1
|
Perozzo AM, Schwenk J, Kamalova A, Nakagawa T, Fakler B, Bowie D. GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites. Nat Commun 2023; 14:6799. [PMID: 37884493 PMCID: PMC10603098 DOI: 10.1038/s41467-023-42517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) and germ cell-specific gene 1-like protein (GSG1L) are claudin-type AMPA receptor (AMPAR) auxiliary subunits that profoundly regulate glutamatergic synapse strength and plasticity. While AMPAR-TARP complexes have been extensively studied, less is known about GSG1L-containing AMPARs. Here, we show that GSG1L's spatiotemporal expression, native interactome and allosteric sites are distinct. GSG1L generally expresses late during brain development in a region-specific manner, constituting about 5% of all AMPAR complexes in adulthood. While GSG1L can co-assemble with TARPs or cornichons (CNIHs), it also assembles as the sole auxiliary subunit. Unexpectedly, GSG1L acts through two discrete evolutionarily-conserved sites on the agonist-binding domain with a weak allosteric interaction at the TARP/KGK site to slow desensitization, and a stronger interaction at a different site that slows recovery from desensitization. Together, these distinctions help explain GSG1L's evolutionary past and how it fulfills a unique signaling role within glutamatergic synapses.
Collapse
Affiliation(s)
- Amanda M Perozzo
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 1A1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
| | - Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
2
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Gontier C, Surace SC, Delvendahl I, Müller M, Pfister JP. Efficient sampling-based Bayesian Active Learning for synaptic characterization. PLoS Comput Biol 2023; 19:e1011342. [PMID: 37603559 PMCID: PMC10470935 DOI: 10.1371/journal.pcbi.1011342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/31/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a model, in which input stimuli are selected to maximize the mutual information between the observations and the unknown parameters. However, the applicability of BAL to experiments is limited as it requires performing high-dimensional integrations and optimizations in real time. Current methods are either too time consuming, or only applicable to specific models. Here, we propose an Efficient Sampling-Based Bayesian Active Learning (ESB-BAL) framework, which is efficient enough to be used in real-time biological experiments. We apply our method to the problem of estimating the parameters of a chemical synapse from the postsynaptic responses to evoked presynaptic action potentials. Using synthetic data and synaptic whole-cell patch-clamp recordings, we show that our method can improve the precision of model-based inferences, thereby paving the way towards more systematic and efficient experimental designs in physiology.
Collapse
Affiliation(s)
- Camille Gontier
- Department of Physiology, University of Bern, Bern, Switzerland
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Ye L, Shu S, Jia J, Sun M, Xu S, Bao X, Bian H, Liu Y, Zhang M, Zhu X, Bai F, Xu Y. Absent in melanoma 2 mediates aging-related cognitive dysfunction by acting on complement-dependent microglial phagocytosis. Aging Cell 2023; 22:e13860. [PMID: 37177836 PMCID: PMC10352562 DOI: 10.1111/acel.13860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pattern separation (PS) dysfunction is a type of cognitive impairment that presents early during the aging process, and this deficit has been attributed to structural and functional alterations in the dentate gyrus (DG) of the hippocampus. Absent in melanoma 2 (AIM2) is an essential component of the inflammasome. However, whether AIM2 plays a role in aging-associated cognitive dysfunction remains unclear. Here, we found that PS function was impaired in aging mice and was accompanied by marked synaptic loss and increased expression of AIM2 in the DG. Subsequently, we used an AIM2 overexpression virus and mice with AIM2 deletion to investigate the role of AIM2 in regulating PS function and synaptic plasticity and the mechanisms involved. Our study revealed that AIM2 regulates microglial activation during synaptic pruning in the DG region via the complement pathway, leading to impaired synaptic plasticity and PS function in aging mice. These results suggest a critical role for AIM2 in regulating synaptic plasticity and PS function and provide a new direction for ameliorating aging-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Huijie Bian
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Meijuan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingChina
- Jiangsu Provincial Key Discipline of NeurologyNanjingChina
- Nanjing Neurology Medical CenterNanjingChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingChina
| |
Collapse
|
5
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Ikuyo Y, Yamada M, Shikama Y, Matsushita K. Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars. Nutrients 2023; 15:nu15112471. [PMID: 37299434 DOI: 10.3390/nu15112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Tooth loss and decreased masticatory function reportedly affect cognitive function; tooth loss allegedly induces astrogliosis and aging of astrocytes in the hippocampus and hypothalamus, which is a response specific to the central nervous system owing to homeostasis in different brain regions. Capsaicin, a component of red peppers, has positive effects on brain disorders in mice. Decreased expression of transient receptor potential vanilloid 1, a receptor of capsaicin, is associated with the development of dementia. In this study, we investigated the effect of capsaicin administration in aged mice (C57BL/6N mice) with reduced masticatory function owing to the extraction of maxillary molars to investigate preventive/therapeutic methods for cognitive decline attributed to age-related masticatory function loss. The results demonstrated that mice with impaired masticatory function showed decreased motor and cognitive function at the behavioral level. At the genetic level, neuroinflammation, microglial activity, and astrogliosis, such as increased glial fibrillary acidic protein levels, were observed in the mouse brain. The mice with extracted molars fed on a diet containing capsaicin for 3 months demonstrated improved behavioral levels and astrogliosis, which suggest that capsaicin is useful in maintaining brain function in cases of poor oral function and prosthetic difficulties.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Yoriko Ikuyo
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| |
Collapse
|
6
|
Gilmer JI, Farries MA, Kilpatrick Z, Delis I, Cohen JD, Person AL. An emergent temporal basis set robustly supports cerebellar time-series learning. J Neurophysiol 2023; 129:159-176. [PMID: 36416445 PMCID: PMC9990911 DOI: 10.1152/jn.00312.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The cerebellum is considered a "learning machine" essential for time interval estimation underlying motor coordination and other behaviors. Theoretical work has proposed that the cerebellum's input recipient structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from time-varying inputs, typical during movements. The model robustly produced temporal basis sets from these inputs, and the resultant GCL output supported better learning of temporally complex target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels, supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity that drove learning differed from those seen previously for classification tasks. These findings advance testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense population activity optimizes learning.NEW & NOTEWORTHY During movement, mossy fiber inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model, we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which retained intrinsic input variance while also performing pattern separation.
Collapse
Affiliation(s)
- Jesse I Gilmer
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, Colorado
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael A Farries
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jeremy D Cohen
- University of North Carolina Neuroscience Center, Chapel Hill, North Carolina
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
7
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
8
|
Yamada T, Saitoh Y, Kametani K, Kamijo A, Sakamoto T, Terada N. Involvement of membrane palmitoylated protein 2 (MPP2) in the synaptic molecular complex at the mouse cerebellar glomerulus. Histochem Cell Biol 2022; 158:497-511. [PMID: 35854144 DOI: 10.1007/s00418-022-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
We previously reported that the membrane skeletal protein 4.1G in the peripheral nervous system transports membrane palmitoylated protein 6 (MPP6), which interacts with the synaptic scaffolding protein Lin7 and cell adhesion molecule 4 (CADM4) in Schwann cells that form myelin. In the present study, we investigated the localization of and proteins related to MPP2, a highly homologous family protein of MPP6, in the cerebellum of the mouse central nervous system, in which neurons are well organized. Immunostaining for MPP2 was observed at cerebellar glomeruli (CG) in the granular layer after postnatal day 14. Using the high-resolution Airyscan mode of a confocal laser-scanning microscope, MPP2 was detected as a dot pattern and colocalized with CADM1 and Lin7, recognized as small ring/line patterns, as well as with calcium/calmodulin-dependent serine protein kinase (CASK), NMDA glutamate receptor 1 (GluN1), and M-cadherin, recognized as dot patterns, indicating the localization of MPP2 in the excitatory postsynaptic region and adherens junctions of granule cells. An immunoprecipitation analysis revealed that MPP2 formed a molecular complex with CADM1, CASK, M-cadherin, and Lin7. Furthermore, the Lin7 staining pattern showed small rings surrounding mossy fibers in wild-type CG, while it changed to the dot/spot pattern inside small rings detected with CADM1 staining in MPP2-deficient CG. These results indicate that MPP2 influences the distribution of Lin7 to synaptic cell membranes at postsynaptic regions in granule cells at CG, at which electric signals enter the cerebellum.
Collapse
Affiliation(s)
- Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Kiyokazu Kametani
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Division of Basic and Clinical Medicine, Nagano College of Nursing, Komagane, Nagano, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|