Collapse
Affiliation(s)
- Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
22
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|