1
|
Ou N, Wang Y, Xu S, Luo J, Zhang C, Zhang Y, Shi X, Xiong M, Zhao L, Ji Z, Zhang Y, Zhao J, Bai H, Tian R, Li P, Zhi E, Huang Y, Chen W, Wang R, Jin Y, Wang D, Li Z, Chen H, Yao C. Primate-Specific DAZ Regulates Translation of Cell Proliferation-Related mRNAs and is Essential for Maintenance of Spermatogonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400692. [PMID: 38783578 PMCID: PMC11304246 DOI: 10.1002/advs.202400692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Primate-specific DAZ (deleted in azoospermia) has evolved in the azoospermia factor c (AZFc) locus on the Y chromosome. Loss of DAZ is associated with azoospermia in patients with deletion of the AZFc region (AZFc_del). However, the molecular mechanisms of DAZ in spermatogenesis remain uncertain. In this study, the molecular mechanism of DAZ is identified, which is unknown since it is identified 40 years ago because of the lack of a suitable model. Using clinical samples and cell models, it is shown that DAZ plays an important role in spermatogenesis and that loss of DAZ is associated with defective proliferation of c-KIT-positive spermatogonia in patients with AZFc_del. Mechanistically, it is shown that knockdown of DAZ significantly downregulated global translation and subsequently decreased cell proliferation. Furthermore, DAZ interacted with PABPC1 via the DAZ repeat domain to regulate global translation. DAZ targeted mRNAs that are involved in cell proliferation and cell cycle phase transition. These findings indicate that DAZ is a master translational regulator and essential for the maintenance of spermatogonia. Loss of DAZ may result in defective proliferation of c-KIT-positive spermatogonia and spermatogenic failure.
Collapse
Affiliation(s)
- Ningjing Ou
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Department of UrologyDepartment of Interventional MedicineGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong519000China
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Yuci Wang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Shuai Xu
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Jiaqiang Luo
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Chenwang Zhang
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yangyi Zhang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Xiaoyan Shi
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Minggang Xiong
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Liangyu Zhao
- Department of UrologyDepartment of Interventional MedicineGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Zhiyong Ji
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yuxiang Zhang
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Jingpeng Zhao
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haowei Bai
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Ruhui Tian
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Peng Li
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Erlei Zhi
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yuhua Huang
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Wei Chen
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Ruiqi Wang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Yuxuan Jin
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Dian Wang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Zheng Li
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Hao Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Chencheng Yao
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| |
Collapse
|
2
|
Xie S, Ma Y, Liu Y, Tao D, Wang Z, Yang Y. Primary azoospermia factor C duplication associated with spermatogenic impariment: a case-control study based on Y-chromosome haplogrouping in a Han Chinese population. Andrology 2024; 12:561-569. [PMID: 37594248 DOI: 10.1111/andr.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Azoospermia factor C (AZFc) in the male-specific region of Y-chromosome (MSY) presents wide structure variation mainly due to frequent non-allele homologous recombination, leading to significant copy number variation of the AZFc-linked coding sequences involving in spermatogenesis. A large number of studies had been conducted to investigate the association between AZFc deletions and male infertility in certain Y chromosome genetic backgrounds, however, the influence of primary AZFc duplication on spermatogenesis remained controversial and the cause of the discrepant outcomes is unknown. METHODS In the present study, a total of 1,102 unrelated Han Chinese males without any detectable AZF deletions were recruited from 2014 to 2019, including 411 controls with normozoospermia and 691 patients with idiopathic spermatogenic failure. Using multiple paralog ratio tests (PRTs), the structure duplications were classified by the copy number of the AZFc-linked amplicons and genes. The Y-chromosome haplogroup (Y-hg) was categorized by genetyping of MSY-linked polymorphism loci. The association of primary AZFc duplication with spermatogenic phenotype was investigated in males with the same Y-hg. RESULTS Within Y-hg O3* group, the frequency of the gr/gr duplication in patients is significantly higher than that of controls (P = 1.29×10-3 , odds ratio (OR) 7.64, 95% confidence interval (CI) 1.79-32.57). Moreover, Y-hg O3* males with the gr/gr duplication presented a significantly lower sperm production compared with non-AZFc duplicated ones (sperm concentration: P = 1.46×10-3 ; total sperm count: P = 1.82 ×10-3 ). The b2/b3 duplication were identified clustered in Y-hg Cα2*, and the significant difference in the distribution was not observed between patients with spermatogenic failure and controls. CONCLUSION The results suggest that, in the Han Chinese population, the gr/gr duplication is a predisposing genetic factor for spermatogenic impairment in males harboring Y-hg O3* . Meanwhile, the b2/b3 duplication may be fixed on a yet-unidentified subbranch of Y-hg Cα2* without significantly deleterious effect on spermatogenesis. Our findings provide evidence that the difference in the Y-hg composition may cause the discrepancy on the association of AZFc duplication with spermatogenic failure among the studied populations.
Collapse
Affiliation(s)
- Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China School of medicine, Sichuan University, Chengdu, China
| | - Yongyi Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China School of medicine, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China School of medicine, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China School of medicine, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China School of medicine, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China School of medicine, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Krausz C, Navarro-Costa P, Wilke M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State of the art 2023. Andrology 2024; 12:487-504. [PMID: 37674303 DOI: 10.1111/andr.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Paulo Navarro-Costa
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Gulbenkian Science Institute, Oeiras, Portugal
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Hajiesmaeil M, Ravasini F, Risi F, Magnarini G, Olivieri A, D'Atanasio E, Galehdari H, Trombetta B, Cruciani F. High incidence of AZF duplications in clan-structured Iranian populations detected through Y chromosome sequencing read depth analysis. Sci Rep 2023; 13:11857. [PMID: 37481605 PMCID: PMC10363161 DOI: 10.1038/s41598-023-39069-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
The ampliconic region of the human Y chromosome consists of large duplicated sequences that can undergo non-allelic homologous recombination (NAHR), resulting in structural rearrangements that may cause infertility, especially when they occur in the azoospermia factor b/c (AZFb/c) region. Although AZF duplications have long been neglected due to the technical limitations of STS-based studies that focused mainly on deletions, recent next generation sequencing (NGS) technologies provided evidence for their importance in fertility. In this study, a NGS read depth approach was used to detect AZFb/c rearrangements in 87 Iranians from different ethnic groups. The duplication frequency in Iran proved to be twice as high as in the "1000 Genomes" dataset. Interestingly, most duplications were found in patrilineal ethnic groups, possibly as a consequence of their lower male effective population size which can counteract negative selection. Moreover, we found a large 8.0 Mb duplication, resulting in a fourfold increase in the copy number of AZFc genes, which to our knowledge is the largest duplication ever reported in this region. Overall, our results suggest that it is important to consider not only AZF deletions but also duplications to investigate the causes of male infertility, especially in patrilineal clan-based populations.
Collapse
Affiliation(s)
- Mogge Hajiesmaeil
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Flavia Risi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Giorgia Magnarini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', Pavia University, Pavia, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, 00185, Rome, Italy
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Beniamino Trombetta
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), CNR, 00185, Rome, Italy.
| |
Collapse
|
5
|
Lucotte EA, Guðmundsdóttir VB, Jensen JM, Skov L, Macià MC, Almstrup K, Schierup MH, Helgason A, Stefansson K. Characterizing the evolution and phenotypic impact of ampliconic Y chromosome regions. Nat Commun 2023; 14:3990. [PMID: 37414752 PMCID: PMC10326017 DOI: 10.1038/s41467-023-39644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
A major part of the human Y chromosome consists of palindromes with multiple copies of genes primarily expressed in testis, many of which have been claimed to affect male fertility. Here we examine copy number variation in these palindromes based on whole genome sequence data from 11,527 Icelandic men. Using a subset of 7947 men grouped into 1449 patrilineal genealogies, we infer 57 large scale de novo copy number mutations affecting palindrome 1. This corresponds to a mutation rate of 2.34 × 10-3 mutations per meiosis, which is 4.1 times larger than our phylogenetic estimate of the mutation rate (5.72 × 10-4), suggesting that de novo mutations on the Y are lost faster than expected under neutral evolution. Although simulations indicate a selection coefficient of 1.8% against non-reference copy number carriers, we do not observe differences in fertility among sequenced men associated with their copy number genotype, but we lack statistical power to detect differences resulting from weak negative selection. We also perform association testing of a diverse set of 341 traits to palindromic copy number without any significant associations. We conclude that large-scale palindrome copy number variation on the Y chromosome has little impact on human phenotype diversity.
Collapse
Affiliation(s)
- Elise A Lucotte
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark.
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198, Gif-sur-Yvette, France.
| | - Valdís Björt Guðmundsdóttir
- deCODE genetics/Amgen Inc., 101, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, 101, Reykjavik, Iceland
| | - Jacob M Jensen
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Moisès Coll Macià
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Agnar Helgason
- deCODE genetics/Amgen Inc., 101, Reykjavik, Iceland.
- Department of Anthropology, University of Iceland, 101, Reykjavik, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., 101, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland
| |
Collapse
|
6
|
Wold JR, Guhlin JG, Dearden PK, Santure AW, Steeves TE. The promise and challenges of characterizing genome-wide structural variants: A case study in a critically endangered parrot. Mol Ecol Resour 2023. [PMID: 36916824 DOI: 10.1111/1755-0998.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
There is growing interest in the role of structural variants (SVs) as drivers of local adaptation and speciation. From a biodiversity genomics perspective, the characterization of genome-wide SVs provides an exciting opportunity to complement single nucleotide polymorphisms (SNPs). However, little is known about the impacts of SV discovery and genotyping strategies on the characterization of genome-wide SV diversity within and among populations. Here, we explore a near whole-species resequence data set, and long-read sequence data for a subset of highly represented individuals in the critically endangered kākāpō (Strigops habroptilus). We demonstrate that even when using a highly contiguous reference genome, different discovery and genotyping strategies can significantly impact the type, size and location of SVs characterized genome-wide. Further, we found that the mean number of SVs in each of two kākāpō lineages differed both within and across generations. These combined results suggest that genome-wide characterization of SVs remains challenging at the population-scale. We are optimistic that increased accessibility to long-read sequencing and advancements in bioinformatic approaches including multireference approaches like genome graphs will alleviate at least some of the challenges associated with resolving SV characteristics below the species level. In the meantime, we address caveats, highlight considerations, and provide recommendations for the characterization of genome-wide SVs in biodiversity genomic research.
Collapse
Affiliation(s)
- Jana R Wold
- University of Canterbury, Christchurch, New Zealand
| | - Joseph G Guhlin
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
7
|
Nakagawa Y, Tada A, Kojo K, Tsuchiya H, Kurobe M, Uchida M, Yamasaki K, Iwamoto T, Sato Y. Analysis of the correlation between gene copy deletion in the AZFc region and male infertility in Japanese men. Reprod Biol 2023; 23:100728. [PMID: 36640629 DOI: 10.1016/j.repbio.2022.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Deletion of the azoospermia factor c (AZFc), located on the long arm of the Y chromosome, is a cause of male infertility. The structure of the Y chromosome is diversified by the copy number of various genes, such as deleted in azoospermia (DAZ), basic protein Y2, chromodomain Y1, testis-specific transcript Y-linked 4, and Golgi autoantigen golgin subfamily a2 like Y, located in the AZF region. In this study, we investigated the deletion of each gene copy and analyzed its relationship with Japanese male infertility. Deletions of single nucleotide variants of each gene copy in 721 proven fertile men as controls, 139 patients with non-obstructive azoospermia (NOA), and 56 patients with oligozoospermia (OS) were analyzed via polymerase chain reaction-restriction fragment length polymorphism analysis. Their association with infertility was analyzed using logistic regression analysis adjusted for the Y-chromosome haplogroup, D1a2a. Deletions of DAZ/II in the r1 region and DAZ/V in the r1 and r2 regions showed significant associations with NOA (odds ratio [OR] = 4.15, 95 % confidence interval [CI] = 1.18-14.6, P = 0.026; OR = 4.19, 95 % CI = 1.19-14.7, P = 0.025, respectively). They did not show any association with OS. Partial deletion of the AZFc region affects spermatogenesis in Japanese male.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Atsushi Tada
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan
| | - Kosuke Kojo
- Center for Infertility and IVF, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan; Department of Urology, University of Tsukuba Hospital, Ibaraki 305-8576, Japan
| | - Haruki Tsuchiya
- Center for Infertility and IVF, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Masahiro Kurobe
- Center for Infertility and IVF, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Masahiro Uchida
- Center for Infertility and IVF, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan; Urology department, Tsukuba Gakuen Hospital, Ibaraki 305-0854, Japan
| | - Kazumitsu Yamasaki
- Center for Infertility and IVF, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan; Urology department, Tsukuba Gakuen Hospital, Ibaraki 305-0854, Japan
| | - Teruaki Iwamoto
- Center for Infertility and IVF, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan; Department of Male Infertility, Reproduction Center, Sanno Hospital, Tokyo 107-0052, Japan
| | - Youichi Sato
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8505, Japan.
| |
Collapse
|
8
|
Microdeletions and microduplications linked to severe congenital disorders in infertile men. Sci Rep 2023; 13:574. [PMID: 36631630 PMCID: PMC9834233 DOI: 10.1038/s41598-023-27750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Data on the clinical validity of DNA copy number variants (CNVs) in spermatogenic failure (SPGF) is limited. This study analyzed the genome-wide CNV profile in 215 men with idiopathic SPGF and 62 normozoospermic fertile men, recruited at the Andrology Clinic, Tartu University Hospital, Estonia. A two-fold higher representation of > 1 Mb CNVs was observed in men with SPGF (13%, n = 28) compared to controls (6.5%, n = 4). Seven patients with SPGF were identified as carriers of microdeletions (1q21.1; 2.4 Mb) or microduplications (3p26.3, 1.1 Mb; 7p22.3-p22.2, 1.56 Mb; 10q11.22, 1.42 Mb, three cases; Xp22.33; 2.3 Mb) linked to severe congenital conditions. Large autosomal CNV carriers had oligozoospermia, reduced or low-normal bitesticular volume (22-28 ml). The 7p22.3-p22.2 microduplication carrier presented mild intellectual disability, neuropsychiatric problems, and short stature. The Xp22.33 duplication at the PAR1/non-PAR boundary, previously linked to uterine agenesis, was detected in a patient with non-obstructive azoospermia. A novel recurrent intragenic deletion in testis-specific LRRC69 was significantly overrepresented in patients with SPGF compared to the general population (3.3% vs. 0.85%; χ2 test, OR = 3.9 [95% CI 1.8-8.4], P = 0.0001). Assessment of clinically valid CNVs in patients with SPGF will improve their management and counselling for general and reproductive health, including risk of miscarriage and congenital disorders in future offspring.
Collapse
|
9
|
Xu Y, Pang Q. Repetitive DNA Sequences in the Human Y Chromosome and Male Infertility. Front Cell Dev Biol 2022; 10:831338. [PMID: 35912115 PMCID: PMC9326358 DOI: 10.3389/fcell.2022.831338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The male-specific Y chromosome, which is well known for its diverse and complex repetitive sequences, has different sizes, genome structures, contents and evolutionary trajectories from other chromosomes and is of great significance for testis development and function. The large number of repetitive sequences and palindrome structure of the Y chromosome play an important role in maintaining the stability of male sex determining genes, although they can also cause non-allelic homologous recombination within the chromosome. Deletion of certain Y chromosome sequences will lead to spermatogenesis disorders and male infertility. And Y chromosome genes are also involved in the occurrence of reproductive system cancers and can increase the susceptibility of other tumors. In addition, the Y chromosome has very special value in the personal identification and parentage testing of male-related cases in forensic medicine because of its unique paternal genetic characteristics. In view of the extremely high frequency and complexity of gene rearrangements and the limitations of sequencing technology, the analysis of Y chromosome sequences and the study of Y-gene function still have many unsolved problems. This article will introduce the structure and repetitive sequence of the Y chromosome, summarize the correlation between Y chromosome various sequence deletions and male infertility for understanding the repetitive sequence of Y chromosome more systematically, in order to provide research motivation for further explore of the molecules mechanism of Y-deletion and male infertility and theoretical foundations for the transformation of basic research into applications in clinical medicine and forensic medicine.
Collapse
Affiliation(s)
- Yong Xu
- Department of Emergency Surgery, Jining NO 1 People’s Hospital, Jining, China
| | - Qianqian Pang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Qianqian Pang,
| |
Collapse
|
10
|
Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, de Lima LG, Limouse C, Halabian R, Wojenski L, Rodriguez M, Altemose N, Rhie A, Core LJ, Gerton JL, Makalowski W, Olson D, Rosen J, Smit AFA, Straight AF, Vollger MR, Wheeler TJ, Schatz MC, Eichler EE, Phillippy AM, Timp W, Miga KH, O’Neill RJ. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 2022; 376:eabk3112. [PMID: 35357925 PMCID: PMC9301658 DOI: 10.1126/science.abk3112] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome. We identified previously unknown satellite arrays, expanded the catalog of variants and families for repeats and mobile elements, characterized classes of complex composite repeats, and located retroelement transduction events. We detected nascent transcription and delineated CpG methylation profiles to define the structure of transcriptionally active retroelements in humans, including those in centromeres. These data expand our insight into the diversity, distribution, and evolution of repetitive regions that have shaped the human genome.
Collapse
Affiliation(s)
- Savannah J. Hoyt
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Patrick G. S. Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Reza Halabian
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Luke Wojenski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matias Rodriguez
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Nicolas Altemose
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leighton J. Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | | | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Daniel Olson
- Department of Computer Science, University of Montana, Missoula, MT, USA
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Travis J. Wheeler
- Department of Computer Science, University of Montana, Missoula, MT, USA
| | - Michael C. Schatz
- Department of Computer Science and Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
11
|
Rimmer MP, Howie RA, Anderson RA, Barratt CLR, Barnhart KT, Beebeejaun Y, Bertolla RP, Bhattacharya S, Björndahl L, Bortoletto P, Brannigan RE, Cantineau AEP, Caroppo E, Collura BL, Coward K, Eisenberg ML, De Geyter C, Goulis DG, Henkel RR, Ho VNA, Hussein AF, Huyser C, Kadijk JH, Kamath MS, Khashaba S, Kobori Y, Kopeika J, Kucuk T, Luján S, Matsaseng TC, Mathur RS, McEleny K, Mitchell RT, Mol BW, Murage AM, Ng EHY, Pacey A, Perheentupa AH, Du Plessis S, Rives N, Sarris I, Schlegel PN, Shabbir M, Śmiechowski M, Subramanian V, Sunkara SK, Tarlarzis BC, Tüttelmann F, Vail A, van Wely M, Vazquez-Levin MH, Vuong LN, Wang AY, Wang R, Zini A, Farquhar CM, Niederberger C, Duffy JMN. Protocol for developing a core outcome set for male infertility research: an international consensus development study. Hum Reprod Open 2022; 2022:hoac014. [PMID: 35402735 PMCID: PMC8990106 DOI: 10.1093/hropen/hoac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
STUDY QUESTION We aim to develop, disseminate and implement a minimum data set, known as a core outcome set, for future male infertility research. WHAT IS KNOWN ALREADY Research into male infertility can be challenging to design, conduct and report. Evidence from randomized trials can be difficult to interpret and of limited ability to inform clinical practice for numerous reasons. These may include complex issues, such as variation in outcome measures and outcome reporting bias, as well as failure to consider the perspectives of men and their partners with lived experience of fertility problems. Previously, the Core Outcome Measure for Infertility Trials (COMMIT) initiative, an international consortium of researchers, healthcare professionals and people with fertility problems, has developed a core outcome set for general infertility research. Now, a bespoke core outcome set for male infertility is required to address the unique challenges pertinent to male infertility research. STUDY DESIGN SIZE DURATION Stakeholders, including healthcare professionals, allied healthcare professionals, scientists, researchers and people with fertility problems, will be invited to participate. Formal consensus science methods will be used, including the modified Delphi method, modified Nominal Group Technique and the National Institutes of Health's consensus development conference. PARTICIPANTS/MATERIALS SETTING METHODS An international steering group, including the relevant stakeholders outlined above, has been established to guide the development of this core outcome set. Possible core outcomes will be identified by undertaking a systematic review of randomized controlled trials evaluating potential treatments for male factor infertility. These outcomes will be entered into a modified Delphi method. Repeated reflection and re-scoring should promote convergence towards consensus outcomes, which will be prioritized during a consensus development meeting to identify a final core outcome set. We will establish standardized definitions and recommend high-quality measurement instruments for individual core outcomes. STUDY FUNDING/COMPETING INTERESTS This work has been supported by the Urology Foundation small project award, 2021. C.L.R.B. is the recipient of a BMGF grant and received consultancy fees from Exscentia and Exceed sperm testing, paid to the University of Dundee and speaking fees or honoraria paid personally by Ferring, Copper Surgical and RBMO. S.B. received royalties from Cambridge University Press, Speaker honoraria for Obstetrical and Gynaecological Society of Singapore, Merk SMART Masterclass and Merk FERRING Forum, paid to the University of Aberdeen. Payment for leadership roles within NHS Grampian, previously paid to self, now paid to University of Aberdeen. An Honorarium is received as Editor in Chief of Human Reproduction Open. M.L.E. is an advisor to the companies Hannah and Ro. B.W.M. received an investigator grant from the NHMRC, No: GNT1176437 is a paid consultant for ObsEva and has received research funding from Ferring and Merck. R.R.H. received royalties from Elsevier for a book, consultancy fees from Glyciome, and presentation fees from GryNumber Health and Aytu Bioscience. Aytu Bioscience also funded MiOXYS systems and sensors. Attendance at Fertility 2020 and Roadshow South Africa by Ralf Henkel was funded by LogixX Pharma Ltd. R.R.H. is also Editor in Chief of Andrologia and has been an employee of LogixX Pharma Ltd. since 2020. M.S.K. is an associate editor with Human Reproduction Open. K.Mc.E. received an honoraria for lectures from Bayer and Pharmasure in 2019 and payment for an ESHRE grant review in 2019. His attendance at ESHRE 2019 and AUA 2019 was sponsored by Pharmasure and Bayer, respectively. The remaining authors declare no competing interests. TRIAL REGISTRATION NUMBER Core Outcome Measures in Effectiveness Trials (COMET) initiative registration No: 1586. Available at www.comet-initiative.org/Studies/Details/1586. TRIAL REGISTRATION DATE N/A. DATE OF FIRST PATIENT’S ENROLMENT N/A.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth A Howie
- Edinburgh Fertility Centre, Simpsons Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK,Edinburgh Fertility Centre, Simpsons Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Reproductive Medicine Research Group, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kurt T Barnhart
- Department of Obstetrics and Gynaecology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yusuf Beebeejaun
- King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK
| | - Ricardo Pimenta Bertolla
- Division of Urology, Department of Surgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Lars Björndahl
- ANOVA—Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Pietro Bortoletto
- The Ronald O. Perelman and Claudia Cohen Centre for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Astrid E P Cantineau
- University of Groningen, University Medical Centre, Groningen, Centre of Reproductive Medicine, Groningen, Netherlands
| | - Ettore Caroppo
- Asl Bari, Reproductive Unit and Andrology Clinic, Conversano (Ba), Italy
| | | | - Kevin Coward
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK,Women’s Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Christian De Geyter
- Reproductive Medicine and Gynaecological Endocrinology (RME), University Hospital, University of Basel, Basel, Switzerland
| | - Dimitrios G Goulis
- Units of Human Reproduction and Reproductive Endocrinology, 1st Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ralf R Henkel
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Vu N A Ho
- IVFMD, My Duc Hospital, HOPE Research Centre, My Duc Hospital, Ho Chi Minh City, Vietnam
| | | | - Carin Huyser
- Reproductive Biology Laboratory, Department of Obstetrics and Gynaecology, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Jozef H Kadijk
- Freya—Dutch Patient Association for Infertility, Gorinchem, The Netherlands
| | | | - Shadi Khashaba
- University of New South Wales, Sydney, Australia,IVF Australia, Sydney, Australia
| | | | | | | | - Saturnino Luján
- Urology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Thabo Christopher Matsaseng
- Stellenbosch University, Stellenbosch, Western Cape, South Africa,Tygerberg Academic Hospital, Cape Town, South Africa
| | - Raj S Mathur
- Manchester University Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Kevin McEleny
- Newcastle Fertility, The Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ben W Mol
- University of Aberdeen, Aberdeen, UK,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | | | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Allan Pacey
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Antti H Perheentupa
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE,Medical Physiology, Stellenbosch University, Tygerberg, South Africa
| | - Nathalie Rives
- Rouen University Hospital, Biology of Reproduction-CECOS Laboratory, Rouen, France
| | - Ippokratis Sarris
- King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK,Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Peter N Schlegel
- The Ronald O. Perelman and Claudia Cohen Centre for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Maciej Śmiechowski
- Association for Infertility Treatment and Adoption Support “Our Stork”, Warsaw, Poland
| | - Venkatesh Subramanian
- King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK
| | - Sesh K Sunkara
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Basil C Tarlarzis
- Units of Human Reproduction and Reproductive Endocrinology, 1st Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Andy Vail
- Centre for Biostatistics, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Madelon van Wely
- Netherlands Satellite of the Cochrane Gynaecology and Fertility Group, Centre for Reproductive Medicine, Amsterdam, Netherlands,Reproduction & Development Research Institute, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Mónica H Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Fundación IBYME (FIBYME), Buenos Aires, Argentina
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam,HOPE Research Centre, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Alex Y Wang
- Faculty of Health, University of Technology Sydney, Ultimo, Australia
| | - Rui Wang
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Armand Zini
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Cindy M Farquhar
- Cochrane Gynaecology and Fertility Group, University of Auckland, Auckland, New Zealand,Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Craig Niederberger
- Correspondence address. Department of Urology, University of Illinois at Chicago, Chicago, IL, USA and Department of Bioengineering, University of Illinois at Chicago College of Engineering, Chicago, IL, USA. E-mail:
| | - James M N Duffy
- King’s Fertility, The Fetal Medicine Research Unit, King’s College London, London, UK
| |
Collapse
|
12
|
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data. Life (Basel) 2022; 12:life12020280. [PMID: 35207567 PMCID: PMC8875138 DOI: 10.3390/life12020280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases.
Collapse
|
13
|
Laan M, Kasak L, Punab M. Translational aspects of novel findings in genetics of male infertility-status quo 2021. Br Med Bull 2021; 140:5-22. [PMID: 34755838 PMCID: PMC8677437 DOI: 10.1093/bmb/ldab025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Male factor infertility concerns 7-10% of men and among these 40-60% remain unexplained. SOURCES OF DATA This review is based on recent published literature regarding the genetic causes of male infertility. AREAS OF AGREEMENT Screening for karyotype abnormalities, biallelic pathogenic variants in the CFTR gene and Y-chromosomal microdeletions have been routine in andrology practice for >20 years, explaining ~10% of infertility cases. Rare specific conditions, such as congenital hypogonadotropic hypogonadism, disorders of sex development and defects of sperm morphology and motility, are caused by pathogenic variants in recurrently affected genes, which facilitate high diagnostic yield (40-60%) of targeted gene panel-based testing. AREAS OF CONTROVERSY Progress in mapping monogenic causes of quantitative spermatogenic failure, the major form of male infertility, has been slower. No 'recurrently' mutated key gene has been identified and worldwide, a few hundred patients in total have been assigned a possible monogenic cause. GROWING POINTS Given the high genetic heterogeneity, an optimal approach to screen for heterogenous genetic causes of spermatogenic failure is sequencing exomes or in perspective, genomes. Clinical guidelines developed by multidisciplinary experts are needed for smooth integration of expanded molecular diagnostics in the routine management of infertile men. AREAS TIMELY FOR DEVELOPING RESEARCH Di-/oligogenic causes, structural and common variants implicated in multifactorial inheritance may explain the 'hidden' genetic factors. It is also critical to understand how the recently identified diverse genetic factors of infertility link to general male health concerns across lifespan and how the clinical assessment could benefit from this knowledge.
Collapse
Affiliation(s)
- Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Laura Kasak
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Margus Punab
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Andrology Centre, Tartu University Hospital, 50406 Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| |
Collapse
|
14
|
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, Guhlin J, Santure AW, Steeves TE. Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 2021; 30:5949-5965. [PMID: 34424587 PMCID: PMC9290615 DOI: 10.1111/mec.16141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.
Collapse
Affiliation(s)
- Jana Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, USA.,Centre for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - David Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Marissa F Le Lec
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Joseph Guhlin
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.,Genomics Aotearoa, Dunedin, Otago, New Zealand
| | - Anna W Santure
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|