1
|
Novikov NM, Gao J, Fokin AI, Rocques N, Chiappetta G, Rysenkova KD, Zea DJ, Polesskaya A, Vinh J, Guerois R, Gautreau AM. NHSL3 controls single and collective cell migration through two distinct mechanisms. Nat Commun 2025; 16:205. [PMID: 39747206 PMCID: PMC11696792 DOI: 10.1038/s41467-024-55647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms. We identify the partner repertoire of each isoform using proteomics and predict direct partners and their binding sites using an AlphaFold2-based pipeline. Rescue with specific isoforms, and lack of rescue when relevant binding sites are mutated, establish that the interaction of a long isoform with MENA/VASP proteins is critical at cell-cell junctions for collective migration, while the interaction of a short one with 14-3-3θ in lamellipodia is critical for single cell migration. Taken together, these results demonstrate that NHSL3 regulates single and collective cell migration through distinct mechanisms.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Artem I Fokin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Rocques
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, Paris, France
| | - Karina D Rysenkova
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Diego Javier Zea
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, Paris, France
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
2
|
Halpin JC, Keating AE. PairK: Pairwise k-mer alignment for quantifying protein motif conservation in disordered regions. Protein Sci 2025; 34:e70004. [PMID: 39720898 DOI: 10.1002/pro.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
Protein-protein interactions are often mediated by a modular peptide recognition domain binding to a short linear motif (SLiM) in the disordered region of another protein. To understand the features of SLiMs that are important for binding and to identify motif instances that are important for biological function, it is useful to examine the evolutionary conservation of motifs across homologous proteins. However, the intrinsically disordered regions (IDRs) in which SLiMs reside evolve rapidly. Consequently, multiple sequence alignment (MSA) of IDRs often misaligns SLiMs and underestimates their conservation. We present PairK (pairwise k-mer alignment), an MSA-free method to align and quantify the relative local conservation of subsequences within an IDR. Lacking a ground truth for conservation, we tested PairK on the task of distinguishing biologically important motif instances from background motifs, under the assumption that biologically important motifs are more conserved. The method outperforms both standard MSA-based conservation scores and a modern LLM-based conservation score predictor. PairK can quantify conservation over wider phylogenetic distances than MSAs, indicating that some SLiMs are more conserved than MSA-based metrics imply. PairK is available as an open-source python package at https://github.com/jacksonh1/pairk. It is designed to be easily adapted for use with other SLiM tools and for diverse applications.
Collapse
Affiliation(s)
| | - Amy E Keating
- Department of Biology, MIT, Cambridge, Massachusetts, USA
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide binding assay reveals recognition determinants and context dependence of short linear motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621084. [PMID: 39553988 PMCID: PMC11565833 DOI: 10.1101/2024.10.30.621084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants, and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method, and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at non-core positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S. Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E. Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Halpin JC, Keating AE. PairK: Pairwise k-mer alignment for quantifying protein motif conservation in disordered regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604860. [PMID: 39091826 PMCID: PMC11291154 DOI: 10.1101/2024.07.23.604860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Protein-protein interactions are often mediated by a modular peptide recognition domain binding to a short linear motif (SLiM) in the disordered region of another protein. The ability to predict domain-SLiM interactions would allow researchers to map protein interaction networks, predict the effects of perturbations to those networks, and develop biologically meaningful hypotheses. Unfortunately, sequence database searches for SLiMs generally yield mostly biologically irrelevant motif matches or false positives. To improve the prediction of novel SLiM interactions, researchers employ filters to discriminate between biologically relevant and improbable motif matches. One promising criterion for identifying biologically relevant SLiMs is the sequence conservation of the motif, exploiting the fact that functional motifs are more likely to be conserved than spurious motif matches. However, the difficulty of aligning disordered regions has significantly hampered the utility of this approach. We present PairK (pairwise k-mer alignment), an MSA-free method to quantify motif conservation in disordered regions. PairK outperforms both standard MSA-based conservation scores and a modern LLM-based conservation score predictor on the task of identifying biologically important motif instances. PairK can quantify conservation over wider phylogenetic distances than MSAs, indicating that SLiMs may be more conserved than is implied by MSA-based metrics. PairK is available as open-source code at https://github.com/jacksonh1/pairk.
Collapse
Affiliation(s)
- Jackson C. Halpin
- MIT Department of Biology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Amy E. Keating
- MIT Department of Biology, 77 Massachusetts Ave., Cambridge, MA 02139
- MIT Department of Biological Engineering, 77 Massachusetts Ave., Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Ave., Cambridge, MA 02139
| |
Collapse
|
6
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin drive filament polymerization and bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592527. [PMID: 38826190 PMCID: PMC11142076 DOI: 10.1101/2024.05.04.592527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Jeanne C. Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Xiao Y, Xia L, Jiang W, Qin J, Zhao L, Li Z, Huang L, Li K, Yu P, Wei L, Jiang X, Chen Z, Yu X. Cardiopulmonary progenitors facilitate cardiac repair via exosomal transfer of miR-27b-3p targeting the SIK1-CREB1 axis. Cell Prolif 2024; 57:e13593. [PMID: 38185757 PMCID: PMC11056695 DOI: 10.1111/cpr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.
Collapse
Affiliation(s)
- Ying‐Ying Xiao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Luo‐Xing Xia
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen‐Jing Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Juan Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ke‐Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Peng‐Jiu Yu
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li Wei
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xue‐Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Xi‐Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Dibyachintan S, Dube AK, Bradley D, Lemieux P, Dionne U, Landry CR. Cryptic genetic variation shapes the fate of gene duplicates in a protein interaction network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581840. [PMID: 38464075 PMCID: PMC10925128 DOI: 10.1101/2024.02.23.581840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Paralogous genes are often redundant for long periods of time before they diverge in function. While their functions are preserved, paralogous proteins can accumulate mutations that, through epistasis, could impact their fate in the future. By quantifying the impact of all single-amino acid substitutions on the binding of two myosin proteins to their interaction partners, we find that the future evolution of these proteins is highly contingent on their regulatory divergence and the mutations that have silently accumulated in their protein binding domains. Differences in the promoter strength of the two paralogs amplify the impact of mutations on binding in the lowly expressed one. While some mutations would be sufficient to non-functionalize one paralog, they would have minimal impact on the other. Our results reveal how functionally equivalent protein domains could be destined to specific fates by regulatory and cryptic coding sequence changes that currently have little to no functional impact.
Collapse
Affiliation(s)
- Soham Dibyachintan
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
| | - Alexandre K Dube
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - David Bradley
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Pascale Lemieux
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
| | - Ugo Dionne
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Current affiliation: Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Christian R Landry
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Parker SS, Ly KT, Grant AD, Sweetland J, Wang AM, Parker JD, Roman MR, Saboda K, Roe DJ, Padi M, Wolgemuth CW, Langlais P, Mouneimne G. EVL and MIM/MTSS1 regulate actin cytoskeletal remodeling to promote dendritic filopodia in neurons. J Cell Biol 2023; 222:e202106081. [PMID: 36828364 PMCID: PMC9998662 DOI: 10.1083/jcb.202106081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/22/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Dendritic spines are the postsynaptic compartment of a neuronal synapse and are critical for synaptic connectivity and plasticity. A developmental precursor to dendritic spines, dendritic filopodia (DF), facilitate synapse formation by sampling the environment for suitable axon partners during neurodevelopment and learning. Despite the significance of the actin cytoskeleton in driving these dynamic protrusions, the actin elongation factors involved are not well characterized. We identified the Ena/VASP protein EVL as uniquely required for the morphogenesis and dynamics of DF. Using a combination of genetic and optogenetic manipulations, we demonstrated that EVL promotes protrusive motility through membrane-direct actin polymerization at DF tips. EVL forms a complex at nascent protrusions and DF tips with MIM/MTSS1, an I-BAR protein important for the initiation of DF. We proposed a model in which EVL cooperates with MIM to coalesce and elongate branched actin filaments, establishing the dynamic lamellipodia-like architecture of DF.
Collapse
Affiliation(s)
- Sara S. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kenneth Tran Ly
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Adam D. Grant
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jillian Sweetland
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley M. Wang
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - James D. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mackenzie R. Roman
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kathylynn Saboda
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Denise J. Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Megha Padi
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Charles W. Wolgemuth
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
- Department of Physics, College of Science, University of Arizona, Tucson, AZ, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
11
|
Aguilar F, Yu S, Grant RA, Swanson S, Ghose D, Su BG, Sarosiek KA, Keating AE. Peptides from human BNIP5 and PXT1 and non-native binders of pro-apoptotic BAK can directly activate or inhibit BAK-mediated membrane permeabilization. Structure 2023; 31:265-281.e7. [PMID: 36706751 PMCID: PMC9992319 DOI: 10.1016/j.str.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023]
Abstract
Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.
Collapse
Affiliation(s)
- Fiona Aguilar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacey Yu
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Program in Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dia Ghose
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristopher A Sarosiek
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Program in Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Thole JF, Waudby CA, Pielak GJ. Disordered proteins mitigate the temperature dependence of site-specific binding free energies. J Biol Chem 2023; 299:102984. [PMID: 36739945 PMCID: PMC10027511 DOI: 10.1016/j.jbc.2023.102984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Biophysical characterization of protein-protein interactions involving disordered proteins is challenging. A common simplification is to measure the thermodynamics and kinetics of disordered site binding using peptides containing only the minimum residues necessary. We should not assume, however, that these few residues tell the whole story. Son of sevenless, a multidomain signaling protein from Drosophila melanogaster, is critical to the mitogen-activated protein kinase pathway, passing an external signal to Ras, which leads to cellular responses. The disordered 55 kDa C-terminal domain of Son of sevenless is an autoinhibitor that blocks guanidine exchange factor activity. Activation requires another protein, Downstream of receptor kinase (Drk), which contains two Src homology 3 domains. Here, we utilized NMR spectroscopy and isothermal titration calorimetry to quantify the thermodynamics and kinetics of the N-terminal Src homology 3 domain binding to the strongest sites incorporated into the flanking disordered sequences. Comparing these results to those for isolated peptides provides information about how the larger domain affects binding. The affinities of sites on the disordered domain are like those of the peptides at low temperatures but less sensitive to temperature. Our results, combined with observations showing that intrinsically disordered proteins become more compact with increasing temperature, suggest a mechanism for this effect.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Molecular and Cellular Biophysics Program, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Gary J Pielak
- Department of Chemistry, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Molecular and Cellular Biophysics Program, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry & Biophysics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Integrative Program for Biological and Genome Sciences, UNC - Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
13
|
Halpin JC, Whitney D, Rigoldi F, Sivaraman V, Singer A, Keating AE. Molecular determinants of TRAF6 binding specificity suggest that native interaction partners are not optimized for affinity. Protein Sci 2022; 31:e4429. [PMID: 36305766 PMCID: PMC9597381 DOI: 10.1002/pro.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
TRAF6 is an adaptor protein involved in signaling pathways that are essential for development and the immune system. It participates in many protein-protein interactions, some of which are mediated by the C-terminal MATH domain, which binds to short peptide segments containing the motif PxExx[FYWHDE], where x is any amino acid. Blocking MATH domain interactions is associated with favorable effects in various disease models. To better define TRAF6 MATH domain binding preferences, we screened a combinatorial library using bacterial cell-surface peptide display. We identified 236 of the best TRAF6-interacting peptides and a set of 1,200 peptides that match the sequence PxE but do not bind TRAF6 MATH. The peptides that were most enriched in the screen bound TRAF6 tighter than previously measured native peptides. To better understand the structural basis for TRAF6 interaction preferences, we built all-atom structural models of the MATH domain in complex with high-affinity binders and nonbinders identified in the screen. We identified favorable interactions for motif features in binders as well as negative design elements distributed across the motif that can disfavor or preclude binding. Searching the human proteome revealed that the most biologically relevant TRAF6 motif matches occupy a different sequence space from the best hits discovered in combinatorial library screening, suggesting that native interactions are not optimized for affinity. Our experimentally determined binding preferences and structural models support the design of peptide-based interaction inhibitors with higher affinities than endogenous TRAF6 ligands.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy E. Keating
- MIT Department of BiologyCambridgeMassachusettsUSA
- MIT Department of Biological EngineeringCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchCambridgeMassachusettsUSA
| |
Collapse
|
14
|
Du W, Liu J, Zeb A, Lin X. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37652-37666. [PMID: 35960813 DOI: 10.1021/acsami.2c06897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, transition metal oxides have been considered as the most promising anode materials due to their high theoretical capacity, low price, and abundant natural reserves. Among them, zinc manganate is used as an electrode material for anodes, whose application is mostly hindered due to its poor ionic/electronic conductivity. In this work, a series of ZnMn2O4 (ZMO) are synthesized by a hydrothermal technique coordinated with a metal-organic framework-based high-temperature calcination process for their application as an anode in lithium-ion batteries (LIBs). Meanwhile, this study systematically explores the influence of carbon doping and the types of organic ligands and oxygen vacancies on the electrochemical properties of the synthesized ZMO. Density functional theory (DFT) calculations and experimental investigations reveal that the introduction of carbon and oxygen vacancies can enhance electronic conductivity, more active sites and faster Li+ adsorption, resulting in better electrochemical performances. As expected, all ZMOs with carbon doping (PMA-ZMO, MI-ZMO, and BDC-ZMO) derived from 1,2,4,5-benzenetetracarboxylic acid, 2-methylimidazole, and 1,4-dicarboxybenzene achieve outstanding electrochemical performance. Meanwhile, the introduction of oxygen vacancies can enhance the electronic conductivity and can significantly reduce the activation energy of Li+ transport, thereby accelerating the Li+ diffusion kinetics in the lithiation/delithiation process. Furthermore, an optimal ZMO anode material synthesized by 2-methylimidazole delivers a high reversible capacity of 1174.7 mA h g-1 after 300 cycles at 0.1 A g-1 and 600 mA h g-1 at 0.5 A g-1 after 300 cycles. After high-rate charge and discharge cycles, the specific capacity rapidly recovers to a value greater than the initial value, which proves the unusual activation and thereby an excellent rate property of the electrode. Hence, we conclude that ZMO provides potential application prospects as an anode electrode material for LIBs.
Collapse
Affiliation(s)
- Wenqing Du
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Jiawei Liu
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Akif Zeb
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Xiaoming Lin
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|