1
|
Egawa M, Schmücker E, Grimm C, Gudermann T, Chubanov V. Expression Profiling Identified TRPM7 and HER2 as Potential Targets for the Combined Treatment of Cancer Cells. Cells 2024; 13:1801. [PMID: 39513908 PMCID: PMC11545334 DOI: 10.3390/cells13211801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
TRPM7 is a divalent cation-permeable channel that is highly active in cancer cells. The pharmacological inhibitors of TRPM7 have been shown to suppress the proliferation of tumor cells, highlighting TRPM7 as a new anticancer drug target. However, the potential benefit of combining TRPM7 inhibitors with conventional anticancer therapies remains unexplored. Here, we used genome-wide transcriptome profiling of human leukemia HAP1 cells to examine cellular responses caused by the application of NS8593, the potent inhibitor of the TRPM7 channel, in comparison with two independent knockout mutations in the TRPM7 gene introduced by the CRISPR/Cas9 approach. This analysis revealed that TRPM7 regulates the expression levels of several transcripts, including HER2 (ERBB2). Consequently, we examined the TRPM7/HER2 axis in several non-hematopoietic cells to show that TRPM7 affects the expression of HER2 protein in a Zn2+-dependent fashion. Moreover, we found that co-administration of pharmacological inhibitors of HER2 and TRPM7 elicited a synergistic antiproliferative effect on HER2-overexpressing SKBR3 cells but not on HER2-deficient MDA-MB-231 breast cancer cells. Hence, our study proposes a new combinatorial strategy for treating HER2-positive breast cancer cells.
Collapse
Affiliation(s)
- Miyuki Egawa
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
| | - Eva Schmücker
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 80799 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
| |
Collapse
|
2
|
Franz MJ, Wenisch P, Wohlleben P, Rupprecht L, Chubanov V, Gudermann T, Kyheröinen S, Vartiainen MK, Heinrich MR, Muehlich S. Identification of novel inhibitors of the transcriptional coactivator MRTF-A for HCC therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200855. [PMID: 39262570 PMCID: PMC11387234 DOI: 10.1016/j.omton.2024.200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Myocardin-related transcription factor A (MRTF-A) is a coactivator of serum response factor (SRF), which regulates the expression of genes involved in cell proliferation, migration, and differentiation and has been implicated in hepatocellular carcinoma (HCC) progression. We recently established inhibition of the transcriptional activity of MRTF-A by NS8593 as a novel therapeutic approach for HCC therapy. NS8593 is a negative gating modulator of the transient receptor potential cation channel TRPM7. In this report, we identify an aminobenzimidazole that is highly potent in inhibiting TRPM7 and its interaction with RhoA, leading to decreased SRF transcriptional activity and enhanced nuclear export of MRTF-A, as determined by fluorescence loss in photobleaching (FLIP). This resulted in reduced expression of the MRTF/SRF target genes transforming growth factor β1 (TGF-β1) and tetraspanin 5 (TSPAN5), senescence induction, and growth arrest in HCC cells. Replacement of the tetraline core by a 3-aminophenyl substructure yielded inhibitor 10 with higher potency than inhibitor 5, and further structural modifications yielded highly potent inhibitors of SRF activity, 14 and 16. Both compounds were capable of inhibiting cell proliferation and inducing senescence in HCC cells with improved efficacy compared to NS8593. These inhibitors represent valuable tools for understanding the molecular basis of drug development targeting TRPM7 and MRTFs.
Collapse
Affiliation(s)
- Miriam Jasmin Franz
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Petra Wohlleben
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Laura Rupprecht
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 München, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 München, Germany
| | - Salla Kyheröinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | | | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- FAU NeW-Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Susanne Muehlich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- FAU NeW-Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
4
|
Skawinski CLS, Shah PS. I'm Walking into Spiderwebs: Making Sense of Protein-Protein Interaction Data. J Proteome Res 2024; 23:2723-2732. [PMID: 38556766 PMCID: PMC11296932 DOI: 10.1021/acs.jproteome.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Protein-protein interactions (PPIs) are at the heart of the molecular landscape permeating life. Proteomics studies can explore this protein interaction landscape using mass spectrometry (MS). Thanks to their high sensitivity, mass spectrometers can easily identify thousands of proteins within a single sample, but that same sensitivity generates tangled spiderwebs of data that hide biologically relevant findings. So, what does a researcher do when she finds herself walking into spiderwebs? In a field focused on discovery, MS data require rigor in their analysis, experimental validation, or a combination of both. In this Review, we provide a brief primer on MS-based experimental methods to identify PPIs. We discuss approaches to analyze the resulting data and remove the proteomic background. We consider the advantages between comprehensive and targeted studies. We also discuss how scoring might be improved through AI-based protein structure information. Women have been essential to the development of proteomics, so we will specifically highlight work by women that has made this field thrive in recent years.
Collapse
Affiliation(s)
| | - Priya S. Shah
- Department of Chemical Engineering, University of California – Davis, California
- Department of Microbiology and Molecular Genetics, University of California – Davis, California
| |
Collapse
|
5
|
Zhang L, Zhu Y, Ren Y, Xu L, Liu X, Qi X, Jiao T, Sun G, Han H, Zhang J, Sun F, Yang Y, Zhao S. Genetic characterization of Tibetan pigs adapted to high altitude under natural selection based on a large whole-genome dataset. Sci Rep 2024; 14:17062. [PMID: 39048584 PMCID: PMC11269713 DOI: 10.1038/s41598-024-65559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The Qinghai-Tibet Plateau is a valuable genetic resource pool, and the high-altitude adaptation of Tibetan pigs is a classic example of the adaptive evolution of domestic animals. Here, we report the presence of Darwinian positive selection signatures in Tibetan pigs (TBPs) using 348 genome-wide datasets (127 whole-genome sequence datasets (WGSs) and 221 whole-genome single-nucleotide polymorphism (SNP) chip datasets). We characterized a high-confidence list of genetic signatures related response to high-altitude adaptation in Tibetan pigs, including 4,598 candidate SNPs and 131 candidate genes. Functional annotation and enrichment analysis revealed that 131 candidate genes are related to multiple systems and organs in Tibetan pigs. Notably, eight of the top ten novel genes, RALB, NBEA, LIFR, CLEC17A, PRIM2, CDH7, GK5 and FAM83B, were highlighted and associated with improved adaptive heart functions in Tibetan pigs high-altitude adaptation. Moreover, genome-wide association analysis revealed that 29 SNPs were involved in 13 candidate genes associated with at least one adaptive trait. In particular, among the top ten candidate genes, CLEC17A is related to a reduction in hemoglobin (HGB) in Tibetan pigs. Overall, our study provides a robust SNP/gene list involving genetic adaptation for Tibetan pig high-altitude adaptation, and it will be a valuable resource for future Tibetan pig studies.
Collapse
Affiliation(s)
- Lingyun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanbin Zhu
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Linna Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Guangming Sun
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Haiyu Han
- The Animal Husbandry Station in Changdu, Changdu, China
| | - Jian Zhang
- The Beast Prevention Station in Gongbujiangda County, Linzhi, China
| | - Fengbo Sun
- The Animal Husbandry Station in Tibet Autonomous Region, Lhasa, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
6
|
Chubanov V, Köttgen M, Touyz RM, Gudermann T. TRPM channels in health and disease. Nat Rev Nephrol 2024; 20:175-187. [PMID: 37853091 DOI: 10.1038/s41581-023-00777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Flockerzi V, Fakler B. TR(i)P Goes On: Auxiliary TRP Channel Subunits? Circ Res 2024; 134:346-350. [PMID: 38359093 DOI: 10.1161/circresaha.123.323178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Transient receptor potential (TRP) cation channels are a diverse family of channels whose members play prominent roles as cellular sensors and effectors. The important role of TRP channels (and mechanosensitive piezo channels) in the complex interaction of our senses with the environment was underlined by the award of the Nobel Prize in Physiology or Medicine to 2 pioneers in this field, David Julius and Ardem Patapoutian. There are many competent and comprehensive reviews on many aspects of the TRP channels, and there is no intention to expand on them. Rather, after an introduction to the nomenclature, the molecular architecture of native TRP channel/protein complexes in vivo will be summarized using TRP channels of the canonical transient receptor potential subfamily as an example. This molecular architecture provides the basis for the signatures of native canonical transient receptor potential currents and their control by endogenous modulators and potential drugs.
Collapse
Affiliation(s)
- Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany (V.F.)
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany (B.F.)
| |
Collapse
|
8
|
Shahsavan A, Lee EL, Illes K, Kozlov G, Gehring K. Dimerization of the CNNM extracellular domain. Protein Sci 2024; 33:e4860. [PMID: 38149326 PMCID: PMC10804811 DOI: 10.1002/pro.4860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Cystathionine-β $$ \beta $$ -synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They mediate magnesium homeostasis directly by transport of Mg2+ ions and indirectly by regulation of the transient receptor potential ion channel subfamily M member 7 (TRPM7). Here, we report the crystal structure of the extracellular domain of tapeworm CNNM4. The domain forms a dimer of immunoglobulin-like (Ig-like) folds with electron density observed for three glycosylation sites. Analytical ultracentrifugation confirms that mutations in the extracellular domain of human CNNM4 prevent its dimerization. An analogous mutation in mouse CNNM2 impairs its activity in a cellular assay of Mg2+ transport.
Collapse
Affiliation(s)
- Ashkan Shahsavan
- Department of Biochemistry & Centre de recherche en biologie structuraleMcGill UniversityMontrealCanada
| | - Emma L. Lee
- Department of Biochemistry & Centre de recherche en biologie structuraleMcGill UniversityMontrealCanada
| | - Katalin Illes
- Department of Biochemistry & Centre de recherche en biologie structuraleMcGill UniversityMontrealCanada
| | - Guennadi Kozlov
- Department of Biochemistry & Centre de recherche en biologie structuraleMcGill UniversityMontrealCanada
| | - Kalle Gehring
- Department of Biochemistry & Centre de recherche en biologie structuraleMcGill UniversityMontrealCanada
| |
Collapse
|
9
|
Xie Z, Abumaria N. Effect of truncation on TRPM7 channel activity. Channels (Austin) 2023; 17:2200874. [PMID: 37040321 PMCID: PMC10761173 DOI: 10.1080/19336950.2023.2200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Transient receptor potential melastatin-like 7 (TRPM7) is a key player in various physiological and pathological processes. TRPM7 channel activity is regulated by different factors. The effects of cleavage of different domains on channel activity remain unknown. Here, we constructed several TRPM7 clones and explored the effects of truncating the mouse TRPM7 at different locations on the ion channel activity in two cell lines. We compared the clones' activity with the full-length TRPM7 and the native TRPM7 in transfected and untransfected cells. We also expressed fluorescently tagged truncated clones to examine their protein stability and membrane targeting. We found that truncating the kinase domain induced reduction in TRPM7 channel activity. Further truncations beyond the kinase (serine/threonine rich domain and/or coiled-coil domain) did not result in further reductions in channel activity. Two truncated clones lacking the TRP domain or the melastatin homology domain had a completely nonfunctional channel apparently due to disruption of protein stability. We identified the shortest structure of TRPM7 with measurable channel activity. We found that the truncated TRPM7 containing only S5 and S6 domains retained some channel activity. Adding the TRP domain to the S5-S6 resulted in a significant increase in channel activity. Finally, our analysis showed that TRPM7 outward currents are more sensitive to truncations than inward currents. Our data provide insights on the effects of truncating TRPM7 at different locations on the channel functions, highlighting the importance of different domains in impacting channel activity, protein stability, and/or membrane targeting.
Collapse
Affiliation(s)
- Zhuqing Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Huang J, He J, Wang J, Li Y, Xu Z, Zhang L, Kang Y, Xue P. Calcium carbonate-actuated ion homeostasis perturbator for oxidative damage-augmented Ca 2+/Mg 2+ interference therapy. Biomaterials 2023; 302:122340. [PMID: 37774552 DOI: 10.1016/j.biomaterials.2023.122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Ion homeostasis distortion through exogenous overload or underload of intracellular ion species has become an arresting therapeutic approach against malignant tumor. Nevertheless, treatment outcomes of such ion interference are always compromised by the intrinsic ion homeostasis maintenance systems in cancer cells. Herein, an ion homeostasis perturbator (CTC) is facilely designed by co-encapsulation of carvacrol (CAR) and meso-tetra-(4-carboxyphenyl)porphine (TCPP) into pH-sensitive nano-CaCO3, aiming to disrupt the self-defense mechanism during the process of ion imbalance. Upon the endocytosis of CTC into tumor cells, lysosomal acidity can render the decomposition of CaCO3, resulting in the instant Ca2+ overload and CO2 generation in cytoplasm. Simultaneously, CaCO3 disintegration triggers the release of CAR and TCPP, which are devoted to TRPM7 inhibition and sonosensitization, respectively. The malfunction of TRPM7 can impede the influx of Mg2+ and allow unrestricted influx of Ca2+ based on the antagonism relationship between Mg2+ and Ca2+, leading to an aggravated Ca2+/Mg2+ dyshomeostasis through ion channel deactivation. In another aspect, US-triggered cavitation can be significantly enhanced by the presence of inert CO2 microbubbles, further amplifying the generation of reactive oxygen species. Such oxidative damage-augmented Ca2+/Mg2+ interference therapy effectively impairs the mitochondrial function of tumor, which may provide useful insights in cancer therapy.
Collapse
Affiliation(s)
- Jiansen Huang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jie He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yongcan Li
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Bai Y, Bentley L, Ma C, Naveenan N, Cleak J, Wu Y, Simon MM, Westerberg H, Cañas RC, Horner N, Pandey R, Paphiti K, Schulze U, Mianné J, Hough T, Teboul L, de Baaij JH, Cox RD. Cleft palate and minor metabolic disturbances in a mouse global Arl15 gene knockout. FASEB J 2023; 37:e23211. [PMID: 37773757 PMCID: PMC10631251 DOI: 10.1096/fj.202201918r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/27/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
ARL15, a small GTPase protein, was linked to metabolic traits in association studies. We aimed to test the Arl15 gene as a functional candidate for metabolic traits in the mouse. CRISPR/Cas9 germline knockout (KO) of Arl15 showed that homozygotes were postnatal lethal and exhibited a complete cleft palate (CP). Also, decreased cell migration was observed from Arl15 KO mouse embryonic fibroblasts (MEFs). Metabolic phenotyping of heterozygotes showed that females had reduced fat mass on a chow diet from 14 weeks of age. Mild body composition phenotypes were also observed in heterozygous mice on a high-fat diet (HFD)/low-fat diet (LFD). Females on a HFD showed reduced body weight, gonadal fat depot weight and brown adipose tissue (BAT) weight. In contrast, in the LFD group, females showed increased bone mineral density (BMD), while males showed a trend toward reduced BMD. Clinical biochemistry analysis of plasma on HFD showed transient lower adiponectin at 20 weeks of age in females. Urinary and plasma Mg2+ concentrations were not significantly different. Our phenotyping data showed that Arl15 is essential for craniofacial development. Adult metabolic phenotyping revealed potential roles in brown adipose tissue and bone development.
Collapse
Affiliation(s)
- Ying Bai
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Liz Bentley
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Chao Ma
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - James Cleak
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Yixing Wu
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Michelle M Simon
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Henrik Westerberg
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Ramón Casero Cañas
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Neil Horner
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Rajesh Pandey
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Keanu Paphiti
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | | | - Joffrey Mianné
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Tertius Hough
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Lydia Teboul
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Roger D. Cox
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| |
Collapse
|
13
|
Jackson CL, Ménétrey J, Sivia M, Dacks JB, Eliáš M. An evolutionary perspective on Arf family GTPases. Curr Opin Cell Biol 2023; 85:102268. [PMID: 39491309 DOI: 10.1016/j.ceb.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 11/05/2024]
Abstract
The Arf family GTPases are regulators of eukaryotic cellular organization, functioning in the secretory and endocytic pathways, in cilia and flagella, in cytoskeleton dynamics, and in lipid metabolism. We describe the evolution of this protein family and its well-studied regulators. The last eukaryotic common ancestor had fifteen members, and the current complement of Arf GTPases has been sculpted by gene loss and gene duplications since that point. Some Arf family GTPases (such as those that recruit vesicle coats in the secretory pathway) are present in virtually all eukaryotes, whereas others (such as those functioning in cilia/flagella) have a more limited distribution. A challenge for the future is understanding the full spectrum of Arf family functions throughout eukaryotes.
Collapse
Affiliation(s)
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mandeep Sivia
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
14
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
15
|
Hoeger B, Nadolni W, Hampe S, Hoelting K, Fraticelli M, Zaborsky N, Madlmayr A, Sperrer V, Fraticelli L, Addington L, Steinritz D, Chubanov V, Geisberger R, Greil R, Breit A, Boekhoff I, Gudermann T, Zierler S. Inactivation of TRPM7 Kinase Targets AKT Signaling and Cyclooxygenase-2 Expression in Human CML Cells. FUNCTION 2023; 4:zqad053. [PMID: 37786778 PMCID: PMC10541797 DOI: 10.1093/function/zqad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key regulator of inflammation. High constitutive COX-2 expression enhances survival and proliferation of cancer cells, and adversely impacts antitumor immunity. The expression of COX-2 is modulated by various signaling pathways. Recently, we identified the melastatin-like transient-receptor-potential-7 (TRPM7) channel-kinase as modulator of immune homeostasis. TRPM7 protein is essential for leukocyte proliferation and differentiation, and upregulated in several cancers. It comprises of a cation channel and an atypical α-kinase, linked to inflammatory cell signals and associated with hallmarks of tumor progression. A role in leukemia has not been established, and signaling pathways are yet to be deciphered. We show that inhibiting TRPM7 channel-kinase in chronic myeloid leukemia (CML) cells results in reduced constitutive COX-2 expression. By utilizing a CML-derived cell line, HAP1, harboring CRISPR/Cas9-mediated TRPM7 knockout, or a point mutation inactivating TRPM7 kinase, we could link this to reduced activation of AKT serine/threonine kinase and mothers against decapentaplegic homolog 2 (SMAD2). We identified AKT as a direct in vitro substrate of TRPM7 kinase. Pharmacologic blockade of TRPM7 in wildtype HAP1 cells confirmed the effect on COX-2 via altered AKT signaling. Addition of an AKT activator on TRPM7 kinase-dead cells reconstituted the wildtype phenotype. Inhibition of TRPM7 resulted in reduced phosphorylation of AKT and diminished COX-2 expression in peripheral blood mononuclear cells derived from CML patients, and reduced proliferation in patient-derived CD34+ cells. These results highlight a role of TRPM7 kinase in AKT-driven COX-2 expression and suggest a beneficial potential of TRPM7 blockade in COX-2-related inflammation and malignancy.
Collapse
Affiliation(s)
- Birgit Hoeger
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
| | - Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Sarah Hampe
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Kilian Hoelting
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Marco Fraticelli
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI–LIMCR), Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Anna Madlmayr
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
| | - Viktoria Sperrer
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
| | - Laura Fraticelli
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Lynda Addington
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Dirk Steinritz
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI–LIMCR), Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI–LIMCR), Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| | - Susanna Zierler
- Institute of Pharmacology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz and Krankenhausstr. 5, 4020 Linz, Austria
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany
| |
Collapse
|
16
|
Mahbub L, Kozlov G, Zong P, Lee EL, Tetteh S, Nethramangalath T, Knorn C, Jiang J, Shahsavan A, Yue L, Runnels L, Gehring K. Structural insights into regulation of CNNM-TRPM7 divalent cation uptake by the small GTPase ARL15. eLife 2023; 12:e86129. [PMID: 37449820 PMCID: PMC10348743 DOI: 10.7554/elife.86129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Cystathionine-β-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg2+ ions on their own and influx of divalent cations when expressed with the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM-binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP and CNNM-binding protein and demonstrate that ARL15 also inhibits CNNM2 Mg2+ efflux. The crystal structure of a complex between ARL15 and CNNM2 CBS-pair domain reveals the molecular basis for binding and allowed the identification of mutations that specifically block binding. A binding deficient ARL15 mutant, R95A, failed to inhibit CNNM and TRPM7 transport of Mg2+ and Zn2+ ions. Structural analysis and binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) showed that ARL15 and PRLs compete for binding CNNM to coordinate regulation of ion transport by CNNM and TRPM7.
Collapse
Affiliation(s)
- Luba Mahbub
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Guennadi Kozlov
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Pengyu Zong
- Department of Cell Biology, UCONN Health CenterFarmingtonUnited States
| | - Emma L Lee
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Sandra Tetteh
- Rutgers-Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | | | - Caroline Knorn
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Jianning Jiang
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Ashkan Shahsavan
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| | - Lixia Yue
- Department of Cell Biology, UCONN Health CenterFarmingtonUnited States
| | - Loren Runnels
- Rutgers-Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Kalle Gehring
- Department of Biochemistry, McGill UniversityMontrealCanada
- Centre de recherche en biologie structurale, McGill UniversityMontréalCanada
| |
Collapse
|
17
|
Nadezhdin KD, Correia L, Narangoda C, Patel DS, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, Sobolevsky AI. Structural mechanisms of TRPM7 activation and inhibition. Nat Commun 2023; 14:2639. [PMID: 37156763 PMCID: PMC10167348 DOI: 10.1038/s41467-023-38362-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Chamali Narangoda
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Hardy S, Zolotarov Y, Coleman J, Roitman S, Khursheed H, Aubry I, Uetani N, Tremblay M. PRL-1/2 phosphatases control TRPM7 magnesium-dependent function to regulate cellular bioenergetics. Proc Natl Acad Sci U S A 2023; 120:e2221083120. [PMID: 36972446 PMCID: PMC10083557 DOI: 10.1073/pnas.2221083120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.
Collapse
Affiliation(s)
- Serge Hardy
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Yevgen Zolotarov
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Jacob Coleman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Simon Roitman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Hira Khursheed
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Noriko Uetani
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Michel L. Tremblay
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| |
Collapse
|
19
|
Abstract
Mg2+ is essential for many cellular and physiological processes, including muscle contraction, neuronal activity, and metabolism. Consequently, the blood Mg2+ concentration is tightly regulated by balanced intestinal Mg2+ absorption, renal Mg2+ excretion, and Mg2+ storage in bone and soft tissues. In recent years, the development of novel transgenic animal models and identification of Mendelian disorders has advanced our current insight in the molecular mechanisms of Mg2+ reabsorption in the kidney. In the proximal tubule, Mg2+ reabsorption is dependent on paracellular permeability by claudin-2/12. In the thick ascending limb of Henle's loop, the claudin-16/19 complex provides a cation-selective pore for paracellular Mg2+ reabsorption. The paracellular Mg2+ reabsorption in this segment is regulated by the Ca2+-sensing receptor, parathyroid hormone, and mechanistic target of rapamycin (mTOR) signaling. In the distal convoluted tubule, the fine tuning of Mg2+ reabsorption takes place by transcellular Mg2+ reabsorption via transient receptor potential melastatin-like types 6 and 7 (TRPM6/TRPM7) divalent cation channels. Activity of TRPM6/TRPM7 is dependent on hormonal regulation, metabolic activity, and interacting proteins. Basolateral Mg2+ extrusion is still poorly understood but is probably dependent on the Na+ gradient. Cyclin M2 and SLC41A3 are the main candidates to act as Na+/Mg2+ exchangers. Consequently, disturbances of basolateral Na+/K+ transport indirectly result in impaired renal Mg2+ reabsorption in the distal convoluted tubule. Altogether, this review aims to provide an overview of the molecular mechanisms of Mg2+ reabsorption in the kidney, specifically focusing on transgenic mouse models and human hereditary diseases.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Mahbub L, Kozlov G, Zong P, Tetteh S, Nethramangalath T, Knorn C, Jiang J, Shahsavan A, Lee E, Yue L, Runnels LW, Gehring K. Structural insights into regulation of TRPM7 divalent cation uptake by the small GTPase ARL15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524765. [PMID: 36711628 PMCID: PMC9882303 DOI: 10.1101/2023.01.19.524765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cystathionine-β-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg 2+ ions on their own or uptake of divalent cations when coupled to the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP-binding protein and demonstrate that it binds the CNNM CBS-pair domain with low micromolar affinity. The crystal structure of the complex between ARL15 GTPase domain and CNNM2 CBS-pair domain reveals the molecular determinants of the interaction and allowed the identification of mutations in ARL15 and CNNM2 mutations that abrogate binding. Loss of CNNM binding prevented ARL15 suppression of TRPM7 channel activity in support of previous reports that the proteins function as a ternary complex. Binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) revealed that ARL15 and PRLs compete for binding CNNM, suggesting antagonistic regulation of divalent cation transport by the two proteins.
Collapse
Affiliation(s)
- Luba Mahbub
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Pengyu Zong
- Dept. of Cell Biology. UCONN Health Center, Farmington, Connecticut, United States
| | - Sandra Tetteh
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States
| | | | - Caroline Knorn
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Ashkan Shahsavan
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Emma Lee
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Lixia Yue
- Dept. of Cell Biology. UCONN Health Center, Farmington, Connecticut, United States
| | - Loren W. Runnels
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada,Corresponding author:
| |
Collapse
|
21
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
22
|
Hoeger B, Zierler S. Ion Channels and Transporters in Immunity-Where do We Stand? FUNCTION (OXFORD, ENGLAND) 2022; 4:zqac070. [PMID: 36686643 PMCID: PMC9846422 DOI: 10.1093/function/zqac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Birgit Hoeger
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Krankenhausstr. 5, 4020 Linz, Austria
| | | |
Collapse
|
23
|
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 2022; 110:4162-4175.e7. [PMID: 36257322 DOI: 10.1016/j.neuron.2022.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Yvonne Schwarz
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Katharina Oleinikov
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ahsan Raza
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Fabien Ectors
- Transgenic facility, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Dieter Bruns
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany.
| |
Collapse
|
24
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
25
|
Wang Y, Lu R, Chen P, Cui R, Ji M, Zhang X, Hou P, Qu Y. Promoter methylation of transient receptor potential melastatin-related 7 (TRPM7) predicts a better prognosis in patients with Luminal A breast cancers. BMC Cancer 2022; 22:951. [PMID: 36064388 PMCID: PMC9446581 DOI: 10.1186/s12885-022-10038-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most common female tumors arising worldwide, and genetic and epigenetic events are constantly accumulated in breast tumorigenesis. The melastatin-related transient receptor potential 7 channel (TRPM7) is a nonselective cation channel, mainly maintaining Zn2+, Ca2+ and Mg2+ homeostasis. It is also involved in regulating proliferation and migration in various cancers including breast cancer. However, epigenetic alterations (such as promoter methylation) of TRPM7 and their correlation with clinical outcomes in breast cancer patients remain largely unclear. In this study, we found that TRPM7 was highly expressed in the luminal A subtype of breast cancers but no other subtypes compared with GTEx (Genotype-Tissue Expression Rad) or normal samples by analyzing the TCGA database. Correspondingly, TRPM7 was methylated in 42.7% (93 of 219) of breast cancers. Further studies found that promoter methylation of TRPM7 were significantly associated with better clinical outcomes in breast cancer patients, especially in the Luminal A subtype. Besides, methylated TRPM7 was correlated with less number of metastatic lymph nodes and longer local failure free survival time in this subtype. In summary, our data indicate that promoter methylation of TRPM7 may predict poor prognosis in patients with luminal A breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Rong Lu
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Pu Chen
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Rongrong Cui
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Yiping Qu
- Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
26
|
Gao X, Kuo CW, Main A, Brown E, Rios FJ, Camargo LDL, Mary S, Wypijewski K, Gök C, Touyz RM, Fuller W. Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium 2022; 106:102639. [PMID: 36027648 DOI: 10.1016/j.ceca.2022.102639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.
Collapse
Affiliation(s)
- Xing Gao
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alice Main
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elaine Brown
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Francisco J Rios
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Livia De Lucca Camargo
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sheon Mary
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Krzysztof Wypijewski
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Caglar Gök
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
27
|
Rössig A, Hill K, Nörenberg W, Weidenbach S, Zierler S, Schaefer M, Gudermann T, Chubanov V. Pharmacological agents selectively acting on the channel moieties of TRPM6 and TRPM7. Cell Calcium 2022; 106:102640. [PMID: 36030694 DOI: 10.1016/j.ceca.2022.102640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022]
Abstract
The transient receptor potential cation channel, subfamily M, members 6 and 7 (TRPM6 and TRPM7) are homologous membrane proteins encompassing cation channel units fused to cytosolic serine/threonine-protein kinase domains. Clinical studies and experiments with animal disease models suggested that selective inhibition of TRPM6 and TRPM7 currents might be beneficial for subjects with immune and cardiovascular disorders, tumours and other pathologies, but the suitable pharmacological toolkit remains underdeveloped. The present study identified small synthetic molecules acting specifically on the channel moieties of TRPM6 and TRPM7. Using electrophysiological analysis in conjunction with Ca2+ imaging, we show that iloperidone and ifenprodil inhibit the channel activity of recombinant TRPM6 with IC50 values of 0.73 and 3.33 µM, respectively, without an impact on the TRPM7 channel. We also found that VER155008 suppresses the TRPM7 channel with an IC50 value of 0.11 µM but does not affect TRPM6. Finally, the effects of iloperidone and VER155008 were found to be suitable for blocking native endogenous TRPM6 and TRPM7 in a collection of mouse and human cell models. Hence, the identification of iloperidone, ifenprodil, and VER155008 allows for the first time to selectively manipulate TRPM6 and TRPM7 currents.
Collapse
Affiliation(s)
- Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Kerstin Hill
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Wolfgang Nörenberg
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Sebastian Weidenbach
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany; Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Michael Schaefer
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany; Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
28
|
Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 2022; 79:418. [PMID: 35819535 PMCID: PMC9276622 DOI: 10.1007/s00018-022-04442-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
Collapse
Affiliation(s)
- G A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - R J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Schmidt E, Narangoda C, Nörenberg W, Egawa M, Rössig A, Leonhardt M, Schaefer M, Zierler S, Kurnikova MG, Gudermann T, Chubanov V. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cell Mol Life Sci 2022; 79:225. [PMID: 35389104 PMCID: PMC8989868 DOI: 10.1007/s00018-022-04192-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 01/03/2023]
Abstract
Zn2+, Mg2+ and Ca2+ are essential divalent cations implicated in many metabolic processes and signalling pathways. An emerging new paradigm is that the organismal balance of these cations predominantly depends on a common gatekeeper, the channel-kinase TRPM7. Despite extensive electrophysiological studies and recent cryo-EM analysis, an open question is how the channel activity of TRPM7 is activated. Here, we performed site-directed mutagenesis of mouse TRPM7 in conjunction with patch-clamp assessment of whole-cell and single-channel activity and molecular dynamics (MD) simulations to show that the side chains of conserved N1097 form an inter-subunit Mg2+ regulatory site located in the lower channel gate of TRPM7. Our results suggest that intracellular Mg2+ binds to this site and stabilizes the TRPM7 channel in the closed state, whereas the removal of Mg2+ favours the opening of TRPM7. Hence, our study identifies the structural underpinnings through which the TRPM7 channel is controlled by cytosolic Mg2+, representing a new structure–function relationship not yet explored among TRPM channels.
Collapse
Affiliation(s)
- Eva Schmidt
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Chamali Narangoda
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Wolfgang Nörenberg
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Miyuki Egawa
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Marion Leonhardt
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany. .,Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
30
|
Bai Z, Feng J, Franken GAC, Al’Saadi N, Cai N, Yu AS, Lou L, Komiya Y, Hoenderop JGJ, de Baaij JHF, Yue L, Runnels LW. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol 2021; 19:e3001496. [PMID: 34928937 PMCID: PMC8726484 DOI: 10.1371/journal.pbio.3001496] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2022] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis. Magnesium is essential for cellular life, but how is it homeostatically controlled? This study shows that proteins of the CNNM family bind to the TRPM7 channel to stimulate divalent cation entry into cells, independent of their function in regulating magnesium ion efflux.
Collapse
Affiliation(s)
- Zhiyong Bai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jianlin Feng
- UCONN Health Center, Farmington, New Mexico, United States of America
| | | | - Namariq Al’Saadi
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- University of Misan, Amarah, Iraq
| | - Na Cai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Albert S. Yu
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Liping Lou
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yuko Komiya
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | | | | | - Lixia Yue
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Loren W. Runnels
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Kollewe A, Chubanov V, Tseung FT, Correia L, Schmidt E, Rössig A, Zierler S, Haupt A, Müller CS, Bildl W, Schulte U, Nicke A, Fakler B, Gudermann T. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. eLife 2021; 10:68544. [PMID: 34766907 PMCID: PMC8616561 DOI: 10.7554/elife.68544] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Fong Tsuen Tseung
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Eva Schmidt
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Alexander Haupt
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin Swantje Müller
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Annette Nicke
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Bernd Fakler
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|