1
|
Nan Y, Lin J, Wei Z, Yang Y, Li Q. Microtubule-Rab5 mutual-influential system screening based on gene-regulatory networks map in Rab5 RNAi eye-degeneration model. Cell Signal 2024; 127:111544. [PMID: 39631617 DOI: 10.1016/j.cellsig.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Rabs are involved in neuronal development and protrusion formation. Existing studies support the notion that manipulation or mutation of Rab genes could lead to functional changes in neurons. However, whether Rabs gene-manipulation induced Drosophila eye-degeneration remains unknown. By down-regulating Rab5, but not Rab7, we first constructed a compound eye injury model in Drosophila. As the distribution, content, and even maturation of Rab5-positive endosomes are influenced by cytoskeletal proteins, like actin or tubulin-related proteins, the existence of a bidirectional regulatory relationship between Rab5 and the cytoskeleton remains unclear and worth researching. Through complete transcriptome sequencing combined immunofluorescence testing, we confirmed that down-regulation of Rab5 affected the increase of α-Tub84B (alternatively named TubA84B) but not γ-tubulin. Based on Weighted Gene Co-Expression Network Analysis (WGCNA) and multi-tissue screening verification, this study proposes that the apoptosis-related factors-Rab5-TubA84B have conserved regulatory functions with cooperative expression. Gene manipulation confirmed that apoptotic factors, especially rpr, strongly regulate Rab5, and may ultimately influence microtubule structure through complex routes, including the Rab5 variance and the intracellular configuration ratio of α-Tubulin to Glyceraldehyde-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Yuyu Nan
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China; Department of Neurology, Xiangya hospital, Central South University, Changsha 410000, China.
| | - Jingjing Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350108, China
| | - Zaiwa Wei
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China; Guangxi Clinical Research Center for Neurological Diseases, Guilin, Guangxi 541001, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province 350108, China.
| | - Qinghua Li
- Guangxi Clinical Research Center for Neurological Diseases, Guilin, Guangxi 541001, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi 541004, China.
| |
Collapse
|
2
|
Cabana VC, Sénécal AM, Bouchard AY, Kourrich S, Cappadocia L, Lussier MP. AP-1 contributes to endosomal targeting of the ubiquitin ligase RNF13 via a secondary and novel non-canonical binding motif. J Cell Sci 2024; 137:jcs262035. [PMID: 39206621 DOI: 10.1242/jcs.262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.
Collapse
Affiliation(s)
- Valérie C Cabana
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Audrey M Sénécal
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Antoine Y Bouchard
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Saïd Kourrich
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 avenue du Président-Kennedy, Montréal, QC H2X 3X8, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Marc P Lussier
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Cai X, Huang W, Huang J, Zhu X, Wang L, Xia Z, Xu L. CAPZB mRNA is a novel biomarker for cervical high-grade squamous lesions. Sci Rep 2024; 14:20047. [PMID: 39209986 PMCID: PMC11362286 DOI: 10.1038/s41598-024-71112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to evaluate the potential of capping protein (actin filament) muscle Z-line subunit β (CAPZB) messenger ribonucleic acid (mRNA) levels as a biomarker for distinguishing low-grade squamous intraepithelial lesions of the cervix (LSIL) from high-grade squamous intraepithelial lesions of the cervix (HSIL). We collected a total of 166 cervical exfoliated cells and divided them into five groups based on histopathological results. Each sample was divided into two portions, one for fluorescence in situ hybridization (FISH) detection and the other for bisulfite sequencing polymerase chain reaction (BSP) detection. We found that FISH detection of CAPZB mRNA mean fluorescence intensity (MFI) and BSP detection of CAPZB deoxyribonucleic acid (DNA) percentage of methylation rate (PMR) performed as biomarkers for distinguishing HSIL from LSIL, with an area under the receiver operating characteristic curve (AUC), sensitivity, specificity and cut-off value of 0.893, 81.25%, 80.39% and 0.616, 0.794, 64.06%, 81.37% and 0.454, respectively. Furthermore, FISH detection of CAPZB mRNA exhibited a greater AUC (0.893) for the detection of HSIL than the CAPZB DNA methylation method (0.794), indicating the CAPZB mRNA levels can be used as a biomarker for assessing cervical lesions.
Collapse
Affiliation(s)
- Xia Cai
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuxiang Zhu
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Lifeng Wang
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ziyin Xia
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ling Xu
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai, 201199, China.
| |
Collapse
|
4
|
Shinde AP, Kučerová J, Dacks JB, Tachezy J. The retromer and retriever systems are conserved and differentially expanded in parabasalids. J Cell Sci 2024; 137:jcs261949. [PMID: 38884339 PMCID: PMC11267458 DOI: 10.1242/jcs.261949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.
Collapse
Affiliation(s)
- Abhishek Prakash Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Joel Bryan Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005České Budějovice (Budweis), Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
5
|
Zhu H, Wang D, Ye Z, Huang L, Wei W, Chan KM, Zhang R, Zhang L, Yue J. The temporal association of CapZ with early endosomes regulates endosomal trafficking and viral entry into host cells. BMC Biol 2024; 22:12. [PMID: 38273307 PMCID: PMC10809671 DOI: 10.1186/s12915-024-01819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Many viruses enter host cells by hijacking endosomal trafficking. CapZ, a canonical actin capping protein, participates in endosomal trafficking, yet its precise role in endocytosis and virus infection remains elusive. RESULTS Here, we showed that CapZ was transiently associated with early endosomes (EEs) and was subsequently released from the matured EEs after the fusion of two EEs, which was facilitated by PI(3)P to PI(3,5)P2 conversion. Vacuolin-1 (a triazine compound) stabilized CapZ at EEs and thus blocked the transition of EEs to late endosomes (LEs). Likewise, artificially tethering CapZ to EEs via a rapamycin-induced protein-protein interaction system blocked the early-to-late endosome transition. Remarkably, CapZ knockout or artificially tethering CapZ to EEs via rapamycin significantly inhibited flaviviruses, e.g., Zika virus (ZIKV) and dengue virus (DENV), or beta-coronavirus, e.g., murine hepatitis virus (MHV), infection by preventing the escape of RNA genome from endocytic vesicles. CONCLUSIONS These results indicate that the temporal association of CapZ with EEs facilitates early-to-late endosome transition (physiologically) and the release of the viral genome from endocytic vesicles (pathologically).
Collapse
Affiliation(s)
- Huazhang Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Dawei Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lihong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenjie Wei
- Research Core Facilities, Southern University of Science and Technology of China, Shenzhen, 518052, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Divison of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan, China.
| |
Collapse
|
6
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Ray S, Agarwal P, Nitzan A, Nédélec F, Zaidel-Bar R. Actin-capping protein regulates actomyosin contractility to maintain germline architecture in C. elegans. Development 2023; 150:dev201099. [PMID: 36897576 PMCID: PMC10112912 DOI: 10.1242/dev.201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.
Collapse
Affiliation(s)
- Shinjini Ray
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Graduate Program, Mechanobiology Institute, National University of Singapore,117411, Singapore
| | - Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
8
|
Ye Z, Xiong Y, Peng W, Wei W, Huang L, Yue J, Zhang C, Lin G, Huang F, Zhang L, Zheng S, Yue J. Manipulation of PD-L1 Endosomal Trafficking Promotes Anticancer Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206411. [PMID: 36567273 PMCID: PMC9951344 DOI: 10.1002/advs.202206411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 05/28/2023]
Abstract
The aberrant regulation of PD-L1 in tumor cells remains poorly understood. Here, the authors systematically investigate the endosomal trafficking of plasma membrane PD-L1 in tumor cells. They show that plasma membrane PD-L1 is continuously internalized, and then trafficked from early endosomes to multivesicular bodies/late endosomes, recycling endosomes, lysosomes, and/or extracellular vesicles (EVs). This constitutive endocytic trafficking of PD-L1 is Rab5- and clathrin-dependent. Triazine compound 6J1 blocks the endosomal trafficking of PD-L1 and induces its accumulation in endocytic vesicles by activating Rab5. 6J1 also promotes exosomal PD-L1 secretion by activating Rab27. Together, these effects result in a decrease in the membrane level of PD-L1 in 6J1-treated tumor cells and enables tumor cells to be more susceptible to the tumor-killing activity of T cells in vitro. 6J1 also increases tumor-infiltrating cytotoxic T cells and promotes chemokines secretion in the tumor microenvironment. Rab27 knockdown abolishes 6J1-induced PD-L1 secretion in EVs and revokes the exhausted tumor-infiltrating T cells in tumors, thereby improving the anticancer efficacy of 6J1. Furthermore, a combination of 6J1 and an anti-PD-1 antibody significantly improves the anticancer immune response. Therefore, manipulating PD-L1 endosomal trafficking provides a promising means to promote an anticancer immune response in addition to the immune checkpoint-blocking antibody therapy.
Collapse
Affiliation(s)
- Zuodong Ye
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Yiding Xiong
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Wang Peng
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Wenjie Wei
- Research Core FacilitiesSouth University of Science and Technology of ChinaShenzhen518052China
| | - Lihong Huang
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Juliana Yue
- Department of BiologyBrigham Young UniversityProvoUT84602USA
| | - Chunyuan Zhang
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ge Lin
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Feng Huang
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Songguo Zheng
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Division of Natural and Applied SciencesSynear Molecular Biology LabDuke Kunshan UniversityKunshan215316China
| |
Collapse
|
9
|
Zhang Q, Wan M, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525393. [PMID: 36747622 PMCID: PMC9900769 DOI: 10.1101/2023.01.24.525393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella -containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector harbors a lipid-binding domain that specifically recognizes PI(3)P (phosphatidylinositol 3-phosphate) and localizes to endosomes when ectopically expressed. We show that MavH recruits host actin capping proteins (CP) and actin to the endosome via its CP interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates robust actin polymerization only in the presence of PI(3)P-containing liposomes and the recruitment of CP by MavH negatively regulates F-actin density at the membrane. Furthermore, in L. pneumophila -infected cells, MavH can be detected around the LCV at the very early stage of infection. Together, our results reveal a novel mechanism of membrane-dependent actin polymerization catalyzed by MavH that may play a role at the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Corresponding Author: , Telephone: 607-255-0783
| |
Collapse
|