1
|
Lu Y, Sun Z, Huang P, Wang Y. Effect of acupuncture combined with auricular beanembedding on autonomic nervous system function, heart rate variability and mental state of migraine patients. Am J Transl Res 2024; 16:6148-6158. [PMID: 39544727 PMCID: PMC11558419 DOI: 10.62347/mjpk6664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To analyze the effects of acupuncture combined with auricular bean embedding on autonomic nervous dysfunction, heart rate variability and psychological state of migraine patients. METHOD Sixty migraine patients admitted to our hospital from August 2022 to June 2023 were selected for this retrospective study. Based on their treatment protocols, the patients were divided into the acupuncture alone group (control group) and acupuncture combined with auricular bean embedding group (observation group), with 30 cases in each group. The clinical effects in the two groups were compared. The heart rate variability (low-frequency power, high-frequency power, standard deviation of all normal sinus intervals) of patients between the two groups after treatment was compared. The SF-McGill Pain Questionnaire (SF-MPQ) scores were compared between the two groups before and after treatment, as were psychological scores using the Hamilton Anxiety Scale (HAM-A) and quality of life (QOL) scores. The autonomic nervous dysfunction was also compared between the two groups before and after treatment. RESULTS The observation group showed superior clinical efficacy compared to the control group (χ2=8.161, P=0.043). Clinical features scale (CFS) scores significantly decreased in both groups post-treatment, with greater reduction in the observation group (t=4.283, P < 0.001). Heart rate variability parameters also showed significant improvements in the observation group, including increases in both low-frequency power and high-frequency power (t=2.010, P=0.049; t=2.111, P=0.039 respectively) and standard deviation of sinus intervals (t=2.435, P=0.018). Post-treatment SF-MPQ scores were significantly lower in the observation group compared to the control group (t=17.709, P < 0.001), indicating reduced pain. Anxiety levels, as measured by HAM-A scores, decreased more significantly in the observation group compared to the control group (t=3.429, P=0.001). Both groups showed significant improvements in quality of life, with the observation group saw more substantial effects (t=7.235, P < 0.001). CONCLUSION Acupuncture combined with auricular bean embedding effectively improves autonomic nervous dysfunction, enhances the activity of the autonomic nervous system, including both sympathetic and parasympathetic nerves, restores autonomic nerve balance, and relieves clinical symptoms of migraine patients. It also demonstrates significant therapeutic efficacy and holds substantial value in clinical application and warrants promotion.
Collapse
Affiliation(s)
- Yunqi Lu
- Department of Traditional Chinese Medicine, Shanghai Fifth People’s HospitalMinhang District, Shanghai 201100, China
| | - Zhengda Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese MedicineXuhui District, Shanghai 200237, China
| | - Peiyan Huang
- Department of Orthopaedics, Shanghai Fifth People’s HospitalMinhang District, Shanghai 201100, China
| | - Yumin Wang
- Department of Traditional Chinese Medicine, Shanghai Fifth People’s HospitalMinhang District, Shanghai 201100, China
| |
Collapse
|
2
|
Cropper HC, Conway CM, Wyche W, Pradhan AA. Glial activation in pain and emotional processing regions in the nitroglycerin mouse model of chronic migraine. Headache 2024; 64:973-982. [PMID: 38899347 DOI: 10.1111/head.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Our aim was to survey astrocyte and microglial activation across four brain regions in a mouse model of chronic migraine. BACKGROUND Chronic migraine is a leading cause of disability, with higher rates in females. The role of central nervous system neurons and glia in migraine pathophysiology is not fully elucidated. Preclinical studies have shown abnormal glial activation in the trigeminal nucleus caudalis of male rodents. No current reports have investigated glial activation in both sexes in other important brain regions involved with the nociceptive and emotional processing of pain. METHODS The mouse nitroglycerin model of migraine was used, and nitroglycerin (10 mg/kg) or vehicle was administered every other day for 9 days. Prior to injections on days 1, 5, and 9, cephalic allodynia was determined by periorbital von Frey hair testing. Immunofluorescent staining of astrocyte marker, glial fibrillary protein (GFAP), and microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), in male and female trigeminal nucleus caudalis, periaqueductal gray, somatosensory cortex, and nucleus accumbens was completed. RESULTS Behavioral testing demonstrated increased cephalic allodynia in nitroglycerin- versus vehicle-treated mice. An increase in the percent area covered by GFAP+ cells in the trigeminal nucleus caudalis and nucleus accumbens, but not the periaqueductal gray or somatosensory cortex, was observed in response to nitroglycerin. No significant differences were observed for Iba1 staining across brain regions. We did not detect significant sex differences in GFAP or Iba1 quantification. CONCLUSIONS Immunohistochemical analysis suggests that, at the time point tested, immunoreactivity of GFAP+ astrocytes, but not Iba1+ microglia, changes in response to chronic migraine-associated pain. Additionally, there do not appear to be significant differences between males and females in GFAP+ or Iba1+ cells across the four brain regions analyzed.
Collapse
Affiliation(s)
- Haley C Cropper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Catherine M Conway
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Whitney Wyche
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
4
|
Li Z, Mei Y, Wang W, Wang L, Wu S, Zhang K, Qiu D, Xiong Z, Li X, Yuan Z, Zhang P, Zhang M, Tong Q, Zhang Z, Wang Y. White matter and cortical gray matter microstructural abnormalities in new daily persistent headache: a NODDI study. J Headache Pain 2024; 25:110. [PMID: 38977951 PMCID: PMC11232337 DOI: 10.1186/s10194-024-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND New daily persistent headache (NDPH) is a rare primary headache with unclear pathogenesis. Neuroimaging studies of NDPH are limited, and controversy still exists. Diffusion tensor imaging (DTI) is commonly used to study the white matter. However, lacking specificity, the potential pathological mechanisms of white matter microstructural changes remain poorly understood. In addition, the intricacy of gray matter structures impedes the application of the DTI model. Here, we applied an advanced diffusion model of neurite orientation dispersion and density imaging (NODDI) to study the white matter and cortical gray matter microstructure in patients with NDPH. METHODS This study assessed brain microstructure, including 27 patients with NDPH, and matched 28 healthy controls (HCs) by NODDI. The differences between the two groups were assessed by tract-based spatial statistics (TBSS) and surface-based analysis (SBA), focusing on the NODDI metrics (neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF)). Furthermore, we performed Pearson's correlation analysis between the NODDI indicators and clinical characteristics. RESULTS Compared to HCs, patients with NDPH had a reduction of density and complexity in several fiber tracts. For robust results, the fiber tracts were defined as comprising more than 100 voxels, including bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), as well as right corticospinal tract (CST). Moreover, the reduction of neurite density was uncovered in the left superior and middle frontal cortex, left precentral cortex, and right lateral orbitofrontal cortex and insula. There was no correlation between the NODDI metrics of these brain regions and clinical variables or scales of relevance after the Bonferroni correction. CONCLUSIONS Our research indicated that neurite loss was detected in both white matter and cortical gray matter of patients with NDPH.
Collapse
Affiliation(s)
- Zhilei Li
- Department of Neurology, The Second Hospital of Lanzhou University, Cuiying Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Lei Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Cuiying Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Shouyi Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Cuiying Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Kaibo Zhang
- Department of Neurology, The Second Hospital of Lanzhou University, Cuiying Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Xiong
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaoshuang Li
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Mantian Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Qiuling Tong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital of Lanzhou University, Cuiying Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China.
| | - Yonggang Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Cuiying Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China.
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
5
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Potential of focal cortical dysplasia in migraine pathogenesis. Cereb Cortex 2024; 34:bhae158. [PMID: 38615241 DOI: 10.1093/cercor/bhae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024] Open
Abstract
Focal cortical dysplasias are abnormalities of the cerebral cortex associated with an elevated risk of neurological disturbances. Cortical spreading depolarization/depression is a correlate of migraine aura/headache and a trigger of migraine pain mechanisms. However, cortical spreading depolarization/depression is associated with cortical structural changes, which can be classified as transient focal cortical dysplasias. Migraine is reported to be associated with changes in various brain structures, including malformations and lesions in the cortex. Such malformations may be related to focal cortical dysplasias, which may play a role in migraine pathogenesis. Results obtained so far suggest that focal cortical dysplasias may belong to the causes and consequences of migraine. Certain focal cortical dysplasias may lower the threshold of cortical excitability and facilitate the action of migraine triggers. Migraine prevalence in epileptic patients is higher than in the general population, and focal cortical dysplasias are an established element of epilepsy pathogenesis. In this narrative/hypothesis review, we present mainly information on cortical structural changes in migraine, but studies on structural alterations in deep white matter and other brain regions are also presented. We develop the hypothesis that focal cortical dysplasias may be causally associated with migraine and link pathogeneses of migraine and epilepsy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Ezbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plac Generała Dabrowskiego 2, 09-420 Plock, Mazowieckie, Poland
| |
Collapse
|
6
|
Yeh PK, An YC, Hung KS, Yang FC. Influences of Genetic and Environmental Factors on Chronic Migraine: A Narrative Review. Curr Pain Headache Rep 2024; 28:169-180. [PMID: 38363449 DOI: 10.1007/s11916-024-01228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW In this narrative review, we aim to summarize recent insights into the complex interplay between environmental and genetic factors affecting the etiology, development, and progression of chronic migraine (CM). RECENT FINDINGS Environmental factors such as stress, sleep dysfunction, fasting, hormonal changes, weather patterns, dietary compounds, and sensory stimuli are critical triggers that can contribute to the evolution of episodic migraine into CM. These triggers are particularly influential in genetically predisposed individuals. Concurrently, genome-wide association studies (GWAS) have revealed over 100 genetic loci linked to migraine, emphasizing a significant genetic basis for migraine susceptibility. In CM, environmental and genetic factors are of equal importance and contribute to the pathophysiology of the condition. Understanding the bidirectional interactions between these elements is crucial for advancing therapeutic approaches and preventive strategies. This balanced perspective encourages continued research into the complex gene-environment nexus to improve our understanding and management of CM.
Collapse
Affiliation(s)
- Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Beitou Branch, Taipei, Taiwan
| | - Yu-Chin An
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan.
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
7
|
Aguilar J, De Carvalho LM, Chen H, Condon R, Lasek AW, Pradhan AA. Histone deacetylase inhibitor decreases hyperalgesia in a mouse model of alcohol withdrawal-induced hyperalgesia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:478-487. [PMID: 38378262 PMCID: PMC10940188 DOI: 10.1111/acer.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Alcohol withdrawal-induced hyperalgesia (AWH) is characterized as an increased pain sensitivity observed after cessation of chronic alcohol use. Alcohol withdrawal-induced hyperalgesia can contribute to the negative affective state associated with abstinence and can increase susceptibility to relapse. We aimed to characterize pain sensitivity in mice during withdrawal from two different models of alcohol exposure: chronic drinking in the dark (DID) and the Lieber-DeCarli liquid diet. We also investigated whether treatment with a histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could ameliorate AWH in mice treated with the Lieber-DeCarli diet. METHODS Male and female C57BL/6J mice were used for these studies. In the DID model, mice received bottles of 20% ethanol or water during the dark cycle for 4 h per day on four consecutive days per week for 6 weeks. Peripheral mechanical sensitivity was measured weekly the morning of Day 5 using von Frey filaments. In the Lieber-DeCarli model, mice received ethanol (5% v/v) or control liquid diet for 10 days, along with a single binge ethanol gavage (5 g/kg) or control gavage, respectively, on Day 10. Peripheral mechanical sensitivity was measured during the liquid diet administration and at 24 and 72 h into ethanol withdrawal. An independent group of mice that received the Lieber-DeCarli diet were administered SAHA (50 mg/kg, i.p.) during withdrawal. RESULTS Male mice exhibited mechanical hypersensitivity after consuming ethanol for 5 weeks in the DID procedure. In the Lieber-DeCarli model, ethanol withdrawal led to hyperalgesia in both sexes. Suberoylanilide hydroxamic acid treatment during withdrawal from the ethanol liquid diet alleviated AWH. CONCLUSIONS These results demonstrate AWH in mice after chronic binge drinking in males and after Lieber-DeCarli liquid diet administration in both sexes. Like previous findings in rats, HDAC inhibition reduced AWH in mice, suggesting that epigenetic mechanisms are involved in AWH.
Collapse
Affiliation(s)
- Jhoan Aguilar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Luana Martins De Carvalho
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Ryan Condon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amynah A. Pradhan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| |
Collapse
|
8
|
Mehta D, de Boer I, Sutherland HG, Pijpers JA, Bron C, Bainomugisa C, Haupt LM, van den Maagdenberg AMJM, Griffiths LR, Nyholt DR, Terwindt GM. Alterations in DNA methylation associate with reduced migraine and headache days after medication withdrawal treatment in chronic migraine patients: a longitudinal study. Clin Epigenetics 2023; 15:190. [PMID: 38087366 PMCID: PMC10717674 DOI: 10.1186/s13148-023-01604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Chronic migraine, a highly disabling migraine subtype, affects nearly 2% of the general population. Understanding migraine chronification is vital for developing better treatment and prevention strategies. An important factor in the chronification of migraine is the overuse of acute headache medication. However, the mechanisms behind the transformation of episodic migraine to chronic migraine and vice versa have not yet been elucidated. We performed a longitudinal epigenome-wide association study to identify DNA methylation (DNAm) changes associated with treatment response in patients with chronic migraine and medication overuse as part of the Chronification and Reversibility of Migraine clinical trial. Blood was taken from patients with chronic migraine (n = 98) at baseline and after a 12-week medication withdrawal period. Treatment responders, patients with ≥ 50% reduction in monthly headache days (MHD), were compared with non-responders to identify DNAm changes associated with treatment response. Similarly, patients with ≥ 50% versus < 50% reduction in monthly migraine days (MMD) were compared. RESULTS At the epigenome-wide significant level (p < 9.42 × 10-8), a longitudinal reduction in DNAm at an intronic CpG site (cg14377273) within the HDAC4 gene was associated with MHD response following the withdrawal of acute medication. HDAC4 is highly expressed in the brain, plays a major role in synaptic plasticity, and modulates the expression and release of several neuroinflammation markers which have been implicated in migraine pathophysiology. Investigating whether baseline DNAm associated with treatment response, we identified lower baseline DNAm at a CpG site (cg15205829) within MARK3 that was significantly associated with MMD response at 12 weeks. CONCLUSIONS Our findings of a longitudinal reduction in HDAC4 DNAm status associated with treatment response and baseline MARK3 DNAm status as an early biomarker for treatment response, provide support for a role of pathways related to chromatin structure and synaptic plasticity in headache chronification and introduce HDAC4 and MARK3 as novel therapeutic targets.
Collapse
Affiliation(s)
- Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Judith A Pijpers
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Charlene Bron
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Charlotte Bainomugisa
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Different Aspects of Aging in Migraine. Aging Dis 2023; 14:2028-2050. [PMID: 37199585 PMCID: PMC10676778 DOI: 10.14336/ad.2023.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Migraine is a common neurological disease displaying an unusual dependence on age. For most patients, the peak intensity of migraine headaches occurs in 20s and lasts until 40s, but then headache attacks become less intense, occur less frequently and the disease is more responsive to therapy. This relationship is valid in both females and males, although the prevalence of migraine in the former is 2-4 times greater than the latter. Recent concepts present migraine not only as a pathological event, but rather as a part of evolutionary adaptive response to protect organism against consequences of stress-induced brain energy deficit. However, these concepts do not fully explain that unusual dependence of migraine prevalence on age. Many aspects of aging, both molecular/cellular and social/cognitive, are interwound in migraine pathogenesis, but they neither explain why only some persons are affected by migraine, nor suggest any causal relationship. In this narrative/hypothesis review we present information on associations of migraine with chronological aging, brain aging, cellular senescence, stem cell exhaustion as well as social, cognitive, epigenetic, and metabolic aging. We also underline the role of oxidative stress in these associations. We hypothesize that migraine affects only individuals who have inborn, genetic/epigenetic, or acquired (traumas, shocks or complexes) migraine predispositions. These predispositions weakly depend on age and affected individuals are more prone to migraine triggers than others. Although the triggers can be related to many aspects of aging, social aging may play a particularly important role as the prevalence of its associated stress has a similar age-dependence as the prevalence of migraine. Moreover, social aging was shown to be associated with oxidative stress, important in many aspects of aging. In perspective, molecular mechanisms underlying social aging should be further explored and related to migraine with a closer association with migraine predisposition and difference in prevalence by sex.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
10
|
Overeem LH, Raffaelli B, Fleischmann R, Süße M, Vogelgesang A, Maceski AM, Papadopoulou A, Ruprecht K, Su W, Koch M, Siebert A, Arkuszewski M, Tenenbaum N, Kuhle J, Reuter U. Serum tau protein elevation in migraine: a cross-sectional case-control study. J Headache Pain 2023; 24:130. [PMID: 37726712 PMCID: PMC10507851 DOI: 10.1186/s10194-023-01663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Migraine is a disorder associated with neuropeptide release, pain and inflammation. Tau protein has recently been linked to inflammatory diseases and can be influenced by neuropeptides such as CGRP, a key neurotransmitter in migraine. Here, we report serum concentrations of total-tau protein in migraine patients and healthy controls. METHODS In this cross-sectional study, interictal blood samples from n = 92 patients with episodic migraine (EM), n = 93 patients with chronic migraine (CM), and n = 42 healthy matched controls (HC) were studied. We assessed serum total-tau protein (t-tau) and for comparison neurofilament light chain protein (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal hydrolase L (UCH-L1) concentrations using the Neurology 4-plex kit, on a single molecule array HD-X Analyzer (Quanterix Corp Lexington, MA). Matched serum/cerebrospinal fluid (CSF) samples were used for post-hoc evaluations of a central nervous system (CNS) source of relevant findings. We applied non-parametric tests to compare groups and assess correlations. RESULTS Serum t-tau concentrations were elevated in EM [0.320 (0.204 to 0.466) pg/mL] and CM [0.304 (0.158 to 0.406) pg/mL] patients compared to HC [0.200 (0.114 to 0.288) pg/mL] (p = 0.002 vs. EM; p = 0.025 vs. CM). EM with aura [0.291 (0.184 to 0.486 pg/mL); p = 0.013] and EM without aura [0.332 (0.234 to 0.449) pg/mL; p = 0.008] patients had higher t-tau levels than HC but did not differ between each other. Subgroup analysis of CM with/without preventive treatment revealed elevated t-tau levels compared to HC only in the non-prevention group [0.322 (0.181 to 0.463) pg/mL; p = 0.009]. T-tau was elevated in serum (p = 0.028) but not in cerebrospinal fluid (p = 0.760). In contrast to t-tau, all proteins associated with cell damage (NfL, GFAP, and UCH-L1), did not differ between groups. DISCUSSION Migraine is associated with t-tau elevation in serum but not in the CSF. Our clinical study identifies t-tau as a new target for migraine research.
Collapse
Affiliation(s)
- Lucas Hendrik Overeem
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Doctoral Program, International Graduate Program Medical Neurosciences, Humboldt Graduate School, Berlin, 10117, Germany
| | - Bianca Raffaelli
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, 10117, Germany
| | - Robert Fleischmann
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany
| | - Marie Süße
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany
| | - Antje Vogelgesang
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany
| | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital and University of Basel, Basel, 4051, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, 4051, Switzerland
| | - Athina Papadopoulou
- Department of Neurology, University Hospital and University of Basel, Basel, 4051, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, 4051, Switzerland
| | - Klemens Ruprecht
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Wendy Su
- Novartis Pharma AG, Basel, 4056, Switzerland
| | - Mirja Koch
- Novartis Pharma AG, Basel, 4056, Switzerland
| | - Anke Siebert
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | | | - Nadia Tenenbaum
- EMD Serono Research and Development Institute, New York, NY, USA
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, 4051, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, 4051, Switzerland
| | - Uwe Reuter
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany.
| |
Collapse
|
11
|
Zobdeh F, Eremenko II, Akan MA, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. The Epigenetics of Migraine. Int J Mol Sci 2023; 24:ijms24119127. [PMID: 37298078 DOI: 10.3390/ijms24119127] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a complex neurological disorder and a major cause of disability. A wide range of different drug classes such as triptans, antidepressants, anticonvulsants, analgesics, and beta-blockers are used in acute and preventive migraine therapy. Despite a considerable progress in the development of novel and targeted therapeutic interventions during recent years, e.g., drugs that inhibit the calcitonin gene-related peptide (CGRP) pathway, therapy success rates are still unsatisfactory. The diversity of drug classes used in migraine therapy partly reflects the limited perception of migraine pathophysiology. Genetics seems to explain only to a minor extent the susceptibility and pathophysiological aspects of migraine. While the role of genetics in migraine has been extensively studied in the past, the interest in studying the role of gene regulatory mechanisms in migraine pathophysiology is recently evolving. A better understanding of the causes and consequences of migraine-associated epigenetic changes could help to better understand migraine risk, pathogenesis, development, course, diagnosis, and prognosis. Additionally, it could be a promising avenue to discover new therapeutic targets for migraine treatment and monitoring. In this review, we summarize the state of the art regarding epigenetic findings in relation to migraine pathogenesis and potential therapeutic targets, with a focus on DNA methylation, histone acetylation, and microRNA-dependent regulation. Several genes and their methylation patterns such as CALCA (migraine symptoms and age of migraine onset), RAMP1, NPTX2, and SH2D5 (migraine chronification) and microRNA molecules such as miR-34a-5p and miR-382-5p (treatment response) seem especially worthy of further study regarding their role in migraine pathogenesis, course, and therapy. Additionally, changes in genes including COMT, GIT2, ZNF234, and SOCS1 have been linked to migraine progression to medication overuse headache (MOH), and several microRNA molecules such as let-7a-5p, let-7b-5p, let-7f-5p, miR-155, miR-126, let-7g, hsa-miR-34a-5p, hsa-miR-375, miR-181a, let-7b, miR-22, and miR-155-5p have been implicated with migraine pathophysiology. Epigenetic changes could be a potential tool for a better understanding of migraine pathophysiology and the identification of new therapeutic possibilities. However, further studies with larger sample sizes are needed to verify these early findings and to be able to establish epigenetic targets as disease predictors or therapeutic targets.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Ivan I Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | - Mikail A Akan
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | | | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
12
|
Xu X, Zhuo L, Zhang L, Peng H, Lyu Y, Sun H, Zhai Y, Luo D, Wang X, Li X, Li L, Zhang Y, Ma X, Wang Q, Li Y. Dexmedetomidine alleviates host ADHD-like behaviors by reshaping the gut microbiota and reducing gut-brain inflammation. Psychiatry Res 2023; 323:115172. [PMID: 36958092 DOI: 10.1016/j.psychres.2023.115172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders that affects children and even continues into adulthood. Dexmedetomidine (DEX), a short-term sedative, can selectively activate the α2-adrenoceptor. Treatment with α2-adrenergic agonists in patients with ADHD is becoming increasingly common. However, the therapeutic potential of DEX for the treatment of ADHD is unknown. Here, we evaluated the effect of DEX on ADHD-like behavior in spontaneously hypertensive rats (SHRs), a widely used animal model of ADHD. DEX treatment ameliorated hyperactivity and spatial working memory deficits and normalized θ electroencephalogram (EEG) rhythms in SHRs. We also found that DEX treatment altered the gut microbiota composition and promoted the enrichment of beneficial gut bacterial genera associated with anti-inflammatory effects in SHRs. The gut pathological scores and permeability and the level of inflammation observed in the gut and brain were remarkably improved after DEX administration. Moreover, transplantation of fecal microbiota from DEX-treated SHRs produced effects that mimicked the therapeutic effects of DEX administration. Therefore, DEX is a promising treatment for ADHD that functions by reshaping the composition of the gut microbiota and reducing inflammation in the gut and brain.
Collapse
Affiliation(s)
- Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The People's Hospital of Nanchuan, Chongqing 408400, China
| | - Lixia Zhuo
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Linjuan Zhang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huan Peng
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yixuan Lyu
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Danlei Luo
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaodan Wang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinyang Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liya Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ying Zhang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
13
|
Bertels Z, Mangutov E, Siegersma K, Cropper HC, Tipton A, Pradhan AA. PACAP-PAC1 receptor inhibition is effective in opioid induced hyperalgesia and medication overuse headache models. iScience 2023; 26:105950. [PMID: 36756376 PMCID: PMC9900514 DOI: 10.1016/j.isci.2023.105950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Opioids prescribed for pain and migraine can produce opioid-induced hyperalgesia (OIH) or medication overuse headache (MOH). We previously demonstrated that pituitary adenylate cyclase activating polypeptide (PACAP) is upregulated in OIH and chronic migraine models. Here we determined if PACAP acts as a bridge between opioids and pain chronification. We tested PACAP-PAC1 receptor inhibition in novel models of opioid-exacerbated trigeminovascular pain. The PAC1 antagonist, M65, reversed chronic allodynia in a model which combines morphine with the migraine trigger, nitroglycerin. Chronic opioids also exacerbated cortical spreading depression, a correlate of migraine aura; and M65 inhibited this augmentation. In situ hybridization showed MOR and PACAP co-expression in trigeminal ganglia, and near complete overlap between MOR and PAC1 in the trigeminal nucleus caudalis and periaqueductal gray. PACAPergic mechanisms appear to facilitate the transition to chronic headache following opioid use, and strategies targeting this system may be particularly beneficial for OIH and MOH.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizaveta Mangutov
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kendra Siegersma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Haley C. Cropper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alycia Tipton
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA,Corresponding author
| |
Collapse
|
14
|
Medicinal chemistry insights into non-hydroxamate HDAC6 selective inhibitors. Med Chem Res 2023. [DOI: 10.1007/s00044-022-02987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Actin-microtubule cytoskeletal interplay mediated by MRTF-A/SRF signaling promotes dilated cardiomyopathy caused by LMNA mutations. Nat Commun 2022; 13:7886. [PMID: 36550158 PMCID: PMC9780334 DOI: 10.1038/s41467-022-35639-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.
Collapse
|
16
|
Chou TM, Lee ZF, Wang SJ, Lien CC, Chen SP. CGRP-dependent sensitization of PKC-δ positive neurons in central amygdala mediates chronic migraine. J Headache Pain 2022; 23:157. [PMID: 36510143 PMCID: PMC9746101 DOI: 10.1186/s10194-022-01531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate specific brain regions and neural circuits that are responsible for migraine chronification. METHODS We established a mouse model of chronic migraine with intermittent injections of clinically-relevant dose of nitroglycerin (0.1 mg/kg for 9 days) and validated the model with cephalic and extracephalic mechanical sensitivity, calcitonin gene-related peptide (CGRP) expression in trigeminal ganglion, and responsiveness to sumatriptan or central CGRP blockade. We explored the neurons that were sensitized along with migraine chronification and investigated their roles on migraine phenotypes with chemogenetics. RESULTS After repetitive nitroglycerin injections, mice displayed sustained supraorbital and hind paw mechanical hyperalgesia, which lasted beyond discontinuation of nitroglycerin infusion and could be transiently reversed by sumatriptan. The CGRP expression in trigeminal ganglion was also upregulated. We found the pERK positive cells were significantly increased in the central nucleus of the amygdala (CeA), and these sensitized cells in the CeA were predominantly protein kinase C-delta (PKC-δ) positive neurons co-expressing CGRP receptors. Remarkably, blockade of the parabrachial nucleus (PBN)-CeA CGRP neurotransmission by CGRP8-37 microinjection to the CeA attenuated the sustained cephalic and extracephalic mechanical hyperalgesia. Furthermore, chemogenetic silencing of the sensitized CeA PKC-δ positive neurons reversed the mechanical hyperalgesia and CGRP expression in the trigeminal ganglion. In contrast, repetitive chemogenetic activation of the CeA PKC-δ positive neurons recapitulated chronic migraine-like phenotypes in naïve mice. CONCLUSIONS Our data suggest that CeA PKC-δ positive neurons innervated by PBN CGRP positive neurons might contribute to the chronification of migraine, which may serve as future therapeutic targets for chronic migraine.
Collapse
Affiliation(s)
- Tse-Ming Chou
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan
| | - Zhung-Fu Lee
- grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| | - Shuu-Jiun Wang
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017College of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - Cheng-Chang Lien
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Shih-Pin Chen
- grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017College of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| |
Collapse
|
17
|
Bertels Z, Dripps IJ, Shah P, Moye LS, Tipton AF, Siegersma K, Pradhan AA. Delta opioid receptors in Nav1.8 expressing peripheral neurons partially regulate the effect of delta agonist in models of migraine and opioid-induced hyperalgesia. NEUROBIOLOGY OF PAIN 2022; 12:100099. [PMID: 35859654 PMCID: PMC9289726 DOI: 10.1016/j.ynpai.2022.100099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/07/2022]
Abstract
DOR in Nav1.8 cells do not regulate anti-migraine effects of DOR agonist. DOR in Nav1.8 cells is critical for effect of DOR agonist in peripheral OIH. DOR in Nav1.8 cells is not necessary for effect of DOR agonist in cephalic OIH.
Migraine is one of the most common pain disorders and causes disability in millions of people every year. Delta opioid receptors (DOR) have been identified as a novel therapeutic target for migraine and other headache disorders. DORs are present in both peripheral and central regions and it is unclear which receptor populations regulate migraine-associated effects. The aim of this study was to determine if DOR expressed in peripheral nociceptors regulates headache associated endpoints and the effect of delta agonists within these mouse models. We used a conditional knockout, in which DOR was selectively deleted from Nav1.8 expressing cells. Nav1.8-DOR mice and loxP control littermates were tested in models of chronic migraine-associated allodynia, opioid-induced hyperalgesia, migraine-associated negative affect, and aura. Nav1.8-DOR and loxP mice had comparable effect sizes in all of these models. The anti-allodynic effect of the DOR agonist, SNC80, was slightly diminished in the nitroglycerin model of migraine. Intriguingly, in the OIH model the peripheral effects of SNC80 were completely lost in Nav1.8-DOR mice while the cephalic effects remained intact. Regardless of genotype, SNC80 continued to inhibit conditioned place aversion associated with nitroglycerin and decreased cortical spreading depression events associated with migraine aura. These results suggest that DOR in Nav1.8-expressing nociceptors do not critically regulate the anti-migraine effects of delta agonist; and that brain-penetrant delta agonists would be a more effective drug development strategy.
Collapse
|
18
|
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100105. [PMID: 36974065 PMCID: PMC10039393 DOI: 10.1016/j.ynpai.2022.100105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
Collapse
Affiliation(s)
- Paula Sureda-Gibert
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Bertels Z, Mangutov E, Conway C, Siegersma K, Asif S, Shah P, Huck N, Tawfik VL, Pradhan AA. Migraine and peripheral pain models show differential alterations in neuronal complexity. Headache 2022; 62:780-791. [PMID: 35676889 PMCID: PMC9543775 DOI: 10.1111/head.14352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Objective Our laboratory has recently shown that there is a decrease in neuronal complexity in head pain processing regions in mouse models of chronic migraine‐associated pain and aura. Importantly, restoration of this neuronal complexity corresponds with anti‐migraine effects of known and experimental pharmacotherapies. The objective of the current study was to expand this work and examine other brain regions involved with pain or emotional processing. We also investigated the generalizability of our findings by analyzing neuronal cytoarchitectural changes in a model of complex regional pain syndrome (CRPS), a peripheral pain disorder. Methods We used the nitroglycerin (NTG) model of chronic migraine‐associated pain in which mice receive 10 mg/kg NTG every other day for 9 days. Cortical spreading depression (CSD), a physiological corelate of migraine aura, was evoked in anesthetized mice using KCl. CRPS was induced by tibial fracture followed by casting. Neuronal cytoarchitecture was visualized with Golgi stain and analyzed with Simple Neurite Tracer. Results In the NTG model, we previously showed decreased neuronal complexity in the trigeminal nucleus caudalis (TNC) and periaqueductal gray (PAG). In contrast, we found increased neuronal complexity in the thalamus and no change in the amygdala or caudate putamen in this study. Following CSD, we observed decreased neuronal complexity in the PAG, in line with decreases in the somatosensory cortex and TNC reported with this model previously. In the CRPS model there was decreased neuronal complexity in the hippocampus, as reported by others; increased complexity in the PAG; and no change within the somatosensory cortex. Conclusions Collectively these results demonstrate that alterations in neuronal complexity are a feature of both chronic migraine and chronic CRPS. However, each type of pain presents a unique cytoarchitectural signature, which may provide insight on how these pain states differentially transition from acute to chronic conditions.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Elizaveta Mangutov
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Catherine Conway
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Kendra Siegersma
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Sarah Asif
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Pal Shah
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Nolan Huck
- Department of Anesthesiology, Perioperative & Pain Medicine Stanford University Stanford California USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine Stanford University Stanford California USA
| | - Amynah A. Pradhan
- Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
20
|
Histone Deacetylase Inhibitors Counteract CGRP Signaling and Pronociceptive Sensitization in a Rat Model of Medication Overuse Headache. THE JOURNAL OF PAIN 2022; 23:1874-1884. [PMID: 35700873 DOI: 10.1016/j.jpain.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Chronic triptan exposurein rodents recapitulates medication overuse headache (MOH), causing cephalic pain sensitization and trigeminal ganglion overexpression of pronociceptive proteins including CGRP. Because of these transcriptional derangements, as well as the emerging role of epigenetics in chronic pain, in the present study, we evaluated the effects of the histone deacetylase inhibitors (HDACis) panobinostat and givinostat, in rats chronically exposed to eletriptan for one month. Both panobinostat and givinostat counteracted overexpression of genes coding for CGRP and its receptor subunit RAMP1, having no effects on CLR and RCP receptor subunits in the trigeminal ganglion (TG) of eletriptan-exposed rats. Within the trigeminal nucleus caudalis (TNc), transcripts for these genes were neither upregulated by eletriptan nor altered by concomitant treatment with panobinostat or givinostat. HDACis counteracted hypersensitivity to capsaicin-induced vasodilatation in the trigeminal territory, as well as photophobic behavior and cephalic allodyniain eletriptan-exposed rats. Eletriptan did not affect CGRP, CLR, and RAMP1 expression in cultured trigeminal ganglia, whereas both inhibitors reduced transcripts for CLR and RAMP-1. The drugs, however, increased luciferase expression driven by CGRP promoter in cultured cells. Our findings provide evidence for a key role of HDACs and epigenetics in MOH pathogenesis, highlighting the therapeutic potential of HDAC inhibition in the prevention of migraine chronification.
Collapse
|
21
|
Fila M, Sobczuk A, Pawlowska E, Blasiak J. Epigenetic Connection of the Calcitonin Gene-Related Peptide and Its Potential in Migraine. Int J Mol Sci 2022; 23:ijms23116151. [PMID: 35682830 PMCID: PMC9181031 DOI: 10.3390/ijms23116151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The calcitonin gene-related peptide (CGRP) is implicated in the pathogenesis of several pain-related syndromes, including migraine. Targeting CGRP and its receptor by their antagonists and antibodies was a breakthrough in migraine therapy, but the need to improve efficacy and limit the side effects of these drugs justify further studies on the regulation of CGRP in migraine. The expression of the CGRP encoding gene, CALCA, is modulated by epigenetic modifications, including the DNA methylation, histone modification, and effects of micro RNAs (miRNAs), circular RNAs, and long-coding RNAs (lncRNAs). On the other hand, CGRP can change the epigenetic profile of neuronal and glial cells. The promoter of the CALCA gene has two CpG islands that may be specifically methylated in migraine patients. DNA methylation and lncRNAs were shown to play a role in the cell-specific alternative splicing of the CALCA primary transcript. CGRP may be involved in changes in neural cytoarchitecture that are controlled by histone deacetylase 6 (HDAC6) and can be related to migraine. Inhibition of HDAC6 results in reduced cortical-spreading depression and a blockade of the CGRP receptor. CGRP levels are associated with the expression of several miRNAs in plasma, making them useful peripheral markers of migraine. The fundamental role of CGRP in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of CGRP should be further explored for efficient and safe antimigraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
22
|
Deep Learning-Based Grimace Scoring Is Comparable to Human Scoring in a Mouse Migraine Model. J Pers Med 2022; 12:jpm12060851. [PMID: 35743636 PMCID: PMC9225619 DOI: 10.3390/jpm12060851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/03/2023] Open
Abstract
Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS, that automatically crops mouse face images, predicts action unit scores and total scores on the MGS, and finally infers whether pain exists. We then compared the performance of DeepMGS with that of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70–90% in identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83) highly correlated with that of an experienced human scorer in total MGS scores. In classifying pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images. These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice, implying its potential application for predicting other painful conditions from facial images.
Collapse
|
23
|
Zhang J, Ma J, Trinh RT, Heijnen CJ, Kavelaars A. An HDAC6 inhibitor reverses chemotherapy-induced mechanical hypersensitivity via an IL-10 and macrophage dependent pathway. Brain Behav Immun 2022; 100:287-296. [PMID: 34915156 PMCID: PMC8766942 DOI: 10.1016/j.bbi.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) impacts a growing number of cancer survivors and treatment options are limited. Histone deacetylase 6 (HDAC6) inhibitors are attractive candidates because they reverse established CIPN and may enhance anti-tumor effects of chemotherapy. Before considering clinical application of HDAC6 inhibitors, the mechanisms underlying reversal of CIPN need to be identified. We showed previously that deletion of Hdac6 from sensory neurons did not prevent cisplatin-induced mechanical hypersensitivity, while global deletion of Hdac6 was protective, indicating involvement of HDAC6 in other cell types. Here we show that local depletion of MRC1 (CD206)-positive macrophages without affecting microglia by intrathecal administration of mannosylated clodronate liposomes reduced the capacity of an HDAC6 inhibitor to reverse cisplatin-induced mechanical hypersensitivity. The HDAC6 inhibitor increased spinal cord Il10 mRNA and this was M2-macrophage dependent. Intrathecal administration of anti-IL-10 antibody or genetic deletion of Il10 prevented resolution of mechanical hypersensitivity. Genetic deletion of the IL-10 receptor from Advillin+ neurons prevented resolution of mechanical hypersensitivity in mice treated with the HDAC6 inhibitor. These findings indicate that treatment with an HDAC6 inhibitor increases macrophage-derived IL-10 signaling to IL-10 receptors on Advillin+ sensory neurons to resolve mechanical hypersensitivity. Cisplatin decreases mitochondrial function in sensory axons, and HDAC6 inhibition can promote axonal transport of healthy mitochondria. Indeed, the HDAC6 inhibitor normalized cisplatin-induced tibial nerve mitochondrial deficits. However, this was independent of macrophages and IL-10 signaling. In conclusion, our findings indicate that administration of an HDAC6 inhibitor reverses cisplatin-induced mechanical hypersensitivity through two complementary pathways: macrophage HDAC6 inhibition to promote IL-10 production and IL-10 signaling to DRG neurons, and neuronal HDAC6 inhibition to restore axonal mitochondrial health.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|