1
|
Zhang C, Sánchez BJ, Li F, Eiden CWQ, Scott WT, Liebal UW, Blank LM, Mengers HG, Anton M, Rangel AT, Mendoza SN, Zhang L, Nielsen J, Lu H, Kerkhoven EJ. Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Mol Syst Biol 2024; 20:1134-1150. [PMID: 39134886 PMCID: PMC11450192 DOI: 10.1038/s44320-024-00060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 10/05/2024] Open
Abstract
Genome-scale metabolic models (GEMs) can facilitate metabolism-focused multi-omics integrative analysis. Since Yeast8, the yeast-GEM of Saccharomyces cerevisiae, published in 2019, has been continuously updated by the community. This has increased the quality and scope of the model, culminating now in Yeast9. To evaluate its predictive performance, we generated 163 condition-specific GEMs constrained by single-cell transcriptomics from osmotic pressure or reference conditions. Comparative flux analysis showed that yeast adapting to high osmotic pressure benefits from upregulating fluxes through central carbon metabolism. Furthermore, combining Yeast9 with proteomics revealed metabolic rewiring underlying its preference for nitrogen sources. Lastly, we created strain-specific GEMs (ssGEMs) constrained by transcriptomics for 1229 mutant strains. Well able to predict the strains' growth rates, fluxomics from those large-scale ssGEMs outperformed transcriptomics in predicting functional categories for all studied genes in machine learning models. Based on those findings we anticipate that Yeast9 will continue to empower systems biology studies of yeast metabolism.
Collapse
Affiliation(s)
- Chengyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cheng Wei Quan Eiden
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - William T Scott
- UNLOCK, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ulf W Liebal
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074, Aachen, Germany
| | - Hendrik G Mengers
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074, Aachen, Germany
| | - Mihail Anton
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, SE412 58, Sweden
| | - Albert Tafur Rangel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Sebastián N Mendoza
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Eduard J Kerkhoven
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
- Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, SE412 96, Sweden.
| |
Collapse
|
2
|
Habibpour M, Razaghi-Moghadam Z, Nikoloski Z. Machine learning of metabolite-protein interactions from model-derived metabolic phenotypes. NAR Genom Bioinform 2024; 6:lqae114. [PMID: 39229256 PMCID: PMC11369697 DOI: 10.1093/nargab/lqae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Unraveling metabolite-protein interactions is key to identifying the mechanisms by which metabolism affects the function of other cellular layers. Despite extensive experimental and computational efforts to identify the regulatory roles of metabolites in interaction with proteins, it remains challenging to achieve a genome-scale coverage of these interactions. Here, we leverage established gold standards for metabolite-protein interactions to train supervised classifiers using features derived from genome-scale metabolic models and matched data on protein abundance and reaction fluxes to distinguish interacting from non-interacting pairs. Through a comprehensive comparative study, we explore the impact of different features and assess the effect of gold standards for non-interacting pairs on the performance of the classifiers. Using data sets from Escherichia coli and Saccharomyces cerevisiae, we demonstrate that the features constructed by integrating fluxomic and proteomic data with metabolic phenotypes predicted from genome-scale metabolic models can be effectively used to train classifiers, accurately predicting metabolite-protein interactions in the context of metabolism. Our results reveal that the high performance of classifiers trained on these features is unaffected by the method used to generate gold standards for non-interacting pairs. Overall, our study introduces valuable features that improve the performance of identifying metabolite-protein interactions in the context of metabolism.
Collapse
Affiliation(s)
- Mahdis Habibpour
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
3
|
Wang Z, Tao K, Ji J, Sun C, Xu W. siqRNA-seq is a spike-in-independent technique for quantitative mapping of mRNA landscape. BMC Genomics 2024; 25:743. [PMID: 39080556 PMCID: PMC11290086 DOI: 10.1186/s12864-024-10650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND RNA sequencing (RNA-seq) is widely used for gene expression profiling and quantification. Quantitative RNA sequencing usually requires cell counting and spike-in, which is not always applicable to many samples. Here, we present a novel quantitative RNA sequencing method independent of spike-ins or cell counting, named siqRNA-seq, which can be used to quantitatively profile gene expression by utilizing gDNA as an internal control. Single-stranded library preparation used in siqRNA-seq profiles gDNA and cDNA with equal efficiency. RESULTS To quantify mRNA expression levels, siqRNA-seq constructs libraries for total nucleic acid to establish a model for expression quantification. Compared to Relative Quantification RNA-seq, siqRNA-seq is technically reliable and reproducible for expression profiling but also can sequence reads from gDNA which can be used as an internal reference for accurate expression quantification. Applying siqRNA-seq to investigate the effects of actinomycin D on gene expression in HEK293T cells, we show the advantages of siqRNA-seq in accurately identifying differentially expressed genes between samples with distinct global mRNA levels. Furthermore, we analyzed factors influencing the downward trend of gene expression regulated by ActD using siqRNA-seq and found that mRNA with m6A modification exhibited a faster decay rate compared to mRNA without m6A modification. Additionally, applying this technique to the quantitative analysis of seven tumor cell lines revealed a high degree of diversity in total mRNA expression among tumor cell lines. CONCLUSIONS Collectively, siqRNA-seq is a spike-in independent quantitative RNA sequencing method, which creatively uses gDNA as an internal reference to absolutely quantify gene expression. We consider that siqRNA-seq provides a convenient and versatile method to quantitatively profile the mRNA landscape in various samples.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kehan Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Changbin Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
4
|
Horvath A, Janapala Y, Woodward K, Mahmud S, Cleynen A, Gardiner E, Hannan R, Eyras E, Preiss T, Shirokikh N. Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress. Nucleic Acids Res 2024; 52:7925-7946. [PMID: 38721779 PMCID: PMC11260467 DOI: 10.1093/nar/gkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Collapse
Affiliation(s)
- Attila Horvath
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Yoshika Janapala
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Alice Cleynen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The National Platelet Research and Referral Centre, The Australian National University, Canberra, ACT 2601, Australia
| | - Ross D Hannan
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia 4067, Australia
| | - Eduardo Eyras
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Centre for Computational Biomedical Sciences, The Australian National University, Canberra, ACT 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Laosuntisuk K, Vennapusa A, Somayanda IM, Leman AR, Jagadish SK, Doherty CJ. A normalization method that controls for total RNA abundance affects the identification of differentially expressed genes, revealing bias toward morning-expressed responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1241-1257. [PMID: 38289828 DOI: 10.1111/tpj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.
Collapse
Affiliation(s)
- Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Amaranatha Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA
| | - Impa M Somayanda
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
| | - Adam R Leman
- Department of Science and Technology, The Good Food Institute, Washington, District of Columbia, 20090, USA
| | - Sv Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Kleijn IT, Marguerat S, Shahrezaei V. A coarse-grained resource allocation model of carbon and nitrogen metabolism in unicellular microbes. J R Soc Interface 2023; 20:20230206. [PMID: 37751876 PMCID: PMC10522411 DOI: 10.1098/rsif.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Coarse-grained resource allocation models (C-GRAMs) are simple mathematical models of cell physiology, where large components of the macromolecular composition are abstracted into single entities. The dynamics and steady-state behaviour of such models provides insights on optimal allocation of cellular resources and have explained experimentally observed cellular growth laws, but current models do not account for the uptake of compound sources of carbon and nitrogen. Here, we formulate a C-GRAM with nitrogen and carbon pathways converging on biomass production, with parametrizations accounting for respirofermentative and purely respiratory growth. The model describes the effects of the uptake of sugars, ammonium and/or compound nutrients such as amino acids on the translational resource allocation towards proteome sectors that maximized the growth rate. It robustly recovers cellular growth laws including the Monod law and the ribosomal growth law. Furthermore, we show how the growth-maximizing balance between carbon uptake, recycling, and excretion depends on the nutrient environment. Lastly, we find a robust linear correlation between the ribosome fraction and the abundance of amino acid equivalents in the optimal cell, which supports the view that simple regulation of translational gene expression can enable cells to achieve an approximately optimal growth state.
Collapse
Affiliation(s)
- Istvan T. Kleijn
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
- Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden NHS Foundation Trust, London, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
7
|
Johnson MM, Hockenberry AJ, McGuffie MJ, Vieira LC, Wilke CO. Growth-dependent Gene Expression Variation Influences the Strength of Codon Usage Biases. Mol Biol Evol 2023; 40:msad189. [PMID: 37619989 PMCID: PMC10482319 DOI: 10.1093/molbev/msad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The most highly expressed genes in microbial genomes tend to use a limited set of synonymous codons, often referred to as "preferred codons." The existence of preferred codons is commonly attributed to selection pressures on various aspects of protein translation including accuracy and/or speed. However, gene expression is condition-dependent and even within single-celled organisms transcript and protein abundances can vary depending on a variety of environmental and other factors. Here, we show that growth rate-dependent expression variation is an important constraint that significantly influences the evolution of gene sequences. Using large-scale transcriptomic and proteomic data sets in Escherichia coli and Saccharomyces cerevisiae, we confirm that codon usage biases are strongly associated with gene expression but highlight that this relationship is most pronounced when gene expression measurements are taken during rapid growth conditions. Specifically, genes whose relative expression increases during periods of rapid growth have stronger codon usage biases than comparably expressed genes whose expression decreases during rapid growth conditions. These findings highlight that gene expression measured in any particular condition tells only part of the story regarding the forces shaping the evolution of microbial gene sequences. More generally, our results imply that microbial physiology during rapid growth is critical for explaining long-term translational constraints.
Collapse
Affiliation(s)
- Mackenzie M Johnson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Adam J Hockenberry
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Luiz Carlos Vieira
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Johnson MM, Hockenberry AJ, McGuffie MJ, Vieira LC, Wilke CO. Growth-dependent gene expression variation influences the strength of codon usage biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532645. [PMID: 36993177 PMCID: PMC10055066 DOI: 10.1101/2023.03.14.532645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The most highly expressed genes in microbial genomes tend to use a limited set of synonymous codons, often referred to as "preferred codons." The existence of preferred codons is commonly attributed to selection pressures on various aspects of protein translation including accuracy and/or speed. However, gene expression is condition-dependent and even within single-celled organisms transcript and protein abundances can vary depending on a variety of environmental and other factors. Here, we show that growth rate-dependent expression variation is an important constraint that significantly influences the evolution of gene sequences. Using large-scale transcriptomic and proteomic data sets in Escherichia coli and Saccharomyces cerevisiae, we confirm that codon usage biases are strongly associated with gene expression but highlight that this relationship is most pronounced when gene expression measurements are taken during rapid growth conditions. Specifically, genes whose relative expression increases during periods of rapid growth have stronger codon usage biases than comparably expressed genes whose expression decreases during rapid growth conditions. These findings highlight that gene expression measured in any particular condition tells only part of the story regarding the forces shaping the evolution of microbial gene sequences. More generally, our results imply that microbial physiology during rapid growth is critical for explaining long-term translational constraints.
Collapse
Affiliation(s)
- Mackenzie M Johnson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Adam J Hockenberry
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Luiz Carlos Vieira
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
9
|
Messner CB, Demichev V, Muenzner J, Aulakh SK, Barthel N, Röhl A, Herrera-Domínguez L, Egger AS, Kamrad S, Hou J, Tan G, Lemke O, Calvani E, Szyrwiel L, Mülleder M, Lilley KS, Boone C, Kustatscher G, Ralser M. The proteomic landscape of genome-wide genetic perturbations. Cell 2023; 186:2018-2034.e21. [PMID: 37080200 PMCID: PMC7615649 DOI: 10.1016/j.cell.2023.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.
Collapse
Affiliation(s)
- Christoph B Messner
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Vadim Demichev
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, UK
| | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Simran K Aulakh
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Natalie Barthel
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Annika Röhl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | | - Anna-Sophia Egger
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Stephan Kamrad
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Jing Hou
- The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Oliver Lemke
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Enrica Calvani
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Lukasz Szyrwiel
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin, Core Facility - High Throughput Mass Spectrometry, 10117 Berlin, Germany
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, UK
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S3E1, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; RIKEN Center for Sustainable Resource Science, Wako, 351-0198 Saitama, Japan
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Dinh HV, Maranas CD. Evaluating proteome allocation of Saccharomyces cerevisiae phenotypes with resource balance analysis. Metab Eng 2023; 77:242-255. [PMID: 37080482 DOI: 10.1016/j.ymben.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Saccharomyces cerevisiae is an important model organism and a workhorse in bioproduction. Here, we reconstructed a compact and tractable genome-scale resource balance analysis (RBA) model (i.e., named scRBA) to analyze metabolic fluxes and proteome allocation in a computationally efficient manner. Resource capacity models such as scRBA provide the quantitative means to identify bottlenecks in biosynthetic pathways due to enzyme, compartment size, and/or ribosome availability limitations. ATP maintenance rate and in vivo apparent turnover numbers (kapp) were regressed from metabolic flux and protein concentration data to capture observed physiological growth yield and proteome efficiency and allocation, respectively. Estimated parameter values were found to vary with oxygen and nutrient availability. Overall, this work (i) provides condition-specific model parameters to recapitulate phenotypes corresponding to different extracellular environments, (ii) alludes to the enhancing effect of substrate channeling and post-translational activation on in vivo enzyme efficiency in glycolysis and electron transport chain, and (iii) reveals that the Crabtree effect is underpinned by specific limitations in mitochondrial proteome capacity and secondarily ribosome availability rather than overall proteome capacity.
Collapse
Affiliation(s)
- Hoang V Dinh
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Wendering P, Arend M, Razaghi-Moghadam Z, Nikoloski Z. Data integration across conditions improves turnover number estimates and metabolic predictions. Nat Commun 2023; 14:1485. [PMID: 36932067 PMCID: PMC10023748 DOI: 10.1038/s41467-023-37151-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Turnover numbers characterize a key property of enzymes, and their usage in constraint-based metabolic modeling is expected to increase the prediction accuracy of diverse cellular phenotypes. In vivo turnover numbers can be obtained by integrating reaction rate and enzyme abundance measurements from individual experiments. Yet, their contribution to improving predictions of condition-specific cellular phenotypes remains elusive. Here, we show that available in vitro and in vivo turnover numbers lead to poor prediction of condition-specific growth rates with protein-constrained models of Escherichia coli and Saccharomyces cerevisiae, particularly when protein abundances are considered. We demonstrate that correction of turnover numbers by simultaneous consideration of proteomics and physiological data leads to improved predictions of condition-specific growth rates. Moreover, the obtained estimates are more precise than corresponding in vitro turnover numbers. Therefore, our approach provides the means to correct turnover numbers and paves the way towards cataloguing kcatomes of other organisms.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
12
|
Iyer MS, Pal A, Venkatesh KV. A Systems Biology Approach To Disentangle the Direct and Indirect Effects of Global Transcription Factors on Gene Expression in Escherichia coli. Microbiol Spectr 2023; 11:e0210122. [PMID: 36749045 PMCID: PMC10100776 DOI: 10.1128/spectrum.02101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Delineating the pleiotropic effects of global transcriptional factors (TFs) is critical for understanding the system-wide regulatory response in a particular environment. Currently, with the availability of genome-wide TF binding and gene expression data for Escherichia coli, several gene targets can be assigned to the global TFs, albeit inconsistently. Here, using a systematic integrated approach with emphasis on metabolism, we characterized and quantified the direct effects as well as the growth rate-mediated indirect effects of global TFs using deletion mutants of FNR, ArcA, and IHF regulators (focal TFs) under glucose fermentative conditions. This categorization enabled us to disentangle the dense connections seen within the transcriptional regulatory network (TRN) and determine the exact nature of focal TF-driven epistatic interactions with other global and pathway-specific local regulators (iTFs). We extended our analysis to combinatorial deletions of these focal TFs to determine their cross talk effects as well as conserved patterns of regulatory interactions. Moreover, we predicted with high confidence several novel metabolite-iTF interactions using inferred iTF activity changes arising from the allosteric effects of the intracellular metabolites perturbed as a result of the absence of focal TFs. Further, using compendium level computational analyses, we revealed not only the coexpressed genes regulated by these focal TFs but also the coordination of the direct and indirect target expression in the context of the economy of intracellular metabolites. Overall, this study leverages the fundamentals of TF-driven regulation, which could serve as a better template for deciphering mechanisms underlying complex phenotypes. IMPORTANCE Understanding the pleiotropic effects of global TFs on gene expression and their relevance underlying a specific response in a particular environment has been challenging. Here, we distinguish the TF-driven direct effects and growth rate-mediated indirect effects on gene expression using single- and double-deletion mutants of FNR, ArcA, and IHF regulators under anaerobic glucose fermentation. Such dissection assists us in unraveling the precise nature of interactions existing between the focal TF(s) and several other TFs, including those altered by allosteric effects of intracellular metabolites. We were able to recapitulate the previously known metabolite-TF interactions and predict novel interactions with high confidence. Furthermore, we determined that the direct and indirect gene expression have a strong connection with each other when analyzed using the coexpressed- or coregulated-gene approach. Deciphering such regulatory patterns explicitly from the metabolism point of view would be valuable in understanding other unpredicted complex regulation existing in nature.
Collapse
Affiliation(s)
- Mahesh S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Poorinmohammad N, Fu J, Wabeke B, Kerkhoven EJ. Validated Growth Rate-Dependent Regulation of Lipid Metabolism in Yarrowia lipolytica. Int J Mol Sci 2022; 23:ijms23158517. [PMID: 35955650 PMCID: PMC9369070 DOI: 10.3390/ijms23158517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Given the strong potential of Yarrowia lipolytica to produce lipids for use as renewable fuels and oleochemicals, it is important to gain in-depth understanding of the molecular mechanism underlying its lipid accumulation. As cellular growth rate affects biomass lipid content, we performed a comparative proteomic analysis of Y. lipolytica grown in nitrogen-limited chemostat cultures at different dilution rates. After confirming the correlation between growth rate and lipid accumulation, we were able to identify various cellular functions and biological mechanisms involved in oleaginousness. Inspection of significantly up- and downregulated proteins revealed nonintuitive processes associated with lipid accumulation in this yeast. This included proteins related to endoplasmic reticulum (ER) stress, ER–plasma membrane tether proteins, and arginase. Genetic engineering of selected targets validated that some genes indeed affected lipid accumulation. They were able to increase lipid content and were complementary to other genetic engineering strategies to optimize lipid yield.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jing Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Bob Wabeke
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
| | - Eduard J. Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
14
|
Kleijn IT, Martínez-Segura A, Bertaux F, Saint M, Kramer H, Shahrezaei V, Marguerat S. Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast. Life Sci Alliance 2022; 5:e202101223. [PMID: 35228260 PMCID: PMC8886410 DOI: 10.26508/lsa.202101223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote Schizosaccharomyces pombe grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production apart from RNA polymerase II-dependent transcription. Negatively correlated genes belonged mainly to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mostly condition-specific regulation. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate-dependent and nutrient-specific gene expression.
Collapse
Affiliation(s)
- Istvan T Kleijn
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Amalia Martínez-Segura
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Malika Saint
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Holger Kramer
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Marguerat
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
15
|
Malina C, Yu R, Björkeroth J, Kerkhoven EJ, Nielsen J. Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proc Natl Acad Sci U S A 2021; 118:e2112836118. [PMID: 34903663 PMCID: PMC8713813 DOI: 10.1073/pnas.2112836118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Aerobic fermentation, also referred to as the Crabtree effect in yeast, is a well-studied phenomenon that allows many eukaryal cells to attain higher growth rates at high glucose availability. Not all yeasts exhibit the Crabtree effect, and it is not known why Crabtree-negative yeasts can grow at rates comparable to Crabtree-positive yeasts. Here, we quantitatively compared two Crabtree-positive yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two Crabtree-negative yeasts, Kluyveromyces marxianus and Scheffersomyces stipitis, cultivated under glucose excess conditions. Combining physiological and proteome quantification with genome-scale metabolic modeling, we found that the two groups differ in energy metabolism and translation efficiency. In Crabtree-positive yeasts, the central carbon metabolism flux and proteome allocation favor a glucose utilization strategy minimizing proteome cost as proteins translation parameters, including ribosomal content and/or efficiency, are lower. Crabtree-negative yeasts, however, use a strategy of maximizing ATP yield, accompanied by higher protein translation parameters. Our analyses provide insight into the underlying reasons for the Crabtree effect, demonstrating a coupling to adaptations in both metabolism and protein translation.
Collapse
Affiliation(s)
- Carl Malina
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Wallenberg Center for Protein Research, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Rosemary Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Johan Björkeroth
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden;
- Wallenberg Center for Protein Research, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
- BioInnovation Institute, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
16
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
17
|
Abstract
Turnover numbers (kcat values) quantitatively represent the activity of enzymes, which are mostly measured in vitro. While a few studies have reported in vivo catalytic rates (kapp values) in bacteria, a large-scale estimation of kapp in eukaryotes is lacking. Here, we estimated kapp of the yeast Saccharomyces cerevisiae under diverse conditions. By comparing the maximum kapp across conditions with in vitro kcat we found a weak correlation in log scale of R2 = 0.28, which is lower than for Escherichia coli (R2 = 0.62). The weak correlation is caused by the fact that many in vitro kcat values were measured for enzymes obtained through heterologous expression. Removal of these enzymes improved the correlation to R2 = 0.41 but still not as good as for E. coli, suggesting considerable deviations between in vitro and in vivo enzyme activities in yeast. By parameterizing an enzyme-constrained metabolic model with our kapp dataset we observed better performance than the default model with in vitro kcat in predicting proteomics data, demonstrating the strength of using the dataset generated here.
Collapse
|