1
|
Neubert S, Wagener MG, Nicolaisen TJ, von Altrock A, Buchallik-Schregel J, Mikic M, Christofides D, Wohlsein P, Ganter M. [Choanal atresia in an alpaca cria (Vicugna pacos)]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2024; 52:158-163. [PMID: 38925129 DOI: 10.1055/a-2324-1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
After birth, an alpaca cria was noticed to exhibit weakness and respiratory distress, particularly when attempting to suckle milk from the dam's udder. Clinical findings indicated the presence of bilateral choanal atresia and the animal was subsequently euthanised. A computed tomography scan and a pathological examination were performed to describe the malformation in detail. Choanal atresia is a common malformation in neonatal South American camelids, surgical treatment is not recommended. This case report provides an overview of the clinical findings as well as the results of imaging and pathologic examinations and may help to raise awareness of this malformation for early recognition.
Collapse
Affiliation(s)
- Saskia Neubert
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Matthias Gerhard Wagener
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Thies Jesper Nicolaisen
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Alexandra von Altrock
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Johannes Buchallik-Schregel
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Manon Mikic
- Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
| | | | - Peter Wohlsein
- Institut für Pathologie, Stiftung Tierärztliche Hochschule Hannover
| | - Martin Ganter
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| |
Collapse
|
2
|
León F, Pizarro EJ, Noll D, Pertierra LR, Gonzalez BA, Johnson WE, Marín JC, Vianna JA. History of Diversification and Adaptation from North to South Revealed by Genomic Data: Guanacos from the Desert to Sub-Antarctica. Genome Biol Evol 2024; 16:evae085. [PMID: 38761112 PMCID: PMC11102080 DOI: 10.1093/gbe/evae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/20/2024] Open
Abstract
The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.
Collapse
Affiliation(s)
- Fabiola León
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Eduardo J Pizarro
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Daly Noll
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Benito A Gonzalez
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santigo, Chile
| | | | - Juan Carlos Marín
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bio-Bío, Chillán, Chile
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
3
|
Wieser SN, Giuliano SM, Reategui Ordoñez J, Barriga Marcapura X, Olivera LVM, Chavez Fumagalli MA, Schnittger L, Florin-Christensen M. Sarcocystis spp. of New and Old World Camelids: Ancient Origin, Present Challenges. Pathogens 2024; 13:196. [PMID: 38535539 PMCID: PMC10975914 DOI: 10.3390/pathogens13030196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Sarcocystis spp. are coccidian protozoans belonging to the Apicomplexa phylum. As with other members of this phylum, they are obligate intracellular parasites with complex cellular machinery for the invasion of host cells. Sarcocystis spp. display dixenous life cycles, involving a predator and a prey as definitive and intermediate hosts, respectively. Specifically, these parasites develop sarcocysts in the tissues of their intermediate hosts, ranging in size from microscopic to visible to the naked eye, depending on the species. When definitive hosts consume sarcocysts, infective forms are produced in the digestive system and discharged into the environment via feces. Consumption of oocyst-contaminated water and pasture by the intermediate host completes the parasitic cycle. More than 200 Sarcocystis spp. have been described to infect wildlife, domestic animals, and humans, some of which are of economic or public health importance. Interestingly, Old World camelids (dromedary, domestic Bactrian camel, and wild Bactrian camel) and New World or South American camelids (llama, alpaca, guanaco, and vicuña) can each be infected by two different Sarcocystis spp: Old World camelids by S. cameli (producing micro- and macroscopic cysts) and S. ippeni (microscopic cysts); and South American camelids by S. aucheniae (macroscopic cysts) and S. masoni (microscopic cysts). Large numbers of Old and New World camelids are bred for meat production, but the finding of macroscopic sarcocysts in carcasses significantly hampers meat commercialization. This review tries to compile the information that is currently accessible regarding the biology, epidemiology, phylogeny, and diagnosis of Sarcocystis spp. that infect Old and New World camelids. In addition, knowledge gaps will be identified to encourage research that will lead to the control of these parasites.
Collapse
Affiliation(s)
- Sarah N. Wieser
- Instituto de Patobiología Veterinaria, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina; (S.N.W.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Susana M. Giuliano
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427CWN, Argentina;
| | - Juan Reategui Ordoñez
- Laboratorio de Biotecnología Animal, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (J.R.O.); (X.B.M.)
| | - Ximena Barriga Marcapura
- Laboratorio de Biotecnología Animal, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (J.R.O.); (X.B.M.)
| | - Luis V. M. Olivera
- Facultad de Medicina Veterinaria, Universidad Nacional del Altiplano, Puno 21001, Peru;
| | - Miguel Angel Chavez Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina; (S.N.W.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina; (S.N.W.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
4
|
Pauciullo A, Versace C, Miretti S, Giambra IJ, Gaspa G, Letaief N, Cosenza G. Genetic variability among and within domestic Old and New World camels at the α-lactalbumin gene (LALBA) reveals new alleles and polymorphisms responsible for differential expression. J Dairy Sci 2024; 107:1068-1084. [PMID: 38122895 DOI: 10.3168/jds.2023-23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 12/23/2023]
Abstract
α-Lactalbumin (α-LA), which is encoded by the LALBA gene, is a major whey protein that binds to Ca2+ and facilitates lactose synthesis as a regulatory subunit of the synthase enzyme complex. In addition, it has been shown to play central roles in immune modulation, cell-growth regulation, and antimicrobial activity. In this study, a multitechnical approach was used to fully characterize the LALBA gene and its variants in both coding and regulatory regions for domestic camelids (dromedary, Bactrian camel, alpaca, and llama). The gene analysis revealed a conserved structure among the camelids, but a slight difference in size (2,012 bp on average) due to intronic variations. Promoters were characterized for the transcription factor binding sites (11 found in total). Intraspecies sequence comparison showed 36 SNPs in total (2 in the dromedary, none in the Bactrian camel, 22 in the alpaca, and 12 in the llama), whereas interspecies comparison showed 86 additional polymorphic sites. Eight SNPs were identified as trans-specific polymorphisms, and 2 of them (g.112A>G and g.1229A>G) were particularly interesting in the New World camels. The first creates a new binding site for transcription factor SP1. An enhancing effect of the g.112G variant on the expression was demonstrated by 3 independent pGL3 gene reporter assays. The latter is responsible for the p.78Ile>Val AA replacement and represents novel allelic variants (named LALBA A and B). A link to protein variants has been established by isoelectric focusing (IEF), and bioinformatics analysis revealed that carriers of valine (g.1229G) have a higher glycosylation rate. Genotyping methods based on restriction fragment length polymorphism (PCR-RFLP) were set up for both SNPs. Overall, adenine was more frequent (0.54 and 0.76) at both loci. Four haplotypes were found, and the AA and GA were the most common with a frequency of 0.403 and 0.365, respectively. Conversely, a putative biological gain characterizes the haplotype GG. Therefore, opportunities for rapid directional selection can be realized if this haplotype is associated with favorable milk protein properties. This study adds knowledge at the gene and protein level for α-LA (LALBA) in camelids and importantly contributes to a relatively unexplored research area in these species.
Collapse
Affiliation(s)
- A Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy.
| | - C Versace
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - S Miretti
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - I J Giambra
- Institute for Animal Breeding and Genetics, Justus Liebig University, 35390 Gießen, Germany
| | - G Gaspa
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - N Letaief
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy; Laboratory of Animal and Forage Production, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 1004, Tunisia
| | - G Cosenza
- Department of Agriculture, University of Napoli Federico II, 80055 Portici (NA), Italy
| |
Collapse
|
5
|
Rey-Iglesia A, Wilson T, Routledge J, Skovrind M, Garde E, Heide-Jørgensen MP, Szpak P, Lorenzen ED. Combining δ13C and δ15N from bone and dentine in marine mammal palaeoecological research: insights from toothed whales. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2023; 59:66-77. [PMID: 36445837 DOI: 10.1080/10256016.2022.2145285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Stable carbon (δ13C) and nitrogen (δ15N) isotopic compositions of bone and dentine collagen extracted from museum specimens have been widely used to study the paleoecology of past populations. Due to possible systematic differences in stable isotope values between bone and dentine, dentine values need to be transformed into bone-collagen equivalent using a correction factor to allow comparisons between the two collagen sources. Here, we provide correction factors to transform dentine δ13C and δ15N values into bone-collagen equivalent for two toothed whales: narwhal and beluga. We sampled bone and dentine from the skulls of 11 narwhals and 26 belugas. In narwhals, dentine was sampled from tusk and embedded tooth; in belugas, dentine was sampled from tooth. δ13C and δ15N were measured, and intra-individual bone and dentine isotopic compositions were used to calculate correction factors for each species. We detected differences in δ13C and δ15N. In both narwhals and belugas, we found lower average δ13C and δ15N in bone compared with dentine. The correction factors provided by the study enable the combined analysis of stable isotope data from bone and dentine in these species.
Collapse
Affiliation(s)
| | | | | | - Mikkel Skovrind
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eva Garde
- Greenland Institute of Natural Resources, Copenhagen, Denmark
| | | | | | | |
Collapse
|
6
|
Behavioural biology of South American domestic camelids: An overview from a welfare perspective. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Genotyping-by-sequencing (GBS) as a tool for interspecies hybrid detection. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Genotyping-by-sequencing (GBS) is an extremely useful, modern and relatively inexpensive approach to discovering high-quality single-nucleotide polymorphisms (SNPs), which seem to be the most promising markers for identifying hybrid individuals between different species, especially those that can create backcrosses. In addition, GBS could become an invaluable tool in finding backcrosses, even several generations back. Its potential for the use of restriction enzymes and species is almost unlimited. It can also be successfully applied to species for which a reference genome is not established. In this paper, we describe the GBS technique, its main advantages and disadvantages, and the research carried out using this method concerning interspecies hybridisation and the identification of fertile hybrids. We also present future approaches that could be of interest in the context of the GBS method.
Collapse
|
8
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
9
|
Ibrahim MA, Al-Shomrani BM, Simenc M, Alharbi SN, Alqahtani FH, Al-Fageeh MB, Manee MM. Comparative analysis of transposable elements provides insights into genome evolution in the genus Camelus. BMC Genomics 2021; 22:842. [PMID: 34800971 PMCID: PMC8605555 DOI: 10.1186/s12864-021-08117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are common features in eukaryotic genomes that are known to affect genome evolution critically and to play roles in gene regulation. Vertebrate genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. To date, details regarding the presence and characteristics of TEs in camelid genomes have not been made available. RESULTS We conducted a genome-wide comparative analysis of camelid TEs, focusing on the identification of TEs and elucidation of transposition histories in four species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. Our TE library was created using both de novo structure-based and homology-based searching strategies ( https://github.com/kacst-bioinfo-lab/TE_ideintification_pipeline ). Annotation results indicated a similar proportion of each genomes comprising TEs (35-36%). Class I LTR retrotransposons comprised 16-20% of genomes, and mostly consisted of the endogenous retroviruses (ERVs) groups ERVL, ERVL-MaLR, ERV_classI, and ERV_classII. Non-LTR elements comprised about 12% of genomes and consisted of SINEs (MIRs) and the LINE superfamilies LINE1, LINE2, L3/CR1, and RTE clades. Least represented were the Class II DNA transposons (2%), consisting of hAT-Charlie, TcMar-Tigger, and Helitron elements and comprising about 1-2% of each genome. CONCLUSIONS The findings of the present study revealed that the distribution of transposable elements across camelid genomes is approximately similar. This investigation presents a characterization of TE content in four camelid to contribute to developing a better understanding of camelid genome architecture and evolution.
Collapse
Affiliation(s)
- Mohanad A Ibrahim
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Badr M Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mathew Simenc
- Department of Biological Sciences, California State University, Fullerton, USA
| | - Sultan N Alharbi
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fahad H Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed B Al-Fageeh
- Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manee M Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| |
Collapse
|