1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Nord C, Jones I, Garcia-Maestre M, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in progenitor cells leads to retinal lamination deficits. Dev Dyn 2024; 253:922-939. [PMID: 38546215 DOI: 10.1002/dvdy.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells. RESULTS Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits. CONCLUSIONS This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.
Collapse
Affiliation(s)
- Christoffer Nord
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Mokady D, Charish J, Barretto-Burns P, Grisé KN, Coles BLK, Raab S, Ortin-Martinez A, Müller A, Fasching B, Jain P, Drukker M, van der Kooy D, Steger M. Small-Molecule-Directed Endogenous Regeneration of Visual Function in a Mammalian Retinal Degeneration Model. Int J Mol Sci 2024; 25:1521. [PMID: 38338800 PMCID: PMC10855388 DOI: 10.3390/ijms25031521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Degenerative retinal diseases associated with photoreceptor loss are a leading cause of visual impairment worldwide, with limited treatment options. Phenotypic profiling coupled with medicinal chemistry were used to develop a small molecule with proliferative effects on retinal stem/progenitor cells, as assessed in vitro in a neurosphere assay and in vivo by measuring Msx1-positive ciliary body cell proliferation. The compound was identified as having kinase inhibitory activity and was subjected to cellular pathway analysis in non-retinal human primary cell systems. When tested in a disease-relevant murine model of adult retinal degeneration (MNU-induced retinal degeneration), we observed that four repeat intravitreal injections of the compound improved the thickness of the outer nuclear layer along with the regeneration of the visual function, as measured with ERG, visual acuity, and contrast sensitivity tests. This serves as a proof of concept for the use of a small molecule to promote endogenous regeneration in the eye.
Collapse
Affiliation(s)
- Daphna Mokady
- Endogena Therapeutics, Inc., 661 University Ave, Toronto, ON M5G 0B7, Canada (P.B.-B.)
| | - Jason Charish
- Endogena Therapeutics, Inc., 661 University Ave, Toronto, ON M5G 0B7, Canada (P.B.-B.)
| | | | - Kenneth N. Grisé
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Brenda L. K. Coles
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Susanne Raab
- Endogena Therapeutics, AG, Binzmuehlestrasse 170 d, CH-8050 Zuerich, Switzerland
| | - Arturo Ortin-Martinez
- Endogena Therapeutics, Inc., 661 University Ave, Toronto, ON M5G 0B7, Canada (P.B.-B.)
| | - Alex Müller
- Endogena Therapeutics, AG, Binzmuehlestrasse 170 d, CH-8050 Zuerich, Switzerland
| | - Bernhard Fasching
- Endogena Therapeutics, AG, Binzmuehlestrasse 170 d, CH-8050 Zuerich, Switzerland
| | - Payal Jain
- Endogena Therapeutics, Inc., 661 University Ave, Toronto, ON M5G 0B7, Canada (P.B.-B.)
| | - Micha Drukker
- Endogena Therapeutics, AG, Binzmuehlestrasse 170 d, CH-8050 Zuerich, Switzerland
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Matthias Steger
- Endogena Therapeutics, AG, Binzmuehlestrasse 170 d, CH-8050 Zuerich, Switzerland
| |
Collapse
|
4
|
Abstract
The neural retina of mammals, like most of the rest of the central nervous system, does not regenerate new neurons after they are lost through damage or disease. The ability of nonmammalian vertebrates, like fish and amphibians, is remarkable, and lessons learned over the last 20 years have revealed some of the mechanisms underlying this potential. This knowledge has recently been applied to mammals to develop methods that can stimulate regeneration in mice. In this review, we highlight the progress in this area, and propose a "wish list" of how the clinical implementation of regenerative strategies could be applicable to various human retinal diseases.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Biological Structure, University of Washington School of Medicine, Institute of Stem Cells and Regenerative Medicine, Seattle, Washington 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington School of Medicine, Institute of Stem Cells and Regenerative Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
5
|
Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C. Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Front Cell Dev Biol 2022; 10:887764. [PMID: 35663397 PMCID: PMC9157592 DOI: 10.3389/fcell.2022.887764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Vision commences in the retina with rod and cone photoreceptors that detect and convert light to electrical signals. The irreversible loss of photoreceptors due to neurodegenerative disease leads to visual impairment and blindness. Interventions now in development include transplanting photoreceptors, committed photoreceptor precursors, or retinal pigment epithelial (RPE) cells, with the latter protecting photoreceptors from dying. However, introducing exogenous human cells in a clinical setting faces both regulatory and supply chain hurdles. Recent work has shown that abnormalities in central cell metabolism pathways are an underlying feature of most neurodegenerative disorders, including those in the retina. Reversal of key metabolic alterations to drive retinal repair thus represents a novel strategy to treat vision loss based on cell regeneration. Here, we review the connection between photoreceptor degeneration and alterations in cell metabolism, along with new insights into how metabolic reprogramming drives both retinal development and repair following damage. The potential impact of metabolic reprogramming on retinal regeneration is also discussed, specifically in the context of how metabolic switches drive both retinal development and the activation of retinal glial cells known as Müller glia. Müller glia display latent regenerative properties in teleost fish, however, their capacity to regenerate new photoreceptors has been lost in mammals. Thus, re-activating the regenerative properties of Müller glia in mammals represents an exciting new area that integrates research into developmental cues, central metabolism, disease mechanisms, and glial cell biology. In addition, we discuss this work in relation to the latest insights gleaned from other tissues (brain, muscle) and regenerative species (zebrafish).
Collapse
Affiliation(s)
- Joseph Hanna
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
| | - Robert A. Screaton
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- *Correspondence: Carol Schuurmans,
| |
Collapse
|
6
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|