1
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Zou T, Liu JY, Liu ZQ, Xiao D, Chen J. The Role of ADCY1 in Regulating the Sensitivity of Platinum-Based Chemotherapy in NSCLC. Pharmaceuticals (Basel) 2024; 17:1118. [PMID: 39338283 PMCID: PMC11434658 DOI: 10.3390/ph17091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lung cancer has the highest fatality rate among malignant tumors in the world. Finding new biomarkers of drug resistance is of great importance in the prognosis of lung cancer patients. We found that the polymorphisms of Adenylate Cyclase 1 (ADCY1) are significantly associated with platinum-based chemotherapy resistance in lung cancer patients in our previous research. In this study, we wanted to identify the mechanism of ADCY1 affecting platinum resistance. We used an MTT assay to find if the expression of ADCY1 is associated with the sensitivity of cisplatin in A549, H1299, and A549-DDP cells. Then, we performed CCK-8 tests to detect the absorbance of these cells stimulated by ADCY1, which can discover the cell proliferation that is affected by ADCY1. We investigated cell apoptosis and cell cycles regulated by ADCY1 through the flow cytometry assay. RNA sequencing was used to find the downstream genes affected by ADCY1 which may be associated with drug resistance in lung cancer patients. ADCY1 has higher expression in lung cancer cells than in normal cells. ADCY1 can affect cisplatin resistance in lung cancer cells by regulating cell proliferation, cell apoptosis, and the cell cycle. It may control cell apoptosis by regulating the classical apoptosis biomarkers Bax and Bcl2. Our study showed that ADCY1 may be a new biomarker in the prognosis of lung cancer patients. Much work remains to be carried out to clarify the mechanism in this important emerging field.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhao-Qian Liu
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Xiao
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Giolito MV, Bodoirat S, La Rosa T, Reslinger M, Guardia GDA, Mourtada J, Claret L, Joung A, Galante PAF, Penalva LOF, Plateroti M. Impact of the thyroid hormone T3 and its nuclear receptor TRα1 on colon cancer stem cell phenotypes and response to chemotherapies. Cell Death Dis 2024; 15:306. [PMID: 38693105 PMCID: PMC11063186 DOI: 10.1038/s41419-024-06690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .
Collapse
MESH Headings
- Humans
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Thyroid Hormone Receptors alpha/metabolism
- Thyroid Hormone Receptors alpha/genetics
- Caco-2 Cells
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/pathology
- Colonic Neoplasms/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Triiodothyronine/pharmacology
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Camptothecin/pharmacology
- Camptothecin/analogs & derivatives
- Camptothecin/therapeutic use
- Phenotype
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aldehyde Dehydrogenase 1 Family/metabolism
- Aldehyde Dehydrogenase 1 Family/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Retinal Dehydrogenase/metabolism
- Retinal Dehydrogenase/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Serguei Bodoirat
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
| | - Theo La Rosa
- Stem-Cell and Brain Research Institute, U1208 INSERM, USC1361 INRA, 69675, Bron, France
| | - Mathieu Reslinger
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | | | - Jana Mourtada
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
| | - Leo Claret
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | - Alain Joung
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelina Plateroti
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France.
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France.
| |
Collapse
|
5
|
Kulkarni P, Mohanty A, Ramisetty S, Duvivier H, Khan A, Shrestha S, Tan T, Merla A, El-Hajjaoui M, Malhotra J, Singhal S, Salgia R. A Nexus between Genetic and Non-Genetic Mechanisms Guides KRAS Inhibitor Resistance in Lung Cancer. Biomolecules 2023; 13:1587. [PMID: 38002269 PMCID: PMC10668935 DOI: 10.3390/biom13111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Several studies in the last few years have determined that, in contrast to the prevailing dogma that drug resistance is simply due to Darwinian evolution-the selection of mutant clones in response to drug treatment-non-genetic changes can also lead to drug resistance whereby tolerant, reversible phenotypes are eventually relinquished by resistant, irreversible phenotypes. Here, using KRAS as a paradigm, we illustrate how this nexus between genetic and non-genetic mechanisms enables cancer cells to evade the harmful effects of drug treatment. We discuss how the conformational dynamics of the KRAS molecule, that includes intrinsically disordered regions, is influenced by the binding of the targeted therapies contributing to conformational noise and how this noise impacts the interaction of KRAS with partner proteins to rewire the protein interaction network. Thus, in response to drug treatment, reversible drug-tolerant phenotypes emerge via non-genetic mechanisms that eventually enable the emergence of irreversible resistant clones via genetic mutations. Furthermore, we also discuss the recent data demonstrating how combination therapy can help alleviate KRAS drug resistance in lung cancer, and how new treatment strategies based on evolutionary principles may help minimize or even preclude the emergence of drug resistance.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
- Department of Systems Biology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Herbert Duvivier
- Department of Medical Oncology, City of Hope Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA;
| | - Ajaz Khan
- Department of Medical Oncology, City of Hope Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA;
| | - Sagun Shrestha
- Department of Medical Oncology, City of Hope Phoenix, 14200 West Celebrate Life Way, Goodyear, AZ 85338, USA;
| | - Tingting Tan
- Department of Medical Oncology, City of Hope National Medical Center, Newport Beach Fashion Island, Duarte, CA 92660, USA;
| | - Amartej Merla
- Department of Medical Oncology, City of Hope, Lancaster, CA 93534, USA;
| | - Michelle El-Hajjaoui
- Department of Medical Oncology, City of Hope Medical Center, West Covina, CA 91790, USA;
| | - Jyoti Malhotra
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Sharad Singhal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA 91010, USA; (A.M.); (S.R.); (J.M.); (S.S.)
| |
Collapse
|
6
|
Arias-Diaz AE, Ferreiro-Pantin M, Barbazan J, Perez-Beliz E, Ruiz-Bañobre J, Casas-Arozamena C, Muinelo-Romay L, Lopez-Lopez R, Vilar A, Curiel T, Abal M. Ascites-Derived Organoids to Depict Platinum Resistance in Gynaecological Serous Carcinomas. Int J Mol Sci 2023; 24:13208. [PMID: 37686015 PMCID: PMC10487816 DOI: 10.3390/ijms241713208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Gynaecological serous carcinomas (GSCs) constitute a distinctive entity among female tumours characterised by a very poor prognosis. In addition to late-stage diagnosis and a high rate of recurrent disease associated with massive peritoneal carcinomatosis, the systematic acquisition of resistance to first-line chemotherapy based on platinum determines the unfavourable outcome of GSC patients. To explore the molecular mechanisms associated with platinum resistance, we generated patient-derived organoids (PDOs) from liquid biopsies of GSC patients. PDOs are emerging as a relevant preclinical model system to assist in clinical decision making, mainly from tumoural tissue and particularly for personalised therapeutic options. To approach platinum resistance in a GSC context, proficient PDOs were generated from the ascitic fluid of ovarian, primary peritoneal and uterine serous carcinoma patients in platinum-sensitive and platinum-resistant clinical settings from the uterine aspirate of a uterine serous carcinoma patient, and we also induced platinum resistance in vitro in a representative platinum-sensitive PDO. Histological and immunofluorescent characterisation of these ascites-derived organoids showed resemblance to the corresponding original tumours, and assessment of platinum sensitivity in these preclinical models replicated the clinical setting of the corresponding GSC patients. Differential gene expression profiling of a panel of 770 genes representing major canonical cancer pathways, comparing platinum-sensitive and platinum-resistant PDOs, revealed cellular response to DNA damage stimulus as the principal biological process associated with the acquisition of resistance to the first-line therapy for GSC. Additionally, candidate genes involved in regulation of cell adhesion, cell cycles, and transcription emerged from this proof-of-concept study. In conclusion, we describe the generation of PDOs from liquid biopsies in the context of gynaecological serous carcinomas to explore the molecular determinants of platinum resistance.
Collapse
Affiliation(s)
- Andrea Estrella Arias-Diaz
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Department of Medicine, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Miriam Ferreiro-Pantin
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
| | - Jorge Barbazan
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edurne Perez-Beliz
- Department of Pathology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Juan Ruiz-Bañobre
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rafael Lopez-Lopez
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ana Vilar
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Teresa Curiel
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
7
|
Liu C, Kudo T, Ye X, Gascoigne K. Cell-to-cell variability in Myc dynamics drives transcriptional heterogeneity in cancer cells. Cell Rep 2023; 42:112401. [PMID: 37060565 DOI: 10.1016/j.celrep.2023.112401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Cell-to-cell heterogeneity is vital for tumor evolution and survival. How cancer cells achieve and exploit this heterogeneity remains an active area of research. Here, we identify c-Myc as a highly heterogeneously expressed transcription factor and an orchestrator of transcriptional and phenotypic diversity in cancer cells. By monitoring endogenous c-Myc protein in individual living cells, we report the surprising pulsatile nature of c-Myc expression and the extensive cell-to-cell variability in its dynamics. We further show that heterogeneity in c-Myc dynamics leads to variable target gene transcription and that timing of c-Myc expression predicts cell-cycle progression rates and drug sensitivities. Together, our data advocate for a model in which cancer cells increase the heterogeneity of functionally diverse transcription factors such as c-Myc to rapidly survey transcriptional landscapes and survive stress.
Collapse
Affiliation(s)
- Chad Liu
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Takamasa Kudo
- Department of Cellular and Tissue Genomics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Karen Gascoigne
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
8
|
Mondal P, Meeran SM. Emerging role of non-coding RNAs in resistance to platinum-based anti-cancer agents in lung cancer. Front Pharmacol 2023; 14:1105484. [PMID: 36778005 PMCID: PMC9909610 DOI: 10.3389/fphar.2023.1105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Platinum-based drugs are the first line of therapeutics against many cancers, including lung cancer. Lung cancer is one of the leading causes of cancer-related death worldwide. Platinum-based agents target DNA and prevent replication, and transcription, leading to the inhibition of cell proliferation followed by cellular apoptosis. About twenty-three platinum-based drugs are under different stages of clinical trials, among cisplatin, carboplatin, and oxaliplatin are widely used for the treatment of various cancers. Among them, cisplatin is the most commonly used drug for cancer therapy, which binds with RNA, and hinders the cellular RNA process. However, long-term use of platinum-based drugs can cause different side effects and has been shown to develop chemoresistance, leading to poor clinical outcomes. Chemoresistance became an important challenge for cancer treatment. Platinum-based chemoresistance occurs due to the influence of intrinsic factors such as overexpression of multidrug resistance proteins, advancement of DNA repair mechanism, degradation, and deactivation of intracellular thiols. Recently, epigenetic modifications, especially non-coding RNAs (ncRNAs) mediated gene regulation, grasp the attention for reversing the sensitivity of platinum-based drugs due to their reversible nature without altering genome sequence. ncRNAs can also modulate the intrinsic and non-intrinsic mechanisms of resistance in lung cancer cells. Therefore, targeting ncRNAs could be an effective approach for developing novel therapeutics to overcome lung cancer chemoresistance. The current review article has discussed the role of ncRNA in chemoresistance and its underlying molecular mechanisms in human lung cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Syed Musthapa Meeran, ,
| |
Collapse
|
9
|
Ramisetty S, Kulkarni P, Bhattacharya S, Nam A, Singhal SS, Guo L, Mirzapoiazova T, Mambetsariev B, Mittan S, Malhotra J, Pisick E, Subbiah S, Rajurkar S, Massarelli E, Salgia R, Mohanty A. A Systems Biology Approach for Addressing Cisplatin Resistance in Non-Small Cell Lung Cancer. J Clin Med 2023; 12:599. [PMID: 36675528 PMCID: PMC9861808 DOI: 10.3390/jcm12020599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Translational research in medicine, defined as the transfer of knowledge and discovery from the basic sciences to the clinic, is typically achieved through interactions between members across scientific disciplines to overcome the traditional silos within the community. Thus, translational medicine underscores 'Team Medicine', the partnership between basic science researchers and clinicians focused on addressing a specific goal in medicine. Here, we highlight this concept from a City of Hope perspective. Using cisplatin resistance in non-small cell lung cancer (NSCLC) as a paradigm, we describe how basic research scientists, clinical research scientists, and medical oncologists, in true 'Team Science' spirit, addressed cisplatin resistance in NSCLC and identified a previously approved compound that is able to alleviate cisplatin resistance in NSCLC. Furthermore, we discuss how a 'Team Medicine' approach can help to elucidate the mechanisms of innate and acquired resistance in NSCLC and develop alternative strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, 1500 Duarte Rd, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Pathology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Linlin Guo
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sandeep Mittan
- Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1000 FivePoint, Irvine, CA 92618, USA
| | - Evan Pisick
- Cancer Treatment Centers of America (CTCA) Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1250 S. Sunset Ave., Suite 303, West Covina, CA 91790, USA
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1100 San Bernardino Road, Suite 1100, Upland, CA 91786, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Chen K, Liu S, Lu C, Gu X. A prognostic and therapeutic hallmark developed by the integrated profile of basement membrane and immune infiltrative landscape in lung adenocarcinoma. Front Immunol 2022; 13:1058493. [PMID: 36532024 PMCID: PMC9748099 DOI: 10.3389/fimmu.2022.1058493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Basement membranes (BMs) are specialised extracellular matrices that maintain cellular integrity and resist the breaching of carcinoma cells for metastases while regulating tumour immunity. The tumour immune microenvironment (TME) is essential for tumour growth and the response to and benefits from immunotherapy. In this study, the BM score and TME score were constructed based on the expression signatures of BM-related genes and the presence of immune cells in lung adenocarcinoma (LUAD), respectively. Subsequently, the BM-TME classifier was developed with the combination of BM score and TME score for accurate prognostic prediction. Further, Kaplan-Meier survival estimation, univariate Cox regression analysis and receiver operating characteristic curves were used to cross-validate and elucidate the prognostic prediction value of the BM-TME classifier in several cohorts. Findings from functional annotation analysis suggested that the potential molecular regulatory mechanisms of the BM-TME classifier were closely related to the cell cycle, mitosis and DNA replication pathways. Additionally, the guiding value of the treatment strategy of the BM-TME classifier for LUAD was determined. Future clinical disease management may benefit from the findings of our research.
Collapse
Affiliation(s)
- Kaijie Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuang Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Xuefeng Gu, ; Changlian Lu,
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Xuefeng Gu, ; Changlian Lu,
| |
Collapse
|
11
|
Serrano A, Berthelet J, Naik SH, Merino D. Mastering the use of cellular barcoding to explore cancer heterogeneity. Nat Rev Cancer 2022; 22:609-624. [PMID: 35982229 DOI: 10.1038/s41568-022-00500-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Tumours are often composed of a multitude of malignant clones that are genomically unique, and only a few of them may have the ability to escape cancer therapy and grow as symptomatic lesions. As a result, tumours with a large degree of genomic diversity have a higher chance of leading to patient death. However, clonal fate can be driven by non-genomic features. In this context, new technologies are emerging not only to track the spatiotemporal fate of individual cells and their progeny but also to study their molecular features using various omics analysis. In particular, the recent development of cellular barcoding facilitates the labelling of tens to millions of cancer clones and enables the identification of the complex mechanisms associated with clonal fate in different microenvironments and in response to therapy. In this Review, we highlight the recent discoveries made using lentiviral-based cellular barcoding techniques, namely genetic and optical barcoding. We also emphasize the strengths and limitations of each of these technologies and discuss some of the key concepts that must be taken into consideration when one is designing barcoding experiments. Finally, we suggest new directions to further improve the use of these technologies in cancer research.
Collapse
Affiliation(s)
- Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Shalin H Naik
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Fibroblast growth factor signalling influences homologous recombination-mediated DNA damage repair to promote drug resistance in ovarian cancer. Br J Cancer 2022; 127:1340-1351. [PMID: 35778553 PMCID: PMC9519926 DOI: 10.1038/s41416-022-01899-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ovarian cancer patients frequently develop chemotherapy resistance, limiting treatment options. We have previously shown that individuality in fibroblast growth factor 1 (FGF1) expression influences survival and chemotherapy response. METHODS We used MTT assays to assess chemosensitivity to cisplatin and carboplatin following shRNA-mediated knockdown or heterologous over-expression of FGF1 (quantified by qRT-PCR and immunoblot analysis), and in combination with the FGFR inhibitors AZD4547 and SU5402, the ATM inhibitor KU55933 and DNA-PK inhibitor NU7026. Immunofluorescence microscopy was used to quantify the FGF1-dependent timecourse of replication protein A (RPA) and γH2AX foci formation. RESULTS Pharmacological inhibition of FGF signalling reversed drug resistance in immortalised cell lines and in primary cell lines from drug-resistant ovarian cancer patients, while FGF1 over-expression induced resistance. Ataxia telangiectasia mutated (ATM) phosphorylation, but not DNA adduct formation was FGF1 dependent, following cisplatin or carboplatin challenge. Combining platinum drugs with the ATM inhibitor KU55933, but not with the DNA-PK inhibitor NU7026 re-sensitised resistant cells. FGF1 expression influenced the timecourse of damage-induced RPA and γH2AX nuclear foci formation. CONCLUSION Drug resistance arises from FGF1-mediated differential activation of high-fidelity homologous recombination DNA damage repair. FGFR and ATM inhibitors reverse platinum drug resistance, highlighting novel combination chemotherapy approaches for future clinical trial evaluation.
Collapse
|
13
|
Wu G, Xiu H, Luo H, Ding Y, Li Y. A mathematical model for cell cycle control: graded response or quantized response. Cell Cycle 2022; 21:820-834. [PMID: 35107036 PMCID: PMC8973363 DOI: 10.1080/15384101.2022.2031770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Cell cycle is an important and complex biological system. A lot of efforts have been put in understanding cell cycle arrest for its vital role in clinical therapies. The cell-cycle-arrest outcomes upon stimulation are complicated. The response could be stringent or relaxed, and graded or quantized. A model fully addressing various cell-cycle-arrest outcomes is to be developed. Here, we developed a mathematical model of cell cycle control incorporating distinct characteristics of various cell-cycle-arrest outcomes. The model can simulate two typical properties of cell cycle arrest, quantized and graded. We also characterized the inheritable quiescence and refractory state, which were crucial in long-term response of the population. Then, we monitored cells respond to multiple stimulations, and the results indicated that cells responded to stimulations with small interval did not induce significantly sustained cell cycle arrest as the existence of refractory state. Our work will benefit fundamental research and make efforts to predicting outcomes of clinical therapeutics.
Collapse
Affiliation(s)
- Guoyu Wu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- CONTACT Guoyu Wu
| | - Huiyu Xiu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Haiying Luo
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Yu Ding
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Yuchao Li
- MegaLab, MegaRobo Technologies Co., Ltd, Beijing, China
- Yuchao Li
| |
Collapse
|
14
|
Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway. Cell Death Differ 2021; 29:568-584. [PMID: 34611298 PMCID: PMC8901929 DOI: 10.1038/s41418-021-00875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.
Collapse
|
15
|
Murphy KJ, Reed DA, Vennin C, Conway JRW, Nobis M, Yin JX, Chambers CR, Pereira BA, Lee V, Filipe EC, Trpceski M, Ritchie S, Lucas MC, Warren SC, Skhinas JN, Magenau A, Metcalf XL, Stoehr J, Major G, Parkin A, Bidanel R, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Abdulkhalek L, Gill AJ, Johns AL, Biankin AV, Samra J, Grimmond SM, Chou A, Goetz JG, Samuel MS, Lyons JG, Burgess A, Caldon CE, Horvath LG, Daly RJ, Gadegaard N, Wang Y, Sansom OJ, Morton JP, Cox TR, Pajic M, Herrmann D, Timpson P. Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. SCIENCE ADVANCES 2021; 7:eabh0363. [PMID: 34586840 PMCID: PMC8480933 DOI: 10.1126/sciadv.abh0363] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/06/2021] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow–induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.
Collapse
Affiliation(s)
- Kendelle J. Murphy
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Daniel A. Reed
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Claire Vennin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Oncode Institute, Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - James R. W. Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Max Nobis
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Julia X. Yin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Cecilia R. Chambers
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Victoria Lee
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Elysse C. Filipe
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Shona Ritchie
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Morghan C. Lucas
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sean C. Warren
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Joanna N. Skhinas
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Xanthe L. Metcalf
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Gretel Major
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Ashleigh Parkin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Romain Bidanel
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Ruth J. Lyons
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Michael Tayao
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Andrew Da Silva
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Lea Abdulkhalek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Australian Pancreatic Genome Initiative (APGI)
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Oncode Institute, Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Department of Anatomical Pathology, SydPath, Darlinghurst, NSW 2010, Australia
- INSERM UMR, Tumour Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Dermatology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW 2000, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2006, Australia
- Cancer Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Australian Pancreatic Cancer Matrix Atlas (APMA)
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Oncode Institute, Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Department of Anatomical Pathology, SydPath, Darlinghurst, NSW 2010, Australia
- INSERM UMR, Tumour Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Dermatology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW 2000, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2006, Australia
- Cancer Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Anthony J. Gill
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
| | - Amber L. Johns
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
| | - Andrew V. Biankin
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Sean M. Grimmond
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Angela Chou
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, NSW 2064, Australia
- Department of Anatomical Pathology, SydPath, Darlinghurst, NSW 2010, Australia
| | - Jacky G. Goetz
- INSERM UMR, Tumour Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - J. Guy Lyons
- Dermatology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Sydney, NSW 2139, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW 2000, Australia
| | - C. Elizabeth Caldon
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Lisa G. Horvath
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2006, Australia
| | - Roger J. Daly
- Cancer Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Owen J. Sansom
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Jennifer P. Morton
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Thomas R. Cox
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Marina Pajic
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| |
Collapse
|