1
|
Savtchenko LP, Rusakov DA. Equal levels of pre- and postsynaptic potentiation produce unequal outcomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230235. [PMID: 38853561 PMCID: PMC11343314 DOI: 10.1098/rstb.2023.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Which proportion of the long-term potentiation (LTP) expressed in the bulk of excitatory synapses is postsynaptic and which presynaptic remains debatable. To understand better the possible impact of either LTP form, we explored a realistic model of a CA1 pyramidal cell equipped with known membrane mechanisms and multiple, stochastic excitatory axo-spinous synapses. Our simulations were designed to establish an input-output transfer function, the dependence between the frequency of presynaptic action potentials triggering probabilistic synaptic discharges and the average frequency of postsynaptic spiking. We found that, within the typical physiological range, potentiation of the postsynaptic current results in a greater overall output than an equivalent increase in presynaptic release probability. This difference grows stronger at lower input frequencies and lower release probabilities. Simulations with a non-hierarchical circular network of principal neurons indicated that equal increases in either synaptic fidelity or synaptic strength of individual connections also produce distinct changes in network activity, although the network phenomenology is likely to be complex. These observations should help to interpret the machinery of LTP phenomena documented in situ. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Leonid P. Savtchenko
- UCL Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, UK
| | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, UK
| |
Collapse
|
2
|
Dharmasri PA, DeMarco EM, Anderson MC, Levy AD, Blanpied TA. Loss of postsynaptic NMDARs drives nanoscale reorganization of Munc13-1 and PSD-95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574705. [PMID: 38260705 PMCID: PMC10802569 DOI: 10.1101/2024.01.12.574705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoscale protein organization within the active zone (AZ) and post-synaptic density (PSD) influences synaptic transmission. Nanoclusters of presynaptic Munc13-1 are associated with readily releasable pool size and neurotransmitter vesicle priming, while postsynaptic PSD-95 nanoclusters coordinate glutamate receptors across from release sites to control their opening probability. Nanocluster number, size, and protein density vary between synapse types and with development and plasticity, supporting a wide range of functional states at the synapse. Whether or how the receptors themselves control this critical architecture remains unclear. One prominent PSD molecular complex is the NMDA receptor (NMDAR). NMDARs coordinate several modes of signaling within synapses, giving them the potential to influence synaptic organization through direct protein interactions or through signaling. We found that loss of NMDARs results in larger synapses that contain smaller, denser, and more numerous PSD-95 nanoclusters. Intriguingly, NMDAR loss also generates retrograde reorganization of the active zone, resulting in denser, more numerous Munc13-1 nanoclusters, more of which are aligned with PSD-95 nanoclusters. Together, these changes to synaptic nanostructure predict stronger AMPA receptor-mediated transmission in the absence of NMDARs. Notably, while prolonged antagonism of NMDAR activity increases Munc13-1 density within nanoclusters, it does not fully recapitulate these trans-synaptic effects. Thus, our results confirm that NMDARs play an important role in maintaining pre- and postsynaptic nanostructure and suggest that both decreased NMDAR expression and suppressed NMDAR activity may exert distinct effects on synaptic function, yet through unique architectural mechanisms.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
- Current address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Emily M. DeMarco
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Michael C. Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| |
Collapse
|
3
|
Kopach O, Sylantyev S, Bard L, Michaluk P, Heller JP, Gutierrez del Arroyo A, Ackland GL, Gourine AV, Rusakov DA. Human neutrophils communicate remotely via calcium-dependent glutamate-induced glutamate release. iScience 2023; 26:107236. [PMID: 37496680 PMCID: PMC10366500 DOI: 10.1016/j.isci.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Neutrophils are white blood cells that are critical to acute inflammatory and adaptive immune responses. Their swarming-pattern behavior is controlled by multiple cellular cascades involving calcium-dependent release of various signaling molecules. Previous studies have reported that neutrophils express glutamate receptors and can release glutamate but evidence of direct neutrophil-neutrophil communication has been elusive. Here, we hold semi-suspended cultured human neutrophils in patch-clamp whole-cell mode to find that calcium mobilization induced by stimulating one neutrophil can trigger an N-methyl-D-aspartate (NMDA) receptor-driven membrane current and calcium signal in neighboring neutrophils. We employ an enzymatic-based imaging assay to image, in real time, glutamate release from neutrophils induced by glutamate released from their neighbors. These observations provide direct evidence for a positive-feedback inter-neutrophil communication that could contribute to mechanisms regulating communal neutrophil behavior.
Collapse
Affiliation(s)
- Olga Kopach
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Lucie Bard
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Piotr Michaluk
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Janosch P. Heller
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Ana Gutierrez del Arroyo
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Dmitri A. Rusakov
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
4
|
Rusakov DA. A misadventure of the correlation coefficient. Trends Neurosci 2023; 46:94-96. [PMID: 36280457 DOI: 10.1016/j.tins.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 01/25/2023]
Abstract
The correlation coefficient gauges linear association between two variables. However, interpreting its value depends on the question at hand. This article argues that relying on the correlation coefficient may be irrelevant for many neuroscience research tasks. When the experimental dataset is contextually suitable for binning-averaging, other indicators of statistical association could prove more suitable.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
5
|
Abl2 Kinase Differentially Regulates iGluRs Current Activity and Synaptic Localization. Cell Mol Neurobiol 2023:10.1007/s10571-023-01317-9. [PMID: 36689065 DOI: 10.1007/s10571-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Abelson non-receptor tyrosine kinases (Abl1 and Abl2) are established cellular signaling proteins, implicated in cytoskeletal reorganization essential for modulation of cell morphology and motility. During development of the central nervous system, Abl kinases play fundamental roles in neurulation and neurite outgrowth, relaying information from axon guidance cues and growth factor receptors to promote cytoskeletal rearrangements. In mature neurons, Abl kinases localize to pre- and postsynaptic compartments and are involved in regulation of synaptic stability and plasticity. Although emerging evidence indicates interchangeability of these isoforms in managing of cellular functions, in healthy adult neurons, Abl1 contribution is less elucidated, while Abl2 is required for optimal synaptic functioning. Our previous study demonstrated compartmentalization of Abl1 to the presynapse and Abl2 to the postsynapse and characterized their modulatory effect on spontaneous excitatory synaptic transmission. Here, we further delineate the role of Abl2 on regulation of the postsynaptic component of miniature excitatory postsynaptic current (mEPSC). Our findings show that both acute and prolonged activation of Abl2, in line with reduction of mEPSC amplitude, also decrease AMPA and NMDA current amplitudes. In contrast with the current-detrimental effect, prolonged Abl2 activity stabilizes spines, particularly contributing to maintenance of active synapses at distal (perhaps apical) segments of dendrites. Hence, we propose that attenuation of ion currents via ionotropic glutamatergic receptors by Abl2 kinase derives from either reduction of the receptor sensitivity for glutamate or is due to alteration of channel gating mechanisms. Abl2 and excitatory postsynapses: Abl2 expression level affects active excitatory synapse density on distal dendrites, while Abl2 activity impacts current density through AMPA and NMDA receptors.
Collapse
|
6
|
Wang CS, Chanaday NL, Monteggia LM, Kavalali ET. Probing the segregation of evoked and spontaneous neurotransmission via photobleaching and recovery of a fluorescent glutamate sensor. eLife 2022; 11:e76008. [PMID: 35420542 PMCID: PMC9129874 DOI: 10.7554/elife.76008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses maintain both action potential-evoked and spontaneous neurotransmitter release; however, organization of these two forms of release within an individual synapse remains unclear. Here, we used photobleaching properties of iGluSnFR, a fluorescent probe that detects glutamate, to investigate the subsynaptic organization of evoked and spontaneous release in primary hippocampal cultures. In nonneuronal cells and neuronal dendrites, iGluSnFR fluorescence is intensely photobleached and recovers via diffusion of nonphotobleached probes with a time constant of ~10 s. After photobleaching, while evoked iGluSnFR events could be rapidly suppressed, their recovery required several hours. In contrast, iGluSnFR responses to spontaneous release were comparatively resilient to photobleaching, unless the complete pool of iGluSnFR was activated by glutamate perfusion. This differential effect of photobleaching on different modes of neurotransmission is consistent with a subsynaptic organization where sites of evoked glutamate release are clustered and corresponding iGluSnFR probes are diffusion restricted, while spontaneous release sites are broadly spread across a synapse with readily diffusible iGluSnFR probes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
7
|
Wang G, Woods C, Johnson MA, Milner TA, Glass MJ. Angiotensin II Infusion Results in Both Hypertension and Increased AMPA GluA1 Signaling in Hypothalamic Paraventricular Nucleus of Male but not Female Mice. Neuroscience 2022; 485:129-144. [PMID: 34999197 PMCID: PMC9116447 DOI: 10.1016/j.neuroscience.2021.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays a key role in hypertension, however the signaling pathways that contribute to the adaptability of the PVN during hypertension are uncertain. We present evidence that signaling at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor contributes to increased blood pressure in a model of neurogenic hypertension induced by 14-day slow-pressor angiotensin II (AngII) infusion in male mice. It was found that AngII hypertension was associated with an increase in plasma membrane affiliation of GluA1, but decreased GluA2, in dendritic profiles of PVN neurons expressing the TNFα type 1 receptor, a modulator of AMPA receptor trafficking. The increased plasma membrane GluA1 was paralleled by heightened AMPA currents in PVN-spinal cord projection neurons from AngII-infused male mice. Significantly, elevated AMPA currents in AngII-treated mice were blocked by 1-Naphthyl acetyl spermine trihydrochloride, pointing to the involvement of GluA2-lacking GluA1 receptors in the heightened AMPA signaling in PVN neurons. A further functional role for GluA1 in the PVN was demonstrated by the attenuated hypertensive response following silencing of GluA1 in the PVN of AngII-infused male mice. In female mice, AngII-infusion did not impact blood pressure or plasma membrane localization of GluA1 . Post-translational modifications that increase the plasma membrane localization of AMPA GluA1 and heighten the rapid excitatory signaling actions of glutamate in PVN neurons may serve as a molecular substrate underlying sex differences in hypertension.
Collapse
Affiliation(s)
- Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Address correspondence to: Dr. Michael J. Glass, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065; Phone: (646) 962-8253;
| |
Collapse
|
8
|
Chipman PH, Fung CCA, Pazo Fernandez A, Sawant A, Tedoldi A, Kawai A, Ghimire Gautam S, Kurosawa M, Abe M, Sakimura K, Fukai T, Goda Y. Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. eLife 2021; 10:70818. [PMID: 34693906 PMCID: PMC8594917 DOI: 10.7554/elife.70818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.
Collapse
Affiliation(s)
| | - Chi Chung Alan Fung
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | | | | | - Angelo Tedoldi
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Kawai
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | | | | | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| |
Collapse
|
9
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|