1
|
Pickles SR, Gonzalez Bejarano J, Narayan A, Daughrity L, Maroto Cidfuentes C, Reeves MM, Yue M, Castellanos Otero P, Estades Ayuso V, Dunmore J, Song Y, Tong J, DeTure M, Rawlinson B, Castanedes-Casey M, Dulski J, Cerquera-Cleves C, Zhang Y, Josephs KA, Dickson DW, Petrucelli L, Wszolek ZK, Prudencio M. TDP-43 Cryptic RNAs in Perry Syndrome: Differences across Brain Regions and TDP-43 Proteinopathies. Mov Disord 2025. [PMID: 39788898 DOI: 10.1002/mds.30104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin. OBJECTIVES Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS. Therefore, we sought to identify the degree of TDP-43 dysfunction in two regions of PS brains. METHODS We evaluated the levels of insoluble pTDP-43 and TDP-43-regulated cryptic RNAs and protein in the caudate nucleus and substantia nigra of 7 PS cases, 12 cases of frontotemporal lobar degeneration (FTLD) with TDP-43 pathology, and 11 cognitively healthy controls without TDP-43 pathology. RESULTS Insoluble pTDP-43 protein levels were detected in PS brains to a similar extent in the caudate nucleus and substantia nigra but lower than those in FTLD brains. The caudate nucleus of PS showed accumulation of eight TDP-43-regulated cryptic RNAs (ACTL6B, CAMK2B, STMN2, UNC13A, KCNQ2, ATG4B, GPSM2, and HDGFL2) and cryptic protein (HDGFL2) characteristic of FTLD. Conversely, only one cryptic target, UNC13A, reached significance in the substantia nigra despite similar pTDP-43 levels. CONCLUSION We detected TDP-43 cryptic RNAs and protein in PS caudate nucleus. Given the importance of cryptic exon biology in the development of biomarkers, and the identification of novel targets for therapeutic intervention, it is imperative we understand the consequences of TDP-43 dysfunction across different brain regions and determine the targets that are specific and common to TDP-43 proteinopathies. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah R Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | | | - Anand Narayan
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Madison M Reeves
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Virginia Estades Ayuso
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Judy Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Bailey Rawlinson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | - Catalina Cerquera-Cleves
- Department of Neurosciences, Neurology Unit, Hospital Universitario San Ignacio, Bogota, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Université Laval, Quebec City, Quebec, Canada
| | - Yongjie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | | | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
2
|
Zeng J, Luo C, Jiang Y, Hu T, Lin B, Xie Y, Lan J, Miao J. Decoding TDP-43: the molecular chameleon of neurodegenerative diseases. Acta Neuropathol Commun 2024; 12:205. [PMID: 39736783 DOI: 10.1186/s40478-024-01914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis. Particular emphasis is placed on recent discoveries regarding TDP-43's involvement in DNA interactions and chromatin dynamics, highlighting its broader impact on gene expression and genome stability. The review also examines the complex pathogenesis of TDP-43-related disorders, discussing the protein's propensity for aggregation, its effects on mitochondrial function, and its non-cell autonomous impacts on glial cells. We provide an in-depth analysis of TDP-43 pathology across various neurodegenerative conditions, from well-established associations in ALS and FTLD to emerging roles in diseases such as Huntington's disease and Niemann-Pick C disease. The potential of TDP-43 as a therapeutic target is explored, with a focus on recent developments in targeting cryptic exon inclusion and other TDP-43-mediated processes. This review synthesizes current knowledge on TDP-43 biology and pathology, offering insights into the protein's central role in neurodegeneration and highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Jixiang Zeng
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Chunmei Luo
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yang Jiang
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Tao Hu
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Bixia Lin
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yuanfang Xie
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Jiao Lan
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| | - Jifei Miao
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| |
Collapse
|
3
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
4
|
Wang J, Chen P, Han G, Zhou Y, Xiang X, Bian M, Huang L, Wang X, He B, Lu S. Rab32 facilitates Schwann cell pyroptosis in rats following peripheral nerve injury by elevating ROS levels. J Transl Med 2024; 22:194. [PMID: 38388913 PMCID: PMC10885539 DOI: 10.1186/s12967-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Peripheral nerve injury (PNI) is commonly observed in clinical practice, yet the underlying mechanisms remain unclear. This study investigated the correlation between the expression of a Ras-related protein Rab32 and pyroptosis in rats following PNI, and potential mechanisms have been explored by which Rab32 may influence Schwann cells pyroptosis and ultimately peripheral nerve regeneration (PNR) through the regulation of Reactive oxygen species (ROS) levels. METHODS The authors investigated the induction of Schwann cell pyroptosis and the elevated expression of Rab32 in a rat model of PNI. In vitro experiments revealed an upregulation of Rab32 during Schwann cell pyroptosis. Furthermore, the effect of Rab32 on the level of ROS in mitochondria in pyroptosis model has also been studied. Finally, the effects of knocking down the Rab32 gene on PNR were assessed, morphology, sensory and motor functions of sciatic nerves, electrophysiology and immunohistochemical analysis were conducted to assess the therapeutic efficacy. RESULTS Silencing Rab32 attenuated PNI-induced Schwann cell pyroptosis and promoted peripheral nerve regeneration. Furthermore, our findings demonstrated that Rab32 induces significant oxidative stress by damaging the mitochondria of Schwann cells in the pyroptosis model in vitro. CONCLUSION Rab32 exacerbated Schwann cell pyroptosis in PNI model, leading to delayed peripheral nerve regeneration. Rab32 can be a potential target for future therapeutic strategy in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingdong Xiang
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Genel Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023; 71:945-956. [PMID: 36495059 DOI: 10.1002/glia.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kaindl
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katy Schmidt
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Koike Y, Pickles S, Estades Ayuso V, Jansen-West K, Qi YA, Li Z, Daughrity LM, Yue M, Zhang YJ, Cook CN, Dickson DW, Ward M, Petrucelli L, Prudencio M. TDP-43 and other hnRNPs regulate cryptic exon inclusion of a key ALS/FTD risk gene, UNC13A. PLoS Biol 2023; 21:e3002028. [PMID: 36930682 PMCID: PMC10057836 DOI: 10.1371/journal.pbio.3002028] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/29/2023] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| | - Virginia Estades Ayuso
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Lillian M. Daughrity
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| | - Michael Ward
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, United States of America
| |
Collapse
|
7
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
8
|
Scotter EL, Cao MC, Jansson D, Rustenhoven J, Smyth LCD, Aalderink MC, Siemens A, Fan V, Wu J, Mee EW, Faull RLM, Dragunow M. The amyotrophic lateral sclerosis-linked protein TDP-43 regulates interleukin-6 cytokine production by human brain pericytes. Mol Cell Neurosci 2022; 123:103768. [PMID: 36038081 DOI: 10.1016/j.mcn.2022.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal movement disorder involving degeneration of motor neurons through dysfunction of the RNA-binding protein TDP-43. Pericytes, the perivascular cells of the blood-brain, blood-spinal cord, and blood-CSF barriers also degenerate in ALS. Indeed, pericytes are among the earliest cell types to show gene expression changes in pre-symptomatic animal models of ALS. This suggests that pericyte degeneration precedes neurodegeneration and may involve pericyte cell-autonomous TDP-43 dysfunction. Here we determined the effect of TDP-43 dysfunction in human brain pericytes on interleukin 6 (IL-6), a critical secreted inflammatory mediator reported to be regulated by TDP 43. Primary human brain pericytes were cultured from biopsy tissue from epilepsy surgeries and TDP-43 was silenced using siRNA. TDP-43 silencing of pericytes stimulated with pro-inflammatory cytokines, interleukin-1β or tumour necrosis factor alpha, robustly suppressed the induction of IL-6 transcript and protein. IL-6 regulation by TDP-43 did not involve the assembly of TDP-43 nuclear splicing bodies, and did not occur via altered splicing of IL6. Instead, transcriptome-wide analysis by RNA-Sequencing identified a poison exon in the IL6 destabilising factor HNRNPD (AUF1) as a splicing target of TDP-43. Our data support a model whereby TDP-43 silencing favours destabilisation of IL6 mRNA, via enhanced AU-rich element-mediated decay by HNRNP/AUF1. This suggests that cell-autonomous deficits in TDP-43 function in human brain pericytes would suppress their production of IL-6. Given the importance of the blood-brain and blood-spinal cord barriers in maintaining motor neuron health, TDP-43 in human brain pericytes may represent a cellular target for ALS therapeutics.
Collapse
Affiliation(s)
- Emma L Scotter
- Centre for Brain Research, University of Auckland, New Zealand; School of Biological Sciences, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Maize C Cao
- Centre for Brain Research, University of Auckland, New Zealand; School of Biological Sciences, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Deidre Jansson
- Centre for Brain Research, University of Auckland, New Zealand; School of Biological Sciences, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Justin Rustenhoven
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Leon C D Smyth
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Miranda C Aalderink
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Andrew Siemens
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Vicky Fan
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand.
| | - Jane Wu
- Centre for Brain Research, University of Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand.
| | - Edward W Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand.
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand.
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| |
Collapse
|
9
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
10
|
Sadler GL, Lewis KN, Narayana VK, De Souza DP, Mason J, McLean C, Gonsalvez DG, Turner BJ, Barton SK. Lipid Metabolism Is Dysregulated in the Motor Cortex White Matter in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12060554. [PMID: 35736487 PMCID: PMC9230865 DOI: 10.3390/metabo12060554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is profoundly dysregulated in amyotrophic lateral sclerosis (ALS), yet the lipid composition of the white matter, where the myelinated axons of motor neurons are located, remains uncharacterised. We aimed to comprehensively characterise how myelin is altered in ALS by assessing its lipid and protein composition. We isolated white matter from the motor cortex from post-mortem tissue of ALS patients (n = 8 sporadic ALS cases and n = 6 familial ALS cases) and age- and sex-matched controls (n = 8) and conducted targeted lipidomic analyses, qPCR for gene expression of relevant lipid metabolising enzymes and Western blotting for myelin proteins. We also quantified myelin density by using spectral confocal reflectance microscopy (SCoRe). Whilst myelin protein composition was similar in ALS and control tissue, both the lipid levels and the expression of their corresponding enzymes were dysregulated, highlighting altered lipid metabolism in the white matter as well as a likely change in myelin composition. Altered myelin composition could contribute to motor neuron dysfunction, and this highlights how oligodendrocytes may play a critical role in ALS pathogenesis.
Collapse
Affiliation(s)
- Gemma L. Sadler
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Katherine N. Lewis
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Catriona McLean
- Victorian Brain Bank, Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia;
| | - David G. Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia;
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Samantha K. Barton
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
- Correspondence:
| |
Collapse
|
11
|
Heo D, Ling JP, Molina-Castro GC, Langseth AJ, Waisman A, Nave KA, Möbius W, Wong PC, Bergles DE. Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43. eLife 2022; 11:e75230. [PMID: 35311646 PMCID: PMC8970587 DOI: 10.7554/elife.75230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocalization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligodendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP-43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to eventual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43-deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jonathan P Ling
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gian C Molina-Castro
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of GöttingenGöttingenGermany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental MedicineGöttingenGermany
| | - Phil C Wong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
12
|
Wang H, Kodavati M, Britz GW, Hegde ML. DNA Damage and Repair Deficiency in ALS/FTD-Associated Neurodegeneration: From Molecular Mechanisms to Therapeutic Implication. Front Mol Neurosci 2021; 14:784361. [PMID: 34975400 PMCID: PMC8716463 DOI: 10.3389/fnmol.2021.784361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023] Open
Abstract
Emerging studies reveal that neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are commonly linked to DNA damage accumulation and repair deficiency. Neurons are particularly vulnerable to DNA damage due to their high metabolic activity, relying primarily on oxidative phosphorylation, which leads to increased reactive oxygen species (ROS) generation and subsequent DNA damage. Efficient and timely repair of such damage is critical for guarding the integrity of genomic DNA and for cell survival. Several genes predominantly associated with RNA/DNA metabolism have been implicated in both ALS and FTD, suggesting that the two diseases share a common underlying pathology with varied clinical manifestations. Recent studies reveal that many of the gene products, including RNA/DNA binding proteins (RBPs) TDP-43 and FUS are involved in diverse DNA repair pathways. A key question in the etiology of the ALS/FTD spectrum of neurodegeneration is the mechanisms and pathways involved in genome instability caused by dysfunctions/mutations of those RBP genes and their consequences in the central nervous system. The understanding of such converging molecular mechanisms provides insights into the underlying etiology of the rapidly progressing neurodegeneration in ALS/FTD, while also revealing novel DNA repair target avenues for therapeutic development. In this review, we summarize the common mechanisms of neurodegeneration in ALS and FTD, with a particular emphasis on the DNA repair defects induced by ALS/FTD causative genes. We also highlight the consequences of DNA repair defects in ALS/FTD and the therapeutic potential of DNA damage repair-targeted amelioration of neurodegeneration.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| | - Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Gavin W. Britz
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| |
Collapse
|
13
|
Smirnova EV, Rakitina TV, Ziganshin RH, Arapidi GP, Saratov GA, Kudriaeva AA, Belogurov AA. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021; 11:1628. [PMID: 34827627 PMCID: PMC8615356 DOI: 10.3390/biom11111628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.
Collapse
Affiliation(s)
- Evgeniya V. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| |
Collapse
|