1
|
Raza M, Rajan AR, Kennedy BB, Reznicek TE, Oruji F, Mirza S, Rowley MJ, Kristiansen G, Datta K, Mohapatra BC, Band H, Band V. ECD, a novel androgen receptor target promotes prostate cancer tumorigenesis by regulating glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635534. [PMID: 39975152 PMCID: PMC11838420 DOI: 10.1101/2025.01.30.635534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Androgen receptor (AR)-mediated signaling is essential for PC tumorigenesis. In TCGA database we observed a positive correlation between ECD and AR expression. Consistently, Dihydrotestosterone (DHT) treatment of PC cell lines increased ECD mRNA and protein levels, and AR knockdown (KD) reduced ECD expression. Bioinformatic analysis predicted three consensus androgen response elements in the ECD promoter, and DHT treatment increased AR occupancy at the ECD promoter, and enhanced ECD promoter activity. Enzalutamide treatment decreased ECD levels, and ECD knockout (KO) in PC cells reduced oncogenic traits, suggesting a functional role of ECD to maintain PC oncogenesis. ECD mRNA and protein are overexpressed in PC patient tissues, and its overexpression predicts shorter survival. Overexpression of ECD in PC cell lines enhanced the oncogenic traits in vitro and developed faster and larger highly proliferative xenograft tumors. RNA-seq analysis of mouse tumors revealed increase mRNA levels of several glycolytic genes. ECD associates with mRNA of several key glycolytic genes and is required for their stability, consistent with our recent demonstration of ECD as an RNA binding protein. Higher glucose uptake and glycolysis was seen upon ECD OE in PC cells. Together, we demonstrate role of a novel AR target gene ECD in PC tumorigenesis.
Collapse
|
2
|
Olaisen C, Røst LM, Sharma A, Søgaard CK, Khong T, Berg S, Jang M, Nedal A, Spencer A, Bruheim P, Otterlei M. Multiple Myeloma Cells with Increased Proteasomal and ER Stress Are Hypersensitive to ATX-101, an Experimental Peptide Drug Targeting PCNA. Cancers (Basel) 2024; 16:3963. [PMID: 39682151 DOI: 10.3390/cancers16233963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives: To examine the regulatory role of PCNA in MM, we have targeted PCNA with the experimental drug ATX-101 in three commercial cell lines (JJN3, RPMI 1660, AMO) and seven in-house patient-derived cell lines with a more primary cell-like phenotype (TK9, 10, 12, 13, 14, 16 and 18) and measured the systemic molecular effects. Methods: We have used a multi-omics untargeted approach, measuring the gene expression (transcriptomics), a subproteomics approach measuring mainly signalling proteins and proteins in complex with these (signallomics) and quantitative metabolomics. These results are supplemented with traditional analysis, e.g., viability, Western and ELISA analysis. Results: The sensitivity of the cell lines to ATX-101 varied, including between three cell lines derived from the same patient at different times of disease. A trend towards increased sensitivity to ATX-101 during disease progression was detected. Although with different sensitivities, ATX-101 treatment resulted in numerous changes in signalling and metabolite pools in all cell lines. Transcriptomics and signallomics analysis of the TK cell lines revealed that elevated endogenous expression of ribosomal genes, elevated proteasomal and endoplasmic reticulum (ER) stress and low endogenous levels of NAD+ and NADH were associated with ATX-101 hypersensitivity. ATX-101 treatment further enhanced the ER stress, reduced primary metabolism and reduced the levels of the redox pair GSH/GSSG in sensitive cells. Signallome analysis suggested that eleven proteins (TPD52, TNFRS17/BCMA, LILRB4/ILT3, TSG101, ZNRF2, UPF3B, FADS2, C11orf38/SMAP, CGREF1, GAA, COG4) were activated only in the sensitive MM cell lines (TK13, 14 and 16 and JJN3), and not in nine other cancer cell lines or in primary monocytes. These proteins may therefore be biomarkers of cells with activated proteasomal and ER stress even though the gene expression levels of these proteins were not elevated. Interestingly, carfilzomib-resistant cells were at least as sensitive to ATX-101 as the wild-type cells, suggesting both low cross-resistance between ATX-101 and proteasome inhibitors and elevated proteasomal stress in carfilzomib-resistant cells. Conclusions: Our multi-omics approach revealed a vital role of PCNA in regulation of proteasomal and ER stress in MM.
Collapse
Affiliation(s)
- Camilla Olaisen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Animesh Sharma
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Tiffany Khong
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Australia
- Department of Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia
| | - Sigrid Berg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Mi Jang
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Aina Nedal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Andrew Spencer
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Australia
- Department of Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
- APIM Therapeutics A/S, Rådhusveien 12, NO-7100 Rissa, Norway
| |
Collapse
|
3
|
Wang Y, Curson JE, Ramnath D, Das Gupta K, Reid RC, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain. Biochem J 2024; 481:1569-1584. [PMID: 39373581 PMCID: PMC11555707 DOI: 10.1042/bcj20240380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
Histone deacetylase 7 (HDAC7) is a member of the class IIa family of classical HDACs with important roles in cell development, differentiation, and activation, including in macrophages and other innate immune cells. HDAC7 and other class IIa HDACs act as transcriptional repressors in the nucleus but, in some cell types, they can also act in the cytoplasm to modify non-nuclear proteins and/or scaffold signalling complexes. In macrophages, HDAC7 is a cytoplasmic protein with both pro- and anti-inflammatory functions, with the latter activity involving activation of the pentose phosphate pathway (PPP) enzyme 6-phosphogluconate dehydrogenase (6PGD) and the generation of anti-inflammatory metabolite ribulose-5-phosphate. Here, we used ectopic expression systems and biochemical approaches to investigate the mechanism by which HDAC7 promotes 6PGD enzyme activity. We reveal that HDAC7 enzyme activity is not required for its activation of 6PGD and that the N-terminal protein-protein interaction domain of HDAC7 is sufficient to initiate this response. Mechanistically, the N-terminus of HDAC7 increases the affinity of 6PGD for NADP+, promotes the generation of a shorter form of 6PGD, and enhances the formation of higher order protein complexes, implicating its scaffolding function in engagement of the PPP. This contrasts with the pro-inflammatory function of HDAC7 in macrophages, in which it promotes deacetylation of the glycolytic enzyme pyruvate kinase M2 for inflammatory cytokine production.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E.B. Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C. Reid
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria 3168, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
5
|
Mi T, Kong X, Chen M, Guo P, He D. Inducing disulfidptosis in tumors:potential pathways and significance. MedComm (Beijing) 2024; 5:e791. [PMID: 39415848 PMCID: PMC11480524 DOI: 10.1002/mco2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
Collapse
Affiliation(s)
- Tao Mi
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Xiangpan Kong
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Meiling Chen
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Peng Guo
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
- Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouP.R. China
| | - Dawei He
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| |
Collapse
|
6
|
Wu J, Chen Y, Zou H, Xu K, Hou J, Wang M, Tian S, Gao M, Ren Q, Sun C, Lu S, Wang Q, Shu Y, Wang S, Wang X. 6-Phosphogluconate dehydrogenase promotes glycolysis and fatty acid synthesis by inhibiting the AMPK pathway in lung adenocarcinoma cells. Cancer Lett 2024; 601:217177. [PMID: 39179096 DOI: 10.1016/j.canlet.2024.217177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Abnormal metabolism has emerged as a prominent hallmark of cancer and plays a pivotal role in carcinogenesis and progression of lung adenocarcinoma (LUAD). In this study, single-cell sequencing revealed that the metabolic enzyme 6-phosphogluconate dehydrogenase (PGD), which is a critical regulator of the pentose phosphate pathway (PPP), is significantly upregulated in the malignant epithelial cell subpopulation during malignant progression. However, the precise functional significance of PGD in LUAD and its underlying mechanisms remain elusive. Through the integration of TCGA database analysis and LUAD tissue microarray data, it was found that PGD expression was significantly upregulated in LUAD and closely correlated with a poor prognosis in LUAD patients. Moreover, in vitro and in vivo analyses demonstrated that PGD knockout and inhibition of its activity mitigated the proliferation, migration, and invasion of LUAD cells. Mechanistically, immunoprecipitation-mass spectrometry (IP-MS) revealed for the first time that IQGAP1 is a robust novel interacting protein of PGD. PGD decreased p-AMPK levels by competitively interacting with the IQ domain of the known AMPKα binding partner IQGAP1, which promoted glycolysis and fatty acid synthesis in LUAD cells. Furthermore, we demonstrated that the combination of Physcion (a PGD-specific inhibitor) and metformin (an AMPK agonist) could inhibit tumor growth more effectively both in vivo and in vitro. Collectively, these findings suggest that PGD is a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Jun Wu
- Medical College, Yangzhou University, Yangzhou, China; Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China; Yangzhou Key Laboratory of Thoracic and Cardiac Surgery, Yangzhou, China
| | - Yong Chen
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zou
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China; Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Kaiyue Xu
- Department of Radiation Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Jiaqi Hou
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Mengmeng Wang
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Shuyu Tian
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Mingjun Gao
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Qinglin Ren
- First College of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Chao Sun
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Shichun Lu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Yusheng Shu
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China; Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China; Yangzhou Key Laboratory of Thoracic and Cardiac Surgery, Yangzhou, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
| | - Xiaolin Wang
- Medical College, Yangzhou University, Yangzhou, China; Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China; Yangzhou Key Laboratory of Thoracic and Cardiac Surgery, Yangzhou, China.
| |
Collapse
|
7
|
Rahman R, Rahaman MH, Hanson AR, Choo N, Xie J, Townley SL, Shrestha R, Hassankhani R, Islam S, Ramm S, Simpson KJ, Risbridger GP, Best G, Centenera MM, Balk SP, Kichenadasse G, Taylor RA, Butler LM, Tilley WD, Conn SJ, Lawrence MG, Wang S, Selth LA. CDK9 inhibition inhibits multiple oncogenic transcriptional and epigenetic pathways in prostate cancer. Br J Cancer 2024; 131:1092-1105. [PMID: 39117800 PMCID: PMC11405875 DOI: 10.1038/s41416-024-02810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Muhammed H Rahaman
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Nicholas Choo
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Jianling Xie
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Scott L Townley
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Raj Shrestha
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia
| | - Ramin Hassankhani
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Susanne Ramm
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Gail P Risbridger
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Giles Best
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Margaret M Centenera
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ganessan Kichenadasse
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Department of Medical Oncology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, South Australia
| | - Renea A Taylor
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Simon J Conn
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia.
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Lu AL, Yin L, Huang Y, Islam ZH, Kanchetty R, Johnston C, Zhang K, Xie X, Park KH, Chalfant CE, Wang B. The role of 6-phosphogluconate dehydrogenase in vascular smooth muscle cell phenotypic switching and angioplasty-induced intimal hyperplasia. JVS Vasc Sci 2024; 5:100214. [PMID: 39318609 PMCID: PMC11420449 DOI: 10.1016/j.jvssci.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/21/2024] [Indexed: 09/26/2024] Open
Abstract
Background Restenosis poses a significant challenge for individuals afflicted with peripheral artery diseases, often leading to considerable morbidity and necessitating repeated interventions. The primary culprit behind the pathogenesis of restenosis is intimal hyperplasia (IH), in which the hyperproliferative and migratory vascular smooth muscle cell (VSMC) accumulate excessively in the tunica intima. 6-Phosphogluconate dehydrogenase (6PGD), sometimes referred to as PGD, is one of the critical enzymes in pentose phosphate pathway (PPP). In this study, we sought to probe whether 6PGD is aberrantly regulated in IH and contributes to VSMC phenotypic switching. Methods We used clinical specimens of diseased human coronary arteries with IH lesions and observed robust upregulation of 6PGD at protein level in both the medial and intimal layers in comparison with healthy arterial segments. Results 6PGD activity and protein expression were profoundly stimulated upon platelet-derived growth factor-induced VSMC phenotypic switching. Using gain-of-function (dCas9-mediated transcriptional activation) and loss-of-function (small interfering RNA-mediated) silencing, we were able to demonstrate the pathogenic role of 6PGD in driving VSMC hyperproliferation, migration, dedifferentiation, and inflammation. Finally, we conducted a rat model of balloon angioplasty in the common carotid artery, with Pluronic hydrogel-assisted perivascular delivery of Physcion, a selective 6PGD inhibitor with poor systemic bioavailability, and observed effective mitigation of IH. Conclusions We contend that aberrant 6PGD expression and activity-indicative of a metabolic shift toward pentose phosphate pathway-could serve as a new disease-driving mechanism and, hence, an actionable target for the development of effective new therapies for IH and restenosis after endovascular interventions.
Collapse
Affiliation(s)
- Amy L. Lu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Kaijie Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Ki Ho Park
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
9
|
Shrestha RK, Nassar ZD, Hanson AR, Iggo R, Townley SL, Dehairs J, Mah CY, Helm M, Alizadeh-Ghodsi M, Pickering M, Ghesquière B, Watt MJ, Quek LE, Hoy AJ, Tilley WD, Swinnen JV, Butler LM, Selth LA. ACSM1 and ACSM3 Regulate Fatty Acid Metabolism to Support Prostate Cancer Growth and Constrain Ferroptosis. Cancer Res 2024; 84:2313-2332. [PMID: 38657108 DOI: 10.1158/0008-5472.can-23-1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared with nonmalignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, whereas silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation, and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function of medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. Significance: Androgen receptor-induced ACSM1 and ACSM3 mediate a metabolic pathway in prostate cancer that enables the utilization of medium chain fatty acids for energy production, blocks ferroptosis, and drives resistance to clinically approved antiandrogens.
Collapse
Affiliation(s)
- Raj K Shrestha
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Zeyad D Nassar
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Adrienne R Hanson
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Institut Bergonié Unicancer, INSERM, Bordeaux, France
| | - Scott L Townley
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chui Y Mah
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Madison Helm
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mohammadreza Alizadeh-Ghodsi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Marie Pickering
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| |
Collapse
|
10
|
Sun M, Feng Q, Yan Q, Zhao H, Wang H, Zhang S, Shan C, Liu S, Wang J, Zhai H. Malate, a natural inhibitor of 6PGD, improves the efficacy of chemotherapy in lung cancer. Lung Cancer 2024; 190:107541. [PMID: 38531154 DOI: 10.1016/j.lungcan.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Metabolic reprogramming is an important coordinator of tumor development and resistance to therapy, such as the tendency of tumor cells to utilize glycolytic energy rather than oxidative phosphorylation, even under conditions of sufficient oxygen. Therefore, targeting metabolic enzymes is an effective strategy to overcome therapeutic resistance. MATERIALS AND METHODS We explored the differential expression and growth-promoting function of MDH2 by immunohistochemistry and immunoblotting experiments in lung cancer patients and lung cancer cells. Pentose phosphate pathway-related phenotypes (including ROS levels, NADPH levels, and DNA synthesis) were detected intracellularly, and the interaction of malate and proteinase 6PGD was detected in vitro. In vivo experiments using implanted xenograft mouse models to explore the growth inhibitory effect and pro-chemotherapeutic function of dimethyl malate (DMM) on lung cancer. RESULTS We found that the expression of malate dehydrogenase (MDH2) in the tricarboxylic acid cycle (TCA cycle) was increased in lung cancer. Biological function enrichment analysis revealed that MDH2 not only promoted oxidative phosphorylation, but also promoted the pentose phosphate pathway (PPP pathway). Mechanistically, it was found that malate, the substrate of MDH2, can bind to the PPP pathway metabolic enzyme 6PGD, inhibit its activity, reduce the generation of NADPH, and block DNA synthesis. More importantly, DMM can improve the sensitivity of lung cancer to the clinical drug cisplatin. CONCLUSION We have identified malate as a natural inhibitor of 6PGD, which will provide new leads for the development of 6PGD inhibitors. In addition, the metabolic enzyme MDH2 and the metabolite malate may provide a backup option for cells to inhibit their own carcinogenesis, as the accumulated malate targets 6PGD to block the PPP pathway and inhibit cell cycle progression.
Collapse
Affiliation(s)
- Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qi Feng
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Qi Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Huifang Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyan Wang
- Department of Physical Examination, Characteristic Medical Center of the Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuangping Liu
- Department of Pathology, Medical School, Dalian University, Dalian, Liaoning, China.
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
| | - Hongyan Zhai
- Department of Ultrasound, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China.
| |
Collapse
|
11
|
Scott JS, Quek LE, Hoy AJ, Swinnen JV, Nassar ZD, Butler LM. Fatty acid elongation regulates mitochondrial β-oxidation and cell viability in prostate cancer by controlling malonyl-CoA levels. Biochem Biophys Res Commun 2024; 691:149273. [PMID: 38029544 DOI: 10.1016/j.bbrc.2023.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid β-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid β-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial β-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial β-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.
Collapse
Affiliation(s)
- Julia S Scott
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Johannes V Swinnen
- LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, B-3000, Belgium
| | - Zeyad D Nassar
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Hinneh JA, Gillis JL, Mah CY, Irani S, Shrestha RK, Ryan NK, Atsushi E, Nassar ZD, Lynn DJ, Selth LA, Kato M, Centenera MM, Butler LM. Targeting hyaluronan-mediated motility receptor (HMMR) enhances response to androgen receptor signalling inhibitors in prostate cancer. Br J Cancer 2023; 129:1350-1361. [PMID: 37673961 PMCID: PMC10575850 DOI: 10.1038/s41416-023-02406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Resistance to androgen receptor signalling inhibitors (ARSIs) represents a major clinical challenge in prostate cancer. We previously demonstrated that the ARSI enzalutamide inhibits only a subset of all AR-regulated genes, and hypothesise that the unaffected gene networks represent potential targets for therapeutic intervention. This study identified the hyaluronan-mediated motility receptor (HMMR) as a survival factor in prostate cancer and investigated its potential as a co-target for overcoming resistance to ARSIs. METHODS RNA-seq, RT-qPCR and Western Blot were used to evaluate the regulation of HMMR by AR and ARSIs. HMMR inhibition was achieved via siRNA knockdown or pharmacological inhibition using 4-methylumbelliferone (4-MU) in prostate cancer cell lines, a mouse xenograft model and patient-derived explants (PDEs). RESULTS HMMR was an AR-regulated factor that was unaffected by ARSIs. Genetic (siRNA) or pharmacological (4-MU) inhibition of HMMR significantly suppressed growth and induced apoptosis in hormone-sensitive and enzalutamide-resistant models of prostate cancer. Mechanistically, 4-MU inhibited AR nuclear translocation, AR protein expression and subsequent downstream AR signalling. 4-MU enhanced the growth-suppressive effects of 3 different ARSIs in vitro and, in combination with enzalutamide, restricted proliferation of prostate cancer cells in vivo and in PDEs. CONCLUSION Co-targeting HMMR and AR represents an effective strategy for improving response to ARSIs.
Collapse
Affiliation(s)
- Josephine A Hinneh
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joanna L Gillis
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chui Yan Mah
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Swati Irani
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raj K Shrestha
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Enomoto Atsushi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zeyad D Nassar
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Luke A Selth
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Margaret M Centenera
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5000, Australia.
- Freemason's Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
13
|
Blatt EB, Parra K, Neeb A, Buroni L, Bogdan D, Yuan W, Gao Y, Gilbreath C, Paschalis A, Carreira S, DeBerardinis RJ, Mani RS, de Bono JS, Raj GV. Critical role of antioxidant programs in enzalutamide-resistant prostate cancer. Oncogene 2023; 42:2347-2359. [PMID: 37355762 PMCID: PMC10752496 DOI: 10.1038/s41388-023-02756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Therapy resistance to second-generation androgen receptor (AR) antagonists, such as enzalutamide, is common in patients with advanced prostate cancer (PCa). To understand the metabolic alterations involved in enzalutamide resistance, we performed metabolomic, transcriptomic, and cistromic analyses of enzalutamide-sensitive and -resistant PCa cells, xenografts, patient-derived organoids, patient-derived explants, and tumors. We noted dramatically higher basal and inducible levels of reactive oxygen species (ROS) in enzalutamide-resistant PCa and castration-resistant PCa (CRPC), in comparison to enzalutamide-sensitive PCa cells or primary therapy-naive tumors respectively. Unbiased metabolomic evaluation identified that glutamine metabolism was consistently upregulated in enzalutamide-resistant PCa cells and CRPC tumors. Stable isotope tracing studies suggest that this enhanced glutamine metabolism drives an antioxidant program that allows these cells to tolerate higher basal levels of ROS. Inhibition of glutamine metabolism with either a small-molecule glutaminase inhibitor or genetic knockout of glutaminase enhanced ROS levels, and blocked the growth of enzalutamide-resistant PCa. The critical role of compensatory antioxidant pathways in maintaining enzalutamide-resistant PCa cells was validated by targeting another antioxidant program driver, ferredoxin 1. Taken together, our data identify a metabolic need to maintain antioxidant programs and a potentially targetable metabolic vulnerability in enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Eliot B Blatt
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Karla Parra
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | | | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Yunpeng Gao
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Collin Gilbreath
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ram S Mani
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK
- Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Xu J, Ren G, Cheng Q. Inhibition of 6-Phosphogluconate Dehydrogenase Reverses Epirubicin Resistance Through Metabolic Reprograming in Triple-Negative Breast Cancer Cells. Technol Cancer Res Treat 2023; 22:15330338231190737. [PMID: 37559469 PMCID: PMC10416659 DOI: 10.1177/15330338231190737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
At present, chemotherapy is the most effective strategy for treating triple-negative breast cancer (TNBC), but its efficacy was limited by the development of chemo-resistance. The exact mechanism of chemoresistance still remains unclear. This study aims to examine whether 6-phosphogluconate dehydrogenase (6PGD), a key enzyme in the oxidative pentose phosphate pathway (PPP), could promote the resistance of TNBC cells to epirubicin. A TNBC epirubicin-resistant cell line was developed by increasing concentration and the effectiveness was tested. The expression and knockdown efficiency of 6PGD were further validated by performing quantitative real-time PCR (qPCR) and Western blot. The effects of 6PGD on parental and drug-resistant TNBC cell lines were verified based on proliferation and apoptosis experiments. Finally, nicotinamide adenine dinucleotide phosphate (NADPH) and lactate quantitative experiments were performed to examine the mechanism of 6PGD in promoting drug resistance. Epirubicin-resistant cancer cells exhibited a higher level of 6PGD in contrast to epirubicin-sensitive cells. In addition, 6PGD inhibited by genetic and pharmacological approaches significantly suppressed the growth and survival of both epirubicin-sensitive and epirubicin-resisteant TNBC cells. It should be noted that 6PGD inhibition sensitized epirubicin-resistant TNBC cells to epirubicin treatment. Moreover, it was also found that the levels of NADPH and lactate increased in epirubicin-resistant TNBC cells but decreased in response to 6PGD inhibition. The present results indicated that 6PGD inhibition disrupted metabolic reprogramming in epirubicin-resistant TNBC cells. Our work demonstrated that 6PGD inhibition reversed the resistance of TNBC cells to epirubicin, providing an alternative therapeutic choice to tackle the challenge of epirubicin resistance in TNBC treatment.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Cheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Androgen receptor signaling-mitochondrial DNA-oxidative phosphorylation: A critical triangle in early prostate cancer. Curr Urol 2022; 16:207-212. [PMID: 36714229 PMCID: PMC9875216 DOI: 10.1097/cu9.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are more than just the cellular powerhouse. They also play key roles in vital functions such as apoptosis, metabolism regulation, and other intracellular interactions. The mitochondrial DNA (mtDNA) encodes for 12 subunits of the oxidative phosphorylation (OXPHOS) system. Depletion of mtDNA in androgen-dependent prostate cancer (PCa) cell lines renders them androgen-independent and more aggressive. Paradoxically, pharmaceutical inhibition of OXPHOS is lethal for subsets of PCa cells, whereas others become dependent on androgen receptor (AR) signaling for survival. Given that the AR-mitochondria interaction is critical for early PCa, it is crucial to understand the details of this interaction. Technical hurdles have made mitochondria traditionally difficult to study, with many techniques used for isolation masking the properties of given individual mitochondria. Although the isolation of mitochondria enables us to study OXPHOS, we miss the context in which mitochondria interact with the rest of the cell. Both AR signaling and mtDNA affect apoptosis, metabolism regulation, cellular calcium storage and homeostasis, intracellular calcium signaling, and redox homeostasis. In this review, we will attempt to understand how the crosstalk between AR-mtDNA-OXPHOS is responsible for "life or death" decisions inside the cells. Our aim is to point toward potential vulnerabilities that can lead to the discovery of novel therapeutic targets.
Collapse
|
16
|
Chen H, Lai X, Zhu Y, Huang H, Zeng L, Zhang L. Quantitative proteomics identified circulating biomarkers in lung adenocarcinoma diagnosis. Clin Proteomics 2022; 19:44. [PMID: 36404333 PMCID: PMC9677906 DOI: 10.1186/s12014-022-09381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Lung cancer (LC) is a common malignant tumor with a high incidence and poor prognosis. Early LC could be cured, but the 5-year-survival rate for patients advanced is extremely low. Early screening of tumor biomarkers through plasma could allow more LC to be detected at an early stage, leading to a earlier treatment and a better prognosis. METHODS This study was based on total proteomic analysis and parallel reaction monitoring validation of peripheral blood from 20 lung adenocarcinoma patients and 20 healthy individuals. Furthermore, differentially expressed proteins closely related to prognosis were analysed using Kaplan-Meier Plotter and receiver operating characteristic curve (ROC) curve analysis. RESULTS The candidate proteins GAPDH and RAC1 showed the highest connectivity with other differentially expressed proteins between the lung adenocarcinoma group and the healthy group using STRING. Kaplan-Meier Plotter analysis showed that lung adenocarcinoma patients with positive ATCR2, FHL1, RAB27B, and RAP1B expression had observably longer overall survival than patients with negative expression (P < 0.05). The high expression of ARPC2, PFKP, PNP, RAC1 was observably negatively correlated with prognosis (P < 0.05). 17 out of 27 proteins showed a high area under the curve (> 0.80) between the lung adenocarcinoma and healthy plasma groups. Among those proteins, UQCRC1 had an area under the curve of 0.960, and 5 proteins had an area under the curve from 0.90 to 0.95, suggesting that these hub proteins might have discriminatory potential in lung adenocarcinoma, P < 0.05. CONCLUSIONS These findings provide UQCRC1, GAPDH, RAC1, PFKP have potential as novel biomarkers for the early screening of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hongyu Chen
- grid.13291.380000 0001 0807 1581Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoqin Lai
- grid.412901.f0000 0004 1770 1022Day Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yihan Zhu
- grid.412901.f0000 0004 1770 1022Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Hong Huang
- grid.412901.f0000 0004 1770 1022Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lingyan Zeng
- grid.412901.f0000 0004 1770 1022Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Li Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
17
|
Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol (Dordr) 2022; 45:831-859. [PMID: 36036882 DOI: 10.1007/s13402-022-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce. CONCLUSIONS AND PERSPECTIVES In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.
Collapse
|
18
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
19
|
Centenera MM, Vincent AD, Moldovan M, Lin HM, Lynn DJ, Horvath LG, Butler LM. Harnessing the Heterogeneity of Prostate Cancer for Target Discovery Using Patient-Derived Explants. Cancers (Basel) 2022; 14:cancers14071708. [PMID: 35406480 PMCID: PMC8996971 DOI: 10.3390/cancers14071708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary There is a widespread push toward more biologically relevant pre-clinical models of prostate cancer that can improve the discovery and translation of new drugs and biomarkers for this disease. Patient-derived explant culture is an innovative pre-clinical model that utilizes surgical prostate cancer specimens in a way that retains the architecture, microenvironment and heterogeneity of prostate tumors—factors that critically influence cell behavior and response to therapy. With increasing tissue complexity comes increasing complexity of analysis. The aim of this study was to provide critical information for the successful application and analysis of the patient-derived prostate cancer explant model. Abstract Prostate cancer is a complex and heterogeneous disease, but a small number of cell lines have dominated basic prostate cancer research, representing a major obstacle in the field of drug and biomarker discovery. A growing lack of confidence in cell lines has seen a shift toward more sophisticated pre-clinical cancer models that incorporate patient-derived tumors as xenografts or explants, to more accurately reflect clinical disease. Not only do these models retain critical features of the original tumor, and account for the molecular diversity and cellular heterogeneity of prostate cancer, but they provide a unique opportunity to conduct research in matched tumor samples. The challenge that accompanies these complex tissue models is increased complexity of analysis. With over 10 years of experience working with patient-derived explants (PDEs) of prostate cancer, this study provides guidance on the PDE method, its limitations, and considerations for addressing the heterogeneity of prostate cancer PDEs that are based on statistical modeling. Using inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) as an example of a drug that induces robust proliferative response, we demonstrate how multi-omics analysis in prostate cancer PDEs is both feasible and essential for identification of key biological pathways, with significant potential for novel drug target and biomarker discovery.
Collapse
Affiliation(s)
- Margaret M. Centenera
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; (A.D.V.); (L.M.B.)
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Andrew D. Vincent
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; (A.D.V.); (L.M.B.)
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Max Moldovan
- Biometry Hub, Faculty of Science, University of Adelaide, Waite Campus, SA 5005, Australia;
| | - Hui-Ming Lin
- Garvan Institute for Medical Research, Darlinghurst, NSW 2010, Australia; (H.-M.L.); (L.G.H.)
| | - David J. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Lisa G. Horvath
- Garvan Institute for Medical Research, Darlinghurst, NSW 2010, Australia; (H.-M.L.); (L.G.H.)
- Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- University of Sydney, Camperdown, NSW 2006, Australia
| | - Lisa M. Butler
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia; (A.D.V.); (L.M.B.)
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia;
| |
Collapse
|
20
|
Sousa AP, Costa R, Alves MG, Soares R, Baylina P, Fernandes R. The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Front Cell Dev Biol 2022; 10:843458. [PMID: 35399507 PMCID: PMC8992047 DOI: 10.3389/fcell.2022.843458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) remains the second most common type of cancer in men worldwide in 2020. Despite its low death rate, the need for new therapies or prevention strategies is critical. The prostate carcinogenesis process is complex and multifactorial. PCa is caused by a variety of mutations and carcinogenic events that constitutes the disease's multifactorial focus, capable of not only remodeling cellular activity, but also modeling metabolic pathways to allow adaptation to the nutritional requirements of the tumor, creating a propitious microenvironment. Some risk factors have been linked to the development of PCa, including Metabolic Syndrome (MetS) and Type 2 Diabetes Mellitus (T2DM). MetS is intrinsically related to PCa carcinogenic development, increasing its aggressiveness. On the other hand, T2DM has the opposite impact, although in other carcinomas its effect is similar to the MetS. Although these two metabolic disorders may share some developmental processes, such as obesity, insulin resistance, and dyslipidemia, their influence on PCa prognosis appears to have an inverse effect, which makes this a paradox. Understanding the phenomena behind this paradoxical behavior may lead to new concepts into the comprehension of the diseases, as well as to evaluate new therapeutical targets. Thus, this review aimed to evaluate the impact of metabolic disorders in PCa's aggressiveness state and metabolism.
Collapse
Affiliation(s)
- André P. Sousa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Raquel Costa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marco G. Alves
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pilar Baylina
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Rúben Fernandes
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
21
|
Fidelito G, Watt MJ, Taylor RA. Personalized Medicine for Prostate Cancer: Is Targeting Metabolism a Reality? Front Oncol 2022; 11:778761. [PMID: 35127483 PMCID: PMC8813754 DOI: 10.3389/fonc.2021.778761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer invokes major shifts in gene transcription and metabolic signaling to mediate alterations in nutrient acquisition and metabolic substrate selection when compared to normal tissues. Exploiting such metabolic reprogramming is proposed to enable the development of targeted therapies for prostate cancer, yet there are several challenges to overcome before this becomes a reality. Herein, we outline the role of several nutrients known to contribute to prostate tumorigenesis, including fatty acids, glucose, lactate and glutamine, and discuss the major factors contributing to variability in prostate cancer metabolism, including cellular heterogeneity, genetic drivers and mutations, as well as complexity in the tumor microenvironment. The review draws from original studies employing immortalized prostate cancer cells, as well as more complex experimental models, including animals and humans, that more accurately reflect the complexity of the in vivo tumor microenvironment. In synthesizing this information, we consider the feasibility and potential limitations of implementing metabolic therapies for prostate cancer management.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J. Watt
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| | - Renea A. Taylor
- Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, Australia
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| |
Collapse
|
22
|
Sacca PA, Calvo JC. Periprostatic Adipose Tissue Microenvironment: Metabolic and Hormonal Pathways During Prostate Cancer Progression. Front Endocrinol (Lausanne) 2022; 13:863027. [PMID: 35498409 PMCID: PMC9043608 DOI: 10.3389/fendo.2022.863027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
The periprostatic adipose tissue (PPAT) is a site of invasion of prostate cancer (PCa) and is part of the microenvironment. It was shown that PPAT secretes factors and fatty acids (FAs) that alter the microenvironment of the PCa. The PPAT secretome of patients with PCa-T3 stage (PPAT-T3) has a metabolic profile enriched in several pathways related to energy production, indicating a greater energy requirement by the tumor, when compared to that of patients in the PCa-T2 stage (PPAT-T2). PPAT-T3 also shows enrichment in pathways related to hormone response, polyamine synthesis, and control of protein synthesis, through amino acid, RNA, and nucleotide metabolism. PPAT-T2 and PPAT-BPH secretomes have less complex metabolic profile, both related with energy balance, while PPAT-BPH has hormone response through insulin pathway. Undoubtedly, a deeper characterization of the human PPAT will lead to a better understanding of the disease and possibly allow new stratification factors and the design of a specific therapy that targets crucial components of the tumor microenvironment as another way to treat or control the disease.
Collapse
Affiliation(s)
- Paula Alejandra Sacca
- Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Instituto de Biología y Medicina Experimental (IBYME)—CONICET, Buenos Aires, Argentina
- *Correspondence: Paula Alejandra Sacca, ; Juan Carlos Calvo,
| | - Juan Carlos Calvo
- Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Instituto de Biología y Medicina Experimental (IBYME)—CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Paula Alejandra Sacca, ; Juan Carlos Calvo,
| |
Collapse
|