1
|
Zakaria M, Matta J, Honjol Y, Schupbach D, Mwale F, Harvey E, Merle G. Decoding Cold Therapy Mechanisms of Enhanced Bone Repair through Sensory Receptors and Molecular Pathways. Biomedicines 2024; 12:2045. [PMID: 39335558 PMCID: PMC11429201 DOI: 10.3390/biomedicines12092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Applying cold to a bone injury can aid healing, though its mechanisms are complex. This study investigates how cold therapy impacts bone repair to optimize healing. Cold was applied to a rodent bone model, with the physiological responses analyzed. Vasoconstriction was mediated by an increase in the transient receptor protein channels (TRPs), transient receptor potential ankyrin 1 (TRPA1; p = 0.012), and transient receptor potential melastatin 8 (TRPM8; p < 0.001), within cortical defects, enhancing the sensory response and blood flow regulation. Cold exposure also elevated hypoxia (p < 0.01) and vascular endothelial growth factor expression (VEGF; p < 0.001), promoting angiogenesis, vital for bone regeneration. The increased expression of osteogenic proteins peroxisome proliferator-activated receptor gamma coactivator (PGC-1α; p = 0.039) and RNA-binding motif protein 3 (RBM3; p < 0.008) suggests that the reparative processes have been stimulated. Enhanced osteoblast differentiation and the presence of alkaline phosphatase (ALP) at day 5 (three-fold, p = 0.021) and 10 (two-fold, p < 0.001) were observed, along with increased osteocalcin (OCN) at day 10 (two-fold, p = 0.019), indicating the presence of mature osteoblasts capable of mineralization. These findings highlight cold therapy's multifaceted effects on bone repair, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Matthew Zakaria
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Justin Matta
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Yazan Honjol
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Drew Schupbach
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Lady Davies Institute Jewish General Hospital, 3755 Cote-St. Catherine Road, Room 602, Montréal, QC H3T 1E2, Canada;
| | - Edward Harvey
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada
| | - Geraldine Merle
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Martin LS, Josset-Lamaugarny A, El Jammal T, Ducreux S, Chevalier FP, Fromy B. Aging is associated with impaired triggering of TRPV3-mediated cutaneous vasodilation: a crucial process for local heat exposure. GeroScience 2024; 46:3567-3580. [PMID: 37855862 PMCID: PMC11226586 DOI: 10.1007/s11357-023-00981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Sensing temperature is vitally important to adapt our body to environmental changes. Local warm detection is required to initiate regulation of cutaneous blood flow, which is part of the peripheral thermoregulatory mechanisms, and thus avoid damage to surrounding tissues. The mechanisms mediating cutaneous vasodilation during local heat stress are impaired with aging. However, the impact of aging on the ability of the skin to detect subtle thermal changes is unknown. Among heat-activated cation channels, transient receptor potential vanilloid 3 (TRPV3) is a thermo-sensor predominantly expressed on keratinocytes and involved in local vascular thermoregulatory mechanisms of the skin in young mice. In the present study, using a murine in vivo model of local heat exposure of the skin, we showed that heat-induced vasodilation was reduced in old mice associated with reduced expression of TRPV3 channels. We also found a decrease in expression and activity of TRPV3 channel, as well as reduced TRPV3-dependent adenosine tri-phosphate release in human primary keratinocytes from old donors. This study shows that aging alters the epidermal TRPV3 channels, which might delay the detection of changes in skin temperature, thereby limiting the mechanisms triggered for local vascular thermoregulation in the old skin.
Collapse
Affiliation(s)
- Lisa S Martin
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
| | - Audrey Josset-Lamaugarny
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
| | - Thomas El Jammal
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
- Department of Internal Medicine, University Hospital Lyon Croix-Rousse, Claude Bernard University Lyon 1, Lyon, France
| | - Sylvie Ducreux
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Claude Bernard University Lyon 1, 69500, Bron, France
| | - Fabien P Chevalier
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France
| | - Bérengère Fromy
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69007, Lyon, France.
- Claude Bernard University Lyon 1, 69100, Villeurbanne, France.
| |
Collapse
|
3
|
Gao L, Wang Q, Li MY, Zhang MM, Wang B, Dong TW, Wei PF, Li M. A Mechanism for the Treatment of Cardiovascular and Renal Disease: TRPV1 and TRPA1. J Cardiovasc Pharmacol 2024; 84:10-17. [PMID: 38547512 DOI: 10.1097/fjc.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/24/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. CVD and kidney disease are closely related, with kidney injury increasing CVD mortality. The pathogenesis of cardiovascular and renal diseases involves complex and diverse interactions between multiple extracellular and intracellular signaling molecules, among which transient receptor potential vanilloid 1 (TRPV1)/transient receptor potential ankyrin 1 (TRPA1) channels have received increasing attention. TRPV1 belongs to the vanilloid receptor subtype family of transient receptor potential ion channels, and TRPA1 belongs to the transient receptor potential channel superfamily. TRPV1/TRPA1 are jointly involved in the management of cardiovascular and renal diseases and play important roles in regulating vascular tension, promoting angiogenesis, antifibrosis, anti-inflammation, and antioxidation. The mechanism of TRPV1/TRPA1 is mainly related to regulation of intracellular calcium influx and release of nitric oxide and calcitonin gene-related peptide. Therefore, this study takes the TRPV1/TRPA1 channel as the research object, analyzes and summarizes the process and mechanism of TRPV1/TRPA1 affecting cardiovascular and renal diseases, and lays a foundation for the treatment of cardiorenal diseases.
Collapse
Affiliation(s)
- Lu Gao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
López-Ojeda W, Hurley RA. Cold-Water Immersion: Neurohormesis and Possible Implications for Clinical Neurosciences. J Neuropsychiatry Clin Neurosci 2024; 36:A4-177. [PMID: 38986020 DOI: 10.1176/appi.neuropsych.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C
| |
Collapse
|
5
|
Ochiai K, Otomo Y. Factors influencing deviation from target temperature during targeted temperature management in postcardiac arrest patients. Open Heart 2023; 10:e002459. [PMID: 38101858 PMCID: PMC10729178 DOI: 10.1136/openhrt-2023-002459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Targeted temperature management (TTM) is a recommended therapy for postcardiac arrest patients. Hyperthermia worsened the patient outcome, and overcooling increased the incidence of complications; therefore, a high-quality TTM is required. The target temperature tended to be modified worldwide after the TTM trial in 2013. Our institute modified the target temperature to 35°C in 2017. This study aimed to compare the conventional and modified protocols, assess the relationship between target temperature deviation and patient outcomes, and identify the factors influencing temperature deviation. METHODS This single-centre, retrospective, observational study included adult out-of-hospital cardiac arrest patients who underwent TTM between April 2013 and October 2019. We compared the conventional and modified protocol groups to evaluate the difference in the background characteristics and details on TTM. Subsequently, we assessed the relationship of deviation (>±0.5°C, >37°C, or<33°C) rates from the target temperature with mortality and neurological outcomes. We assessed the factors that influenced the deviation from the target temperature. RESULTS Temperature deviation was frequently observed in the conventional protocol group (p=0.012), and the modified protocol group required higher doses of neuromuscular blocking agents (NMBAs) during TTM (p=0.016). Other background data, completion of protocol, incidence of complications, mortality and rate of favourable neurological outcomes were not significantly different. The performance rate of TTM was significantly higher in the modified group than in the conventional protocol group (p<0.001). Temperature deviation did not have an impact on the outcomes. Age, sex, body surface area, NMBA doses and type of cooling device were the factors influencing temperature deviation. CONCLUSIONS A target temperature of 35°C might be acceptable and easily attainable if shivering of the patients was well controlled using NMBAs. Temperature deviation did not have an impact on outcomes. The identified factors influencing deviation from target temperature might be useful for ensuring a high-quality TTM.
Collapse
Affiliation(s)
- Kanae Ochiai
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Chiba, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
- National Disaster Medical Center, Tachikawa, Tokyo, Japan
| |
Collapse
|
6
|
Kim S. LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials. Front Physiol 2023; 14:1303151. [PMID: 37881693 PMCID: PMC10597623 DOI: 10.3389/fphys.2023.1303151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Although dermatology offers advanced interventions, molecular mechanisms in skin aging remain limited. Competing endogenous RNAs (ceRNAs), a subset of coding or non-coding RNAs, regulate gene expression through miRNA competition. Several ceRNA networks investigated up to now offer insights into skin aging and wound healing. In skin aging, RP11-670E13.6-miR-663a-CDK4/CD6 delays senescence induced by UVB radiation. Meg3-miR-93-5p-epiregulin contributes to UVB-induced inflammatory skin damage. Predicted ceRNA networks reveal UVA-induced photoaging mechanisms. SPRR2C sequesters miRNAs in epidermal aging-associated alteration of calcium gradient. H19-miR-296-5p-IGF2 regulates dermal fibroblast senescence. PVT1-miR-551b-3p-AQP3 influences skin photoaging. And bioinformatics analyses identify critical genes and compounds for skin aging interventions. In skin wound healing, MALAT1-miR-124 aids wound healing by activating the Wnt/β-catenin pathway. Hair follicle MSC-derived H19 promotes wound healing by inhibiting pyroptosis. And the SAN-miR-143-3p-ADD3 network rejuvenates adipose-derived mesenchymal stem cells in wound healing. Thus, ceRNA networks provide valuable insights into the molecular underpinnings of skin aging and wound healing, offering potential therapeutic strategies for further investigation. This comprehensive review serves as a foundational platform for future research endeavors in these crucial areas of dermatology.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
7
|
Xiao X, Feng H, Liao Y, Tang H, Li L, Li K, Hu F. Identification of lncRNA-miRNA-mRNA Regulatory Network and Therapeutic Agents for Skin Aging by Bioinformatics Analysis. Biochem Genet 2023; 61:1606-1624. [PMID: 36719625 DOI: 10.1007/s10528-023-10334-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Skin aging is the most intuitive manifestation of aging. Skin aging inevitably leads to cosmetic and psychological problems, and even diseases. The present study aims to research the pathological and molecular mechanisms underlying skin aging and identify the therapeutic agents for reversing skin aging. Two available gene expression datasets (GSE55118 and GSE72264) for skin aging were downloaded from Gene Expression Omnibus, followed by bioinformatic analyses performed on the datasets. Firstly, 169 crucial mRNAs, 27 crucial miRNAs and 50 crucial lncRNAs closely related to skin aging were identified by weighted gene co-expression network analysis. Then, function Enrichment Analysis performed by Metascape database showed that skin aging involves a variety of biological functions, such as detection of stimulus, response to steroid hormone and water channel activity, regulation of muscle contraction. Next, ten hub genes including AQP4, TRPM8, TBR1, NTSR2, MPPED1, BARHL2, PAX9, CPN1, CES3, and CHGB were screened out by the protein-protein interaction analysis. Next, the "lncRNA-miRNA-mRNA" network and the "lncRNA-miRNA-hub mRNA" network were constructed to explore the competing endogenous RNAs mechanism of skin aging. Finally, ten significant potential small molecules mitigating skin aging were screened using CMAP platform, including tretinoin, pifithrin, selamectin, entinostat, bretazenil, syringic-acid, BRD-K96475865, emedastine, abacavir, and rotenone, and their reliability was verified by molecular docking experiments. The present study provided basis for revealing the molecular mechanism of skin aging and identified the potential candidate drugs for mitigating skin aging.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hua Tang
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lan Li
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Ke Li
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Feng Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
8
|
Stratiievska A, Filippova O, Özpolat T, Byrne D, Bailey SL, Mollica MY, Harris J, Esancy K, Chen J, Dhaka AK, Sniadecki NJ, López JA, Stolla M. Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549670. [PMID: 37502986 PMCID: PMC10370076 DOI: 10.1101/2023.07.19.549670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Platelets are sensitive to temperature changes and akin to sensory neurons, are activated by a decrease in temperature. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this interdisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.
Collapse
Affiliation(s)
| | | | | | - Daire Byrne
- Bloodworks Research Institute, Seattle, WA, USA
| | | | - Molly Y. Mollica
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Jeff Harris
- Bloodworks Research Institute, Seattle, WA, USA
| | - Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, USA
| | - Ajay K. Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Nathan J. Sniadecki
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, USA
| | - José A López
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Moritz Stolla
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Pan-cancer analyses reveal the genetic and pharmacogenomic landscape of transient receptor potential channels. NPJ Genom Med 2022; 7:32. [PMID: 35614079 PMCID: PMC9132893 DOI: 10.1038/s41525-022-00304-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Transient-receptor potential (TRP) channels comprise a diverse family of ion channels, which play important roles in regulation of intracellular calcium. Emerging evidence has revealed the critical roles of TRP channels in tumor development and progression. However, we still lack knowledge about the genetic and pharmacogenomics landscape of TRP genes across cancer types. Here, we comprehensively characterized the genetic and transcriptome alterations of TRP genes across >10,000 patients of 33 cancer types. We revealed prevalent somatic mutations and copy number variation in TRP genes. In particular, mutations located in transmembrane regions of TRP genes were likely to be deleterious mutations (p-values < 0.001). Genetic alterations were correlated with transcriptome dysregulation of TRP genes, and we found that TRPM2, TRPM8, and TPRA1 showed extent dysregulation in cancer. Patients with TRP gene alterations were with significantly higher hypoxia scores, tumor mutation burdens, tumor stages and grades, and poor survival. The alterations of TRP genes were significantly associated with the activity of cancer-related pathways. Moreover, we found that the expression of TRP genes were potentially useful for development of targeted therapies. Our study provided the landscape of genomic and transcriptomic alterations of TPRs across 33 cancer types, which is a comprehensive resource for guiding both mechanistic and therapeutic analyses of the roles of TRP genes in cancer. Identifying the TRP genes with extensive genetic alterations will directly contribute to cancer therapy in the context of predictive, preventive, and personalized medicine.
Collapse
|
10
|
Argunhan F, Brain SD. The Vascular-Dependent and -Independent Actions of Calcitonin Gene-Related Peptide in Cardiovascular Disease. Front Physiol 2022; 13:833645. [PMID: 35283798 PMCID: PMC8914086 DOI: 10.3389/fphys.2022.833645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
The treatment of hypertension and heart failure remains a major challenge to healthcare providers. Despite therapeutic advances, heart failure affects more than 26 million people worldwide and is increasing in prevalence due to an ageing population. Similarly, despite an improvement in blood pressure management, largely due to pharmacological interventions, hypertension remains a silent killer. This is in part due to its ability to contribute to heart failure. Development of novel therapies will likely be at the forefront of future cardiovascular studies to address these unmet needs. Calcitonin gene-related peptide (CGRP) is a 37 amino acid potent vasodilator with positive-ionotropic and -chronotropic effects. It has been reported to have beneficial effects in hypertensive and heart failure patients. Interestingly, changes in plasma CGRP concentration in patients after myocardial infarction, heart failure, and in some forms of hypertension, also support a role for CGRP on hemodynamic functions. Rodent studies have played an important role thus far in delineating mechanisms involved in CGRP-induced cardioprotection. However, due to the short plasma half-life of CGRP, these well documented beneficial effects have often proven to be acute and transient. Recent development of longer lasting CGRP agonists may therefore offer a practical solution to investigating CGRP further in cardiovascular disease in vivo. Furthermore, pre-clinical murine studies have hinted at the prospect of cardioprotective mechanisms of CGRP which is independent of its hypotensive effect. Here, we discuss past and present evidence of vascular-dependent and -independent processes by which CGRP could protect the vasculature and myocardium against cardiovascular dysfunction.
Collapse
|
11
|
Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch 2022; 474:405-420. [PMID: 35157132 PMCID: PMC8924131 DOI: 10.1007/s00424-022-02667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.
Collapse
|
12
|
Kelava L, Ivić I, Pakai E, Fekete K, Maroti P, Told R, Ujfalusi Z, Garami A. Stereolithography 3D Printing of a Heat Exchanger for Advanced Temperature Control in Wire Myography. Polymers (Basel) 2022; 14:polym14030471. [PMID: 35160461 PMCID: PMC8839612 DOI: 10.3390/polym14030471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
We report the additive manufacturing of a heat-exchange device that can be used as a cooling accessory in a wire myograph. Wire myography is used for measuring vasomotor responses in small resistance arteries; however, the commercially available devices are not capable of active cooling. Here, we critically evaluated a transparent resin material, in terms of mechanical, structural, and thermal behavior. Tensile strength tests (67.66 ± 1.31 MPa), Charpy impact strength test (20.70 ± 2.30 kJ/m2), and Shore D hardness measurements (83.0 ± 0.47) underlined the mechanical stability of the material, supported by digital microscopy, which revealed a glass-like structure. Differential scanning calorimetry with thermogravimetry analysis and thermal conductivity measurements showed heat stability until ~250 °C and effective heat insulation. The 3D-printed heat exchanger was tested in thermophysiology experiments measuring the vasomotor responses of rat tail arteries at different temperatures (13, 16, and 36 °C). The heat-exchange device was successfully used as an accessory of the wire myograph system to cool down the experimental chambers and steadily maintain the targeted temperatures. We observed temperature-dependent differences in the vasoconstriction induced by phenylephrine and KCl. In conclusion, the transparent resin material can be used in additive manufacturing of heat-exchange devices for biomedical research, such as wire myography. Our animal experiments underline the importance of temperature-dependent physiological mechanisms, which should be further studied to understand the background of the thermal changes and their consequences.
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Ivan Ivić
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Peter Maroti
- Medical Simulation Education Center, Medical School, University of Pecs, H-7624 Pecs, Hungary
- 3D Printing and Visualization Center, University of Pecs, H-7624 Pecs, Hungary
| | - Roland Told
- Medical Simulation Education Center, Medical School, University of Pecs, H-7624 Pecs, Hungary
- 3D Printing and Visualization Center, University of Pecs, H-7624 Pecs, Hungary
| | - Zoltan Ujfalusi
- Department of Biophysics, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| |
Collapse
|
13
|
Thapa D, Barrett B, Argunhan F, Brain SD. Influence of Cold-TRP Receptors on Cold-Influenced Behaviour. Pharmaceuticals (Basel) 2021; 15:ph15010042. [PMID: 35056099 PMCID: PMC8781072 DOI: 10.3390/ph15010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) channels, TRPA1 and TRPM8, are thermo-receptors that detect cold and cool temperatures and play pivotal roles in mediating the cold-induced vascular response. In this study, we investigated the role of TRPA1 and TRPM8 in the thermoregulatory behavioural responses to environmental cold exposure by measuring core body temperature and locomotor activity using a telemetry device that was surgically implanted in mice. The core body temperature of mice that were cooled at 4 °C over 3 h was increased and this was accompanied by an increase in UCP-1 and TRPM8 level as detected by Western blot. We then established an effective route, by which the TRP antagonists could be administered orally with palatable food. This avoids the physical restraint of mice, which is crucial as that could influence the behavioural results. Using selective pharmacological antagonists A967079 and AMTB for TRPA1 and TRPM8 receptors, respectively, we show that TRPM8, but not TRPA1, plays a direct role in thermoregulation response to whole body cold exposure in the mouse. Additionally, we provide evidence of increased TRPM8 levels after cold exposure which could be a protective response to increase core body temperature to counter cold.
Collapse
|