1
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Jahncke JN, Schnell E, Wright KM. Distinct functional domains of Dystroglycan regulate inhibitory synapse formation and maintenance in cerebellar Purkinje cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610348. [PMID: 39257744 PMCID: PMC11383678 DOI: 10.1101/2024.08.29.610348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dystroglycan is a cell adhesion molecule that localizes to synapses throughout the nervous system. While Dystroglycan is required to maintain inhibitory synapses from cerebellar molecular layer interneurons (MLIs) onto Purkinje cells (PCs) whether initial synaptogenesis during development is dependent on Dystroglycan has not been examined. We show that conditional deletion of Dystroglycan from Purkinje cells prior to synaptogenesis results in impaired MLI:PC synapse formation and function due to reduced presynaptic inputs and abnormal postsynaptic GABAA receptor clustering. Using genetic manipulations that disrupt glycosylation of Dystroglycan or truncate its cytoplasmic domain, we show that Dystroglycan's role in synapse function requires both extracellular and intracellular interactions, whereas synapse formation requires only extracellular interactions. Together, these findings provide molecular insight into the mechanism of inhibitory synapse formation and maintenance in cerebellar cortex.
Collapse
Affiliation(s)
- Jennifer N. Jahncke
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Schnell
- Operative Care Division, Portland VA Health Care System
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Moffa JC, Bland IN, Tooley JR, Kalyanaraman V, Heitmeier M, Creed MC, Copits BA. Cell-Specific Single Viral Vector CRISPR/Cas9 Editing and Genetically Encoded Tool Delivery in the Central and Peripheral Nervous Systems. eNeuro 2024; 11:ENEURO.0438-23.2024. [PMID: 38871457 PMCID: PMC11228695 DOI: 10.1523/eneuro.0438-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
CRISPR/Cas9 gene editing represents an exciting avenue to study genes of unknown function and can be combined with genetically encoded tools such as fluorescent proteins, channelrhodopsins, DREADDs, and various biosensors to more deeply probe the function of these genes in different cell types. However, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 from a genomic locus affords space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three common tools in neuroscience: ChRonos, a channelrhodopsin, for studying synaptic transmission using optogenetics, GCaMP8f for recording Ca2+ transients using photometry, and mCherry for tracing axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens, glutamatergic neurons projecting from the ventral pallidum to the lateral habenula, dopaminergic neurons in the ventral tegmental area, and proprioceptive neurons in the periphery. This flexible approach could help identify and test the function of novel genes affecting synaptic transmission, circuit activity, or morphology with a single viral injection.
Collapse
Affiliation(s)
- Jamie C Moffa
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri 63110
| | - India N Bland
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jessica R Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Division of Biological and Behavioral Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vani Kalyanaraman
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Monique Heitmeier
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Departments of Neuroscience, Psychiatry, and Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
5
|
Trovò L, Kouvaros S, Schwenk J, Fernandez-Fernandez D, Fritzius T, Rem PD, Früh S, Gassmann M, Fakler B, Bischofberger J, Bettler B. Synaptotagmin-11 facilitates assembly of a presynaptic signaling complex in post-Golgi cargo vesicles. EMBO Rep 2024; 25:2610-2634. [PMID: 38698221 PMCID: PMC11169412 DOI: 10.1038/s44319-024-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Collapse
Affiliation(s)
- Luca Trovò
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Simon Früh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Center for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Freiburg, Germany
| | | | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Moffa JC, Bland IN, Tooley JR, Kalyanaraman V, Heitmeier M, Creed MC, Copits BA. Cell specific single viral vector CRISPR/Cas9 editing and genetically encoded tool delivery in the central and peripheral nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561249. [PMID: 37873336 PMCID: PMC10592710 DOI: 10.1101/2023.10.10.561249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene manipulation strategies using germline knockout, conditional knockout, and more recently CRISPR/Cas9 are crucial tools for advancing our understanding of the nervous system. However, traditional gene knockout approaches can be costly and time consuming, may lack cell-type specificity, and can induce germline recombination. Viral gene editing presents and an exciting alternative to more rapidly study genes of unknown function; however, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we have developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 in specific cell types in transgenic mouse lines affords more space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three commonly used tools in neuroscience: ChRonos, a channelrhodopsin, for manipulating synaptic transmission using optogenetics; GCaMP8f for recording Ca2+ transients using fiber photometry, and mCherry for anatomical tracing of axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens (NAc), glutamatergic neurons projecting from the ventral pallidum (VP) to the lateral habenula (LHb), dopaminergic neurons in the ventral tegmental area (VTA), and parvalbumin (PV)-positive proprioceptive neurons in the periphery. This flexible approach should be useful to identify novel genes that affect synaptic transmission, circuit activity, or morphology with a single viral injection.
Collapse
Affiliation(s)
- Jamie C. Moffa
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Washington University Medical Scientist Training Program, Washington University School of Medicine; St. Louis, MO
| | - India N. Bland
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Jessica R. Tooley
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Washington University Division of Biological and Behavioral Sciences, Washington University School of Medicine; St. Louis, MO
| | - Vani Kalyanaraman
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Monique Heitmeier
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
- Departments of Neuroscience, Psychiatry, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO
| |
Collapse
|
7
|
Jun S, Kim M, Park H, Hwang E, Yamamoto Y, Tanaka-Yamamoto K. Organization of Purkinje cell development by neuronal MEGF11 in cerebellar granule cells. Cell Rep 2023; 42:113137. [PMID: 37708022 DOI: 10.1016/j.celrep.2023.113137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
As cerebellar granule cells (GCs) coordinate the formation of regular cerebellar networks during postnatal development, molecules in GCs are expected to be involved. Here, we test the effects of the knockdown (KD) of multiple epidermal growth factor-like domains protein 11 (MEGF11), which is a homolog of proteins mediating astrocytic phagocytosis but is substantially increased at the later developmental stages of GCs on cerebellar development. MEGF11-KD in GCs of developing mice results in abnormal cerebellar structures, including extensively ectopic Purkinje cell (PC) somas, and in impaired motor functions. MEGF11-KD also causes abnormally asynchronous synaptic release from GC axons, parallel fibers, before the appearance of abnormal cerebellar structures. Interestingly, blockade of this abnormal synaptic release restores most of the cerebellar structures. Thus, apart from phagocytic functions of its related homologs in astrocytes, MEGF11 in GCs promotes proper PC development and cerebellar network formation by regulating immature synaptic transmission.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eunmi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
8
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|