1
|
Bauer MR, McVey MM, Zhang Y, Boehm SL. Dorsomedial striatal AMPA receptor antagonism increases alcohol binge drinking in selectively bred crossed high alcohol preferring mice. Eur J Neurosci 2024; 60:6300-6311. [PMID: 39358829 PMCID: PMC11534507 DOI: 10.1111/ejn.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Crossed high alcohol preferring (cHAP) mice have been selectively bred to consume considerable amounts of alcohol resulting in binge drinking. The dorsomedial striatum (DMS) is a brain region involved in goal-directed action selection, and dorsolateral striatum (DLS) is a brain region involved in habitual action selection. Alcohol use disorder (AUD) may involve a disruption in the balance between the DMS and DLS. While the DLS is involved in binge drinking, the reliance on the DMS and DLS in binge drinking has not been investigated in cHAP mice. We have previously demonstrated that glutamatergic activity in the DLS is necessary for binge-like alcohol drinking in C57BL/6J mice, another high drinking mouse. Because of this, we hypothesised that DLS glutamatergic activity would gate binge-like alcohol drinking in cHAP mice. cHAP mice underwent bilateral cannulation into the DMS or DLS and were allowed free-access to 20% alcohol for 2 h each day for 11 days. Mice were microinjected with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist, NBQX, into the DMS or DLS immediately prior to alcohol access. AMPAR protein expression was also assessed in a separate group of animals in the DMS and DLS following an 11-day drinking history. We found that intra-DMS (but not intra-DLS) NBQX alters binge alcohol drinking, with intra-DMS NBQX increasing alcohol consumption. We also found that the ratio of GluA1 to GluA2 differs across dorsal striatal subregions. Together, these findings suggest that glutamatergic activity in the DMS may serve to limit binge drinking in cHAP mice.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Yanping Zhang
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Cheng Y, Magnard R, Langdon AJ, Lee D, Janak PH. Chronic Ethanol Exposure Produces Sex-Dependent Impairments in Value Computations in the Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584332. [PMID: 38585868 PMCID: PMC10996555 DOI: 10.1101/2024.03.10.584332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Value-based decision-making relies on the striatum, where neural plasticity can be altered by chronic ethanol (EtOH) exposure, but the effects of such plasticity on striatal neural dynamics during decision-making remain unclear. This study investigated the long-term impacts of EtOH on reward-driven decision-making and striatal neurocomputations in male and female rats using a dynamic probabilistic reversal learning task. Following a prolonged withdrawal period, EtOH-exposed male rats exhibited deficits in adaptability and exploratory behavior, with a preference for value updating based on rewards rather than omissions. These behavioral changes were linked to altered neural encoding in the dorsomedial striatum (DMS), where EtOH increased outcome-related signals and decreased choice-related signals. In contrast, female rats showed minimal behavioral changes with distinct EtOH-evoked alterations of neural signals, revealing significant sex differences in the impact of chronic EtOH. Our findings underscore the profound impact of chronic EtOH exposure on adaptive decision-making, revealing enduring changes in neurocomputational processes in the striatum underlying cognitive deficits that differ by sex.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Robin Magnard
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Angela J. Langdon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Daeyeol Lee
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Zanvyl Krieger Mind/Brain Institute, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Patricia H. Janak
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
3
|
Li J, Zhou Y, Yin F, Du Y, Xu J, Fan S, Li Z, Wang X, Shen Q, Zhu Y, Ma T. The Orbitofrontal Cortex to Striatal Cholinergic Interneuron Circuit Controls Cognitive Flexibility Shaping Alcohol-Seeking Behavior. Biol Psychiatry 2024:S0006-3223(24)01658-5. [PMID: 39396737 DOI: 10.1016/j.biopsych.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND A top-down neuronal circuit from the orbitofrontal cortex (OFC) to the dorsomedial striatum (DMS) appears to be critical for cognitive flexibility. However, how OFC projections to different types of neurons in the DMS control cognitive flexibility and contribute to substance seeking and use, which are relatively inflexible behaviors, remains unclear. METHODS Mice were trained on two-bottle choice and operant alcohol self-administration procedures. The cognitive flexibility of the mice was tested through a place discrimination task. Electrophysiology and in vivo optogenetics were used to test the function of neural circuits in alcohol-seeking behavior. RESULTS We depicted a connection from the OFC to striatal neurons and found that OFC afferents could elicit functional flexibility in striatal cholinergic interneurons (CINs). A mouse model of chronic alcohol consumption showed impaired cognitive flexibility and reduced burst-pause firing. The impairment of the OFC-DMS circuit resulted in a reduction in glutamatergic transmission in OFC-medium spiny neurons (MSNs) through a CIN-mediated pre-inhibition mechanism. Importantly, remodeling the OFC-DMS circuit by inducing LTP restored cognitive flexibility. Furthermore, CINs were responsible for the impact of remodeling of the OFC-DMS circuit on cognitive flexibility. This regulatory role of CINs preferentially facilitated the potentiation of glutamatergic transmission in D2 receptor-expressing medium spiny neurons (D2-MSNs) but not in D1-MSNs. Finally, activation of the OFC-CIN-D2-MSN circuit decreased alcohol-seeking behavior. CONCLUSIONS Improving OFC-CIN circuit-mediated cognitive flexibility may provide a novel strategy for treating uncontrolled alcohol-seeking behavior.
Collapse
Affiliation(s)
- Jiaxin Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fangyuan Yin
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yanfeng Du
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiancheng Xu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shuyuan Fan
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ziyi Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaojie Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qingfeng Shen
- Department of Substance Dependence, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou Eastern People's Hospital, Xuzhou, China
| | - Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Lin H, Olaniran A, Luo X, Strauch J, Burke MAM, Matheson CL, Li X. Orbitofrontal cortex to dorsal striatum circuit is critical for incubation of oxycodone craving after forced abstinence. Addict Biol 2024; 29:e13440. [PMID: 39380299 PMCID: PMC11461755 DOI: 10.1111/adb.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Relapse is a major challenge in treating opioid addiction, including oxycodone. During abstinence, oxycodone seeking progressively increases, a phenomenon termed incubation of oxycodone craving. We previously demonstrated a causal role of orbitofrontal cortex (OFC) in this incubation. Here, we studied the interaction between glutamatergic projections from OFC and dopamine 1-family receptor (D1R) signaling in dorsal striatum (DS) in this incubation in male rats. We first examined the causal role of D1R signalling in DS in incubated oxycodone seeking. Next, we combined fluorescence-conjugated cholera toxin subunit B (CTb-555, a retrograde tracer) with Fos (a neuronal activity marker) to assess whether the activation of OFC→DS projections was associated with incubated oxycodone seeking. We then used a pharmacological asymmetrical disconnection procedure to examine the role of the interaction between projections from OFC and D1R signalling in DS in incubated oxycodone seeking. We also tested the effect of unilateral pharmacological inactivation of OFC or unilateral D1R blockade of DS on incubated oxycodone seeking. Finally, we assessed whether contralateral disconnection of OFC→DS projections impacted non-incubated oxycodone seeking on abstinence day 1. We found that D1R blockade in DS decreased incubated oxycodone seeking and OFC→DS projections were activated during incubated oxycodone seeking. Moreover, anatomical disconnection of OFC→DS projections, but not unilateral inactivation of OFC or unilateral D1R blockade in DS, decreased incubated oxycodone seeking. Lastly, contralateral disconnection of OFC→DS projections had no effect on oxycodone seeking on abstinence day 1. Together, these results demonstrated a causal role of OFC→DS projections in incubation of oxycodone craving.
Collapse
Affiliation(s)
- Hongyu Lin
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Adedayo Olaniran
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Xiang Luo
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Jessica Strauch
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Megan A. M. Burke
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Chloe L. Matheson
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
- Program in Neuroscience and Cognitive ScienceUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Xuan Li
- Department of PsychologyUniversity of Maryland College ParkCollege ParkMarylandUSA
- Program in Neuroscience and Cognitive ScienceUniversity of Maryland College ParkCollege ParkMarylandUSA
| |
Collapse
|
5
|
Muñoz B, Atwood BK. Alcohol consumption does not impact delta and kappa opioid receptor-mediated synaptic depression in dorsolateral striatum of adult male mice. Alcohol 2024; 119:89-95. [PMID: 38857678 PMCID: PMC11296933 DOI: 10.1016/j.alcohol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Many drugs of abuse, including alcohol, disrupt long-term synaptic depression (LTD) at dorsal striatal glutamate synapses. This disruption is common to many forms of LTD that are mediated by G protein coupled receptors (GPCRs) that signal through the inhibitory Gi/o class of G proteins. A loss of LTD is thought to mediate behavioral changes associated with the development of substance use disorders. We have previously shown in multiple studies that LTD mediated by the Gi/o-coupled mu opioid receptor is disrupted by in vivo opioid and alcohol exposure in adolescent and adult mice. One of our previous studies suggested that LTD mediated by delta and kappa opioid receptors was resistant to the LTD-disrupting properties of in vivo opioid exposure. We hypothesized that delta and kappa opioid receptor-mediated LTD would be exceptions to the generalizable observation that forms of dorsal striatal Gi/o-coupled receptor LTD are disrupted by drugs of abuse. Specifically, we predicted that these forms of LTD would be resistant to the deleterious effects of alcohol consumption, just as they were resistant to opioid exposure. Indeed, in adult male mice that drank alcohol for 3 weeks, delta and kappa opioid receptor-mediated LTD at glutamatergic inputs to direct pathway and indirect pathway medium spiny neurons in the dorsolateral striatum was unaffected by alcohol. These data demonstrate that alcohol effects on GPCR-mediated LTD are not generalizable across all types of Gi/o-coupled GPCRs.
Collapse
Affiliation(s)
- Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Sitzia G, Bariselli S, Gracias A, Lovinger DM. Chronic alcohol induces subcircuit-specific striatonigral plasticity enhancing the sensorimotor basal ganglia role in action execution. SCIENCE ADVANCES 2024; 10:eadm6951. [PMID: 38941461 PMCID: PMC11212723 DOI: 10.1126/sciadv.adm6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Functional deficits in basal ganglia (BG) circuits contribute to cognitive and motor dysfunctions in alcohol use disorder. Chronic alcohol exposure alters synaptic function and neuronal excitability in the dorsal striatum, but it remains unclear how it affects BG output that is mediated by the substantia nigra pars reticulata (SNr). Here, we describe a neuronal subpopulation-specific synaptic organization of striatal and subthalamic (STN) inputs to the medial and lateral SNr. Chronic alcohol exposure (CIE) potentiated dorsolateral striatum (DLS) inputs but did not change dorsomedial striatum and STN inputs to the SNr. Chemogenetic inhibition of DLS direct pathway neurons revealed an enhanced role for DLS direct pathway neurons in execution of an instrumental lever-pressing task. Overall, we reveal a subregion-specific organization of striatal and subthalamic inputs onto the medial and lateral SNr and find that potentiated DLS-SNr inputs are accompanied by altered BG control of action execution following CIE.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastiano Bariselli
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alexa Gracias
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
7
|
Doyle MA, Taylor A, Winder DG. Neural Circuitries and Alcohol Use Disorder: Cutting Corners in the Cycle. Curr Top Behav Neurosci 2023. [PMID: 38082108 DOI: 10.1007/7854_2023_454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An implicit tenet of the alcohol use disorder (AUD) research field is that knowledge of how alcohol interacts with the brain is critical to the development of an understanding of vulnerability to AUD and treatment approaches. Gaining this understanding requires the mapping of brain function critical to specific components of this heterogeneous disorder. Early approaches in humans and animal models focused on the determination of specific brain regions sensitive to alcohol action and their participation in AUD-relevant behaviors. Broadly speaking, this research has focused on three domains, Binge/Intoxication, Negative Affect/Withdrawal, and Preoccupation/Anticipation, with a number of regions identified as participating in each. With the generational advances in technologies that the field of neuroscience has undergone over the last two decades, this focus has shifted to a circuit-based analysis. A wealth of new data has sharpened the field's focus on the specific roles of the interconnectivity of multiple brain regions in AUD and AUD-relevant behaviors, as well as demonstrating that the three major domains described above have much fuzzier edges than originally thought.In this chapter, we very briefly review brain regions previously implicated in aspects of AUD-relevant behavior from animal model research. Next, we move to a more in-depth overview of circuit-based approaches, and the utilization of these approaches in current AUD research.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne Taylor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
8
|
Baltz ET, Renteria R, Gremel CM. Chronic alcohol exposure differentially alters calcium activity of striatal cell populations during actions. ADDICTION NEUROSCIENCE 2023; 8:100128. [PMID: 37842013 PMCID: PMC10569208 DOI: 10.1016/j.addicn.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alcohol Use Disorder (AUD) can induce long lasting alterations to executive function. This includes altered action control, which can manifest as dysfunctional goal-directed control. Cortical and striatal circuits mediate goal-directed control over behavior, and prior research has found chronic alcohol disrupts these circuits. In particular, prior in vivo and ex vivo work have identified alterations to function and activity of dorsal medial striatum (DMS), which is necessary for goal-directed control. However, unknown is whether these alterations manifest as altered activity of select DMS populations during behavior. Here we examine effects of prior chronic alcohol exposure on calcium activity modulation during action-related behaviors via fiber photometry of genetically-identified DMS populations including the direct and indirect output pathways, and fast-spiking interneurons. We find that prior chronic alcohol exposure leads to increased calcium modulation of the direct pathway during action related behavior. In contrast, prior chronic alcohol exposure led to decreased calcium activity modulation of the indirect pathway and the fast-spiking interneuron population around action-related events. Together, our findings suggest an imbalance in striatal activity during action control. This disruption may contribute to the altered goal-directed control previously reported.
Collapse
Affiliation(s)
- Emily T. Baltz
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Rafael Renteria
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Munoz B, Atwood BK. A novel inhibitory corticostriatal circuit that expresses mu opioid receptor-mediated synaptic plasticity. Neuropharmacology 2023; 240:109696. [PMID: 37659438 PMCID: PMC10591984 DOI: 10.1016/j.neuropharm.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Corticostriatal circuits are generally characterized by the release of glutamate neurotransmitter from cortical terminals within the striatum. It is well known that cortical excitatory input to the dorsal striatum regulates addictive drug-related behaviors. We previously reported that anterior insular cortex (AIC) synaptic inputs to the dorsolateral striatum (DLS) control binge alcohol drinking in mice. These AIC-DLS glutamate synapses are also the sole sites of corticostriatal mu opioid receptor-mediated excitatory long-term depression (MOR-LTD) in the DLS. Recent work demonstrates that some regions of cortex send long-range, direct inhibitory inputs into the dorsal striatum. Nothing is known about the existence and regulation of AIC-DLS inhibitory synaptic transmission. Here, using a combination of patch clamp electrophysiology and optogenetics, we characterized a novel AIC-DLS corticostriatal inhibitory circuit and its regulation by MOR-mediated inhibitory LTD (MOR-iLTD). First, we found that the activation of presynaptic MORs produces MOR-iLTD in the DLS and dorsomedial striatum. Then, we showed that medium spiny neurons within the DLS receive direct inhibitory synaptic input from the cortex, specifically from the motor cortex and AIC. Using transgenic mice that express cre-recombinase within parvalbumin-expressing inhibitory neurons, we determined that this specific cortical neuron subtype sends direct GABAergic projections to the DLS. Moreover, these AIC-DLS inhibitory synaptic input subtypes express MOR-iLTD. These data suggest a novel GABAergic corticostriatal circuit that could be involved in the regulation of drug and alcohol consumption-related behaviors.
Collapse
Affiliation(s)
- Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
10
|
Carosella KA, Wiglesworth A, Bendezú JJ, Brower R, Mirza S, Mueller BA, Cullen KR, Klimes-Dougan B. Patterns of experience, expression, and physiology of stress relate to depressive symptoms and self-injurious thoughts and behaviors in adolescents: a person-centered approach. Psychol Med 2023; 53:7902-7912. [PMID: 37609891 PMCID: PMC10755230 DOI: 10.1017/s0033291723002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Preliminary evidence shows that discordance in stress experience, expression, and physiology (EEP) in adolescents is linked to depression, suicidal ideation (SI), non-suicidal self-injury (NSSI), and brain functioning. This study employs person-centered analysis to probe the relationship between stress responses, psychopathology, and neural patterns in female adolescents who are oversampled for engagement in NSSI. METHODS Adolescent females (N = 109, ages 12-17) underwent a social stress test from which self-report measures of stress experience, observer ratings of stress expression, and physiological metrics of stress (via salivary cortisol) were obtained. Multi-trajectory modeling was employed to identify concordant and discordant stress EEP groups. Depressive symptoms, SI and attempt, NSSI engagement, frontal and limbic activation to emotional stimuli, and resting state fronto-limbic connectivity were examined in the EEP groups derived from the multi-trajectory models. RESULTS Four groups were identified, three of which demonstrated relatively concordant EEP and one which demonstrated discordant EEP (High Experience-High Expression-Low Physiology). Further, replicating past research, the High Experience-High Expression-Low Physiology discordant group exhibited higher depressive symptoms, SI, suicide attempt, and NSSI episodes (only for sensitivity analyses based on past year) relative to other EEP groups. No significant group differences in brain functioning emerged. CONCLUSION Results indicate that within-person, multi-level patterns in stress responding capture risk for dysfunction including depression and self-injurious thoughts and behaviors. Further interrogating of system-level stress functioning may better inform assessment and intervention efforts.
Collapse
Affiliation(s)
| | - Andrea Wiglesworth
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jason José Bendezú
- Department of Psychology, The Pennsylvania State University, University Park Campus, University Park, PA, USA
| | - Rylee Brower
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Salahudeen Mirza
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Bryon A. Mueller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R. Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
11
|
Shang H, Li P, Lin X, Cai Q, Li Z, Deng L, Song Y, Chen JF, Zhou J. Neuronal and astrocytic CB1R signaling differentially modulates goal-directed behavior and working memory by distinct temporal mechanisms. Neuropsychopharmacology 2023; 48:1520-1531. [PMID: 36694040 PMCID: PMC10425374 DOI: 10.1038/s41386-023-01533-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
Several cognitive processes, including instrumental behavior and working memory, are controlled by endocannabinoids acting on cannabinoid receptor 1 (CB1R) in the brain through retrograde and presynaptic inhibition of GABA or glutamate release. However, the temporal mechanisms underlying the control of these cognitive processes by CB1Rs remain largely unknown. Here, we have developed a light-sensitive CB1R chimera (optoCB1R) by replacing the intracellular domains of bovine rhodopsin with those of human CB1R. We demonstrated that light stimulation of optoCB1R triggered canonical CB1R signaling by inhibiting cAMP (but not cGMP or IP1) signaling and activating the MAPK pathway in vitro or in vivo. Moreover, light stimulation of optoCB1R in corticostriatal glutamatergic neurons could temporally inhibit excitatory postsynaptic currents (EPSCs) at the level of seconds. Importantly, transient (3 s) and "time-locked", but not random, activation of optoCB1R signaling in corticostriatal neurons at the time of reward affected animal sensitivity to outcome devaluation and inhibited goal-directed behavior. However, prolonged (~30 min) but not transient (10 or 30 s) activation of astrocytic CB1R signaling in the hippocampus impaired working memory. Consequently, neuronal and astrocytic CB1R signaling differentially regulate working memory and goal-directed behavior through distinct temporal and cellular mechanisms. Ultimately, the pharmacological blockade of adenosine A2AR improved the neuronal and astrocytic CB1R-induced impairments in goal-directed behavior and working memory, possibly through modulation of EPSCs and c-Fos, respectively. Therefore, A2AR may represent a promising target for managing cognitive dysfunction resulting from the use of CB1R drugs.
Collapse
Affiliation(s)
- Huiping Shang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangxiang Lin
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qionghui Cai
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhihui Li
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lu Deng
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Song
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Jianhong Zhou
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Schreiner DC, Wright A, Baltz ET, Wang T, Cazares C, Gremel CM. Chronic alcohol exposure alters action control via hyperactive premotor corticostriatal activity. Cell Rep 2023; 42:112675. [PMID: 37342908 PMCID: PMC10468874 DOI: 10.1016/j.celrep.2023.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Alcohol use disorder (AUD) alters decision-making control over actions, but disruptions to the responsible neural circuit mechanisms are unclear. Premotor corticostriatal circuits are implicated in balancing goal-directed and habitual control over actions and show disruption in disorders with compulsive, inflexible behaviors, including AUD. However, whether there is a causal link between disrupted premotor activity and altered action control is unknown. Here, we find that mice chronically exposed to alcohol (chronic intermittent ethanol [CIE]) showed impaired ability to use recent action information to guide subsequent actions. Prior CIE exposure resulted in aberrant increases in the calcium activity of premotor cortex (M2) neurons that project to the dorsal medial striatum (M2-DMS) during action control. Chemogenetic reduction of this CIE-induced hyperactivity in M2-DMS neurons rescued goal-directed action control. This suggests a direct, causal relationship between chronic alcohol disruption to premotor circuits and decision-making strategy and provides mechanistic support for targeting activity of human premotor regions as a potential treatment in AUD.
Collapse
Affiliation(s)
- Drew C Schreiner
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Wright
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily T Baltz
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Tianyu Wang
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA; The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
14
|
Sitzia G, Lovinger DM. Circuit dysfunctions of associative and sensorimotor basal ganglia loops in alcohol use disorder: insights from animal models. ADDICTION NEUROSCIENCE 2023; 5:100056. [PMID: 36567745 PMCID: PMC9788651 DOI: 10.1016/j.addicn.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persons that develop Alcohol Use Disorder (AUD) experience behavioral changes that include compulsion to seek and take alcohol despite its negative consequences on the person's psychosocial, health and economic spheres, inability to limit alcohol intake and a negative emotional/ motivational state that emerges during withdrawal. During all the stages of AUD executive functions, i.e. the person's ability to direct their behavior towards a goal, working memory and cognitive flexibility are eroded. Animal models of AUD recapitulate aspects of action selection impairment and offer the opportunity to benchmark the underlying circuit mechanisms. Here we propose a circuit-based approach to AUD research focusing on recent advances in behavioral analysis, neuroanatomy, genetics, and physiology to guide future research in the field.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Current Address: Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, USA
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - David M. Lovinger
- Current Address: Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, USA
| |
Collapse
|
15
|
Price RB, Ferrarelli F, Hanlon C, Gillan CM, Kim T, Siegle GJ, Wallace ML, Renard M, Kaskie R, Degutis M, Wears A, Brown V, Rengasamy M, Ahmari SE. Resting-State Functional Connectivity Differences Following Experimental Manipulation of the Orbitofrontal Cortex in Two Directions via Theta-Burst Stimulation. Clin Psychol Sci 2022; 11:77-89. [PMID: 37041763 PMCID: PMC10085574 DOI: 10.1177/21677026221103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Compulsive behaviors (CBs) have been linked to orbitofrontal cortex (OFC) function in animal and human studies. However, brain regions function not in isolation but as components of widely distributed brain networks—such as those indexed via resting-state functional connectivity (RSFC). Sixty-nine individuals with CB disorders were randomized to receive a single session of neuromodulation targeting the left OFC—intermittent theta-burst stimulation (iTBS) or continuous TBS (cTBS)—followed immediately by computer-based behavioral “habit override” training. OFC seeds were used to quantify RSFC following iTBS and following cTBS. Relative to cTBS, iTBS showed increased RSFC between right OFC (Brodmann’s area 47) and other areas, including dorsomedial prefrontal cortex (dmPFC), occipital cortex, and a priori dorsal and ventral striatal regions. RSFC connectivity effects were correlated with OFC/frontopolar target engagement and with subjective difficulty during habit-override training. Findings help reveal neural network-level impacts of neuromodulation paired with a specific behavioral context, informing mechanistic intervention development.
Collapse
Affiliation(s)
- Rebecca B. Price
- Department of Psychiatry, University of Pittsburgh
- Department of Psychology, University of Pittsburgh
| | | | | | | | - Tae Kim
- Department of Radiology, University of Pittsburgh
| | | | | | | | | | | | - Anna Wears
- Department of Psychiatry, University of Pittsburgh
| | | | | | | |
Collapse
|
16
|
Allen AT, Heaton EC, Shapiro LP, Butkovich LM, Yount ST, Davies RA, Li DC, Swanson AM, Gourley SL. Inter-individual variability amplified through breeding reveals control of reward-related action strategies by Melanocortin-4 Receptor in the dorsomedial striatum. Commun Biol 2022; 5:116. [PMID: 35136204 PMCID: PMC8825839 DOI: 10.1038/s42003-022-03043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
In day-to-day life, we often must choose between pursuing familiar behaviors or adjusting behaviors when new strategies might be more fruitful. The dorsomedial striatum (DMS) is indispensable for arbitrating between old and new action strategies. To uncover molecular mechanisms, we trained mice to generate nose poke responses for food, then uncoupled the predictive relationship between one action and its outcome. We then bred the mice that failed to rapidly modify responding. This breeding created offspring with the same tendencies, failing to inhibit behaviors that were not reinforced. These mice had less post-synaptic density protein 95 in the DMS. Also, densities of the melanocortin-4 receptor (MC4R), a high-affinity receptor for α-melanocyte-stimulating hormone, predicted individuals' response strategies. Specifically, high MC4R levels were associated with poor response inhibition. We next found that reducing Mc4r in the DMS in otherwise typical mice expedited response inhibition, allowing mice to modify behavior when rewards were unavailable or lost value. This process required inputs from the orbitofrontal cortex, a brain region canonically associated with response strategy switching. Thus, MC4R in the DMS appears to propel reward-seeking behavior, even when it is not fruitful, while moderating MC4R presence increases the capacity of mice to inhibit such behaviors.
Collapse
Affiliation(s)
- Aylet T Allen
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth C Heaton
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Lauren P Shapiro
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Laura M Butkovich
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sophie T Yount
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Rachel A Davies
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Dan C Li
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Andrew M Swanson
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA.
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
17
|
Golec K, Draps M, Stark R, Pluta A, Gola M. Aberrant orbitofrontal cortex reactivity to erotic cues in Compulsive Sexual Behavior Disorder. J Behav Addict 2021; 10:646-656. [PMID: 34437297 PMCID: PMC8997235 DOI: 10.1556/2006.2021.00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Compulsive Sexual Behavior Disorder (CSBD) is characterized by increased reactivity to erotic reward cues. Cue-encoded reward parameters, such as type (e.g. erotic or monetary) or probability of anticipated reward, shape reward-related motivational processes, increase the attractiveness of cues and therefore might enhance maladaptive behavioral patterns in CSBD. Studies on the neural patterns of cue processing in individuals with CSBD have been limited mainly to ventral striatal responses. Therefore, here we aimed to examine the cue reactivity of multiple key structures in the brain's reward system, taking into account not only the type of predicted reward but also its probability. METHODS Twenty Nine men seeking professional help due to CSBD and 24 healthy volunteers took part in an fMRI study with a modified Incentive Delay Task with erotic and monetary rewards preceded by cues indicating a 25%, 50%, or 75% chance of reward. Analyses of functional patterns of activity related to cue type and probability were conducted on the whole-brain and ROI levels. RESULTS Increased anticipatory response to cues predictive of erotic rewards was observed among CSBD participants when compared to controls, in the ventral striatum and anterior orbitofrontal cortex (aOFC). The activity in aOFC was modulated by reward probability. DISCUSSION AND CONCLUSIONS Type of anticipated reward (erotic vs monetary) affects reward-related behavioral motivation in CSBD more strongly than reward probability. We present evidence of abnormal aOFC function in CSBD by demonstrating the recruitment of additional subsections of this region by erotic reward cues.
Collapse
Affiliation(s)
- Karolina Golec
- Faculty of Psychology, University of Warsaw, Warsaw, Poland,Corresponding author. E-mail:
| | - Małgorzata Draps
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany,Bender Institute of Neuroimaging, Justus Liebig University of Giessen, Giessen, Germany
| | | | - Mateusz Gola
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland,Swartz Center for Computational Neuroscience, Institute for Neural Computations, University of California, San Diego, CA, USA
| |
Collapse
|