1
|
Potter LR. Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. Endocr Rev 2024; 45:755-771. [PMID: 38713083 PMCID: PMC11405504 DOI: 10.1210/endrev/bnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Torres-Santiago L, Mauras N. Approach to the Peripubertal Patient With Short Stature. J Clin Endocrinol Metab 2024; 109:e1522-e1533. [PMID: 38181434 DOI: 10.1210/clinem/dgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT The assessment and treatment of children with growth retardation is increasingly complex, and due to availability of targeted genetic sequencing, an ever-expanding number of conditions impeding growth are being identified. Among endocrine-related etiologies of short stature amenable to hormonal treatment, defects in the growth hormone (GH)-insulin-like growth factor I axis remain pre-eminent, with a multiplicity of disorders causing decreased secretion or insensitivity to GH action. Sex steroids in puberty increase epiphyseal senescence and eventual growth plate closure. This is mediated mostly via estrogen receptor (ER)α in males and females, effects that can greatly limit time available for growth. EVIDENCE ACQUISITION Extensive literature review through PubMed and other search engines. EVIDENCE SYNTHESIS Therapeutic strategies to be considered in peripubertal and pubertal children with disordered growth are here discussed, including daily and weekly GH, low-dose sex steroids, gonadotropin hormone releasing hormone (GnRH) analogues in combination with GH, aromatase inhibitors (AIs) alone and in combination with GH in boys. When used for at least 2 to 3 years, GnRH analogues combined with GH can result in meaningful increases in height. AIs used with GH permit puberty to progress in boys without hindrance, selectively decreasing estrogen, and resulting in taller height. With more than 20 years of cumulative experience in clinical use of these medications, we discuss the safety profile of these treatments. CONCLUSION The approach of growth retardation in the peripubertal and pubertal years must consider the sex steroid milieu and the tempo of bone acceleration. Treatment of affected children in this period must be individualized.
Collapse
Affiliation(s)
- Lournaris Torres-Santiago
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| |
Collapse
|
3
|
Liu L, Hong Y, Ma C, Zhang F, Li Q, Li B, He H, Zhu J, Wang H, Chen L. Circular RNA Gtdc1 Protects Against Offspring Osteoarthritis Induced by Prenatal Prednisone Exposure by Regulating SRSF1-Fn1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307442. [PMID: 38520084 PMCID: PMC11132075 DOI: 10.1002/advs.202307442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Chondrodysplasia is closely associated with low birth weight and increased susceptibility to osteoarthritis in adulthood. Prenatal prednisone exposure (PPE) can cause low birth weight; however, its effect on offspring cartilage development remains unexplored. Herein, rats are administered clinical doses of prednisone intragastrically on gestational days (GDs) 0-20 and underwent long-distance running during postnatal weeks (PWs) 24-28. Knee cartilage is assayed for quality and related index changes on GD20, PW12, and PW28. In vitro experiments are performed to elucidate the mechanism. PPE decreased cartilage proliferation and matrix synthesis, causing offspring chondrodysplasia. Following long-distance running, the PPE group exhibited more typical osteoarthritis-like changes. Molecular analysis revealed that PPE caused cartilage circRNomics imbalance in which circGtdc1 decreased most significantly and persisted postnatally. Mechanistically, prednisolone reduced circGtdc1 expression and binding with Srsf1 to promote degradation of Srsf1 via K48-linked polyubiquitination. This further inhibited the formation of EDA/B+Fn1 and activation of PI3K/AKT and TGFβ pathways, reducing chondrocyte proliferation and matrix synthesis. Finally, intra-articular injection of offspring with AAV-circGtdc1 ameliorated PPE-induced chondrodysplasia, but this effect is reversed by Srsf1 knockout. Altogether, this study confirms that PPE causes chondrodysplasia and susceptibility to osteoarthritis by altering the circGtdc1-Srsf1-Fn1 axis; in vivo, overexpression of circGtdc1 can represent an effective intervention target for ameliorating PPE-induced chondrodysplasia.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuntian Hong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Chi Ma
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Fan Zhang
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qingxian Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bin Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hangyuan He
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiayong Zhu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacologyWuhan University School of Basic Medical SciencesWuhan430071China
| | - Liaobin Chen
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
4
|
Ichimura A, Miyazaki Y, Nagatomo H, Kawabe T, Nakajima N, Kim GE, Tomizawa M, Okamoto N, Komazaki S, Kakizawa S, Nishi M, Takeshima H. Atypical cell death and insufficient matrix organization in long-bone growth plates from Tric-b-knockout mice. Cell Death Dis 2023; 14:848. [PMID: 38123563 PMCID: PMC10733378 DOI: 10.1038/s41419-023-06285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
TRIC-A and TRIC-B proteins form homotrimeric cation-permeable channels in the endoplasmic reticulum (ER) and nuclear membranes and are thought to contribute to counterionic flux coupled with store Ca2+ release in various cell types. Serious mutations in the TRIC-B (also referred to as TMEM38B) locus cause autosomal recessive osteogenesis imperfecta (OI), which is characterized by insufficient bone mineralization. We have reported that Tric-b-knockout mice can be used as an OI model; Tric-b deficiency deranges ER Ca2+ handling and thus reduces extracellular matrix (ECM) synthesis in osteoblasts, leading to poor mineralization. Here we report irregular cell death and insufficient ECM in long-bone growth plates from Tric-b-knockout embryos. In the knockout growth plate chondrocytes, excess pro-collagen fibers were occasionally accumulated in severely dilated ER elements. Of the major ER stress pathways, activated PERK/eIF2α (PKR-like ER kinase/ eukaryotic initiation factor 2α) signaling seemed to inordinately alter gene expression to induce apoptosis-related proteins including CHOP (CCAAT/enhancer binding protein homologous protein) and caspase 12 in the knockout chondrocytes. Ca2+ imaging detected aberrant Ca2+ handling in the knockout chondrocytes; ER Ca2+ release was impaired, while cytoplasmic Ca2+ level was elevated. Our observations suggest that Tric-b deficiency directs growth plate chondrocytes to pro-apoptotic states by compromising cellular Ca2+-handling and exacerbating ER stress response, leading to impaired ECM synthesis and accidental cell death.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Nagatomo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobuhisa Nakajima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ga Eun Kim
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Okamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Wang X, Li Z, Liu J, Wang C, Bai H, Zhu X, Wang H, Wang Z, Liu H, Wang J. 3D-printed PCL scaffolds with anatomy-inspired bionic stratified structures for the treatment of growth plate injuries. Mater Today Bio 2023; 23:100833. [PMID: 37920293 PMCID: PMC10618519 DOI: 10.1016/j.mtbio.2023.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/27/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
The growth plate is a cartilaginous tissue with three distinct zones. Resident chondrocytes are highly organized in a columnar structure, which is critical for the longitudinal growth of immature long bones. Once injured, the growth plate may potentially be replaced by bony bar formation and, consequently, cause limb abnormalities in children. It is well-known that the essential step in growth plate repair is the remolding of the organized structure of chondrocytes. To achieve this, we prepared an anatomy-inspired bionic Poly(ε-caprolactone) (PCL) scaffold with a stratified structure using three-dimensional (3D) printing technology. The bionic scaffold is engineered by surface modification of NaOH and collagen Ⅰ (COL Ⅰ) to promote cell adhesion. Moreover, chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are loaded in the most suitable ratio of 1:3 for growth plate reconstruction. Based on the anatomical structure of the growth plate, the bionic scaffold is designed to have three regions, which are the small-, medium-, and large-pore-size regions. These pore sizes are used to induce BMSCs to differentiate into similar structures such as the growth plate. Remarkably, the X-ray and histological results also demonstrate that the cell-loaded stratified scaffold can successfully rebuild the structure of the growth plate and reduce limb abnormalities, including limb length discrepancies and angular deformities in vivo. This study provides a potential method of preparing a bioinspired stratified scaffold for the treatment of growth plate injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Jiaqi Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Xiujie Zhu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Hui Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| |
Collapse
|
6
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
7
|
Chen H, Zhang S, Sun Y, Chen J, Yuan K, Zhang Y, Yang X, Lin X, Chen R. Novel pathogenic NPR2 variants in short stature patients and the therapeutic response to rhGH. Orphanet J Rare Dis 2023; 18:221. [PMID: 37501190 PMCID: PMC10375756 DOI: 10.1186/s13023-023-02757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/04/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE Heterozygous loss-of-function variants in the NPR2 gene cause short stature with nonspecific skeletal abnormalities and account for about 2 ~ 6% of idiopathic short stature. This study aimed to analyze and identify pathogenic variants in the NPR2 gene and explore the therapeutic response to recombinant growth hormone (rhGH). METHODS NPR2 was sequenced in three Chinese Han patients with short stature via exome sequencing. In vitro functional experiments, homology modeling and molecular docking analysis of variants were performed to examine putative protein changes and the pathogenicity of the variants. RESULT Three patients received rhGH therapy for two years, and two NPR2 heterozygous variants were identified in three unrelated cases: c.1579 C > T,p.Leu527Phe in patient 1 and c.2842dupC,p.His948Profs*5 in patient 2. Subsequently, a small gene model was constructed, and transcriptional analysis of the synonymous variant (c.2643G > A) was performed in patient 3, which revealed the deletion of exon 17 and the premature formation of a stop codon (p.His840Gln*). Functional studies showed that both NPR2 variants, His948Profs*5 and His840Gln*, failed to produce cGMP in the homozygous state. Furthermore, the Leu527Phe variant of NPR2 was almost unresponsive to the stimulatory effect of ATP on CNP-dependent guanylyl cyclase activity. This loss of response to ATP has not been previously reported. The average age of patients at the start of treatment was 6.5 ± 1.8 years old, and their height increased by 1.59 ± 0.1 standard deviation score after 2 years of treatment. CONCLUSION In this report, two novel variants in NPR2 gene were described. Our findings broaden the genotypic spectrum of NPR2 variants in individuals with short stature and provid insights into the efficacy of rhGH in these patients.
Collapse
Affiliation(s)
- Hong Chen
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Laboratory Center of Fuzhou Children's Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Suping Zhang
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yunteng Sun
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Jiao Chen
- Department of Pediatrics, The Lin'an People's Hospital, Hangzhou, Zhejiang Province, China
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Zhang
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xiaohong Yang
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xiangquan Lin
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Ruimin Chen
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
8
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Roles of Local Soluble Factors in Maintaining the Growth Plate: An Update. Genes (Basel) 2023; 14:genes14030534. [PMID: 36980807 PMCID: PMC10048135 DOI: 10.3390/genes14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The growth plate is a cartilaginous tissue found at the ends of growing long bones, which contributes to the lengthening of bones during development. This unique structure contains at least three distinctive layers, including resting, proliferative, and hypertrophic chondrocyte zones, maintained by a complex regulatory network. Due to its soft tissue nature, the growth plate is the most susceptible tissue of the growing skeleton to injury in childhood. Although most growth plate damage in fractures can heal, some damage can result in growth arrest or disorder, impairing leg length and resulting in deformity. In this review, we re-visit previously established knowledge about the regulatory network that maintains the growth plate and integrate current research displaying the most recent progress. Next, we highlight local secretary factors, such as Wnt, Indian hedgehog (Ihh), and parathyroid hormone-related peptide (PTHrP), and dissect their roles and interactions in maintaining cell function and phenotype in different zones. Lastly, we discuss future research topics that can further our understanding of this unique tissue. Given the unmet need to engineer the growth plate, we also discuss the potential of creating particular patterns of soluble factors and generating them in vitro.
Collapse
|
10
|
Hua J, Huang J, Li G, Lin S, Cui L. Glucocorticoid induced bone disorders in children: Research progress in treatment mechanisms. Front Endocrinol (Lausanne) 2023; 14:1119427. [PMID: 37082116 PMCID: PMC10111257 DOI: 10.3389/fendo.2023.1119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic can lead to impaired bone growth and osteoporosis. The side effects of GC on the skeletal system are particularly serious in growing children, potentially causing growth retardation or even osteoporotic fractures. Children's bone growth is dependent on endochondral ossification of growth plate chondrocytes, and excessive GC can hinder the development of growth plate and longitudinal bone growth. Despite the availability of drugs for treating osteoporosis, they have failed to effectively prevent or treat longitudinal bone growth and development disorders caused by GCs. As of now, there is no specific drug to mitigate these severe side effects. Traditional Chinese Medicine shows potential as an alternative to the current treatments by eliminating the side effects of GC. In summary, this article comprehensively reviews the research frontiers concerning growth and development disorders resulting from supra-physiological levels of GC and discusses the future research and treatment directions for optimizing steroid therapy. This article may also provide theoretical and experimental insight into the research and development of novel drugs to prevent GC-related side effects.
Collapse
Affiliation(s)
- Junying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| |
Collapse
|
11
|
Mazur CM, Castro Andrade CD, Tokavanich N, Sato T, Bruce M, Brooks DJ, Bouxsein ML, Wang JS, Wein MN. Partial prevention of glucocorticoid-induced osteocyte deterioration in young male mice with osteocrin gene therapy. iScience 2022; 25:105019. [PMID: 36105586 PMCID: PMC9464962 DOI: 10.1016/j.isci.2022.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/05/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Glucocorticoid excess suppresses osteocyte remodeling of surrounding bone minerals, causes apoptosis of osteoblasts and osteocytes, and disrupts bone remodeling, eventually, leading to glucocorticoid-induced osteoporosis and bone fragility. Preventing apoptosis and preserving osteocyte morphology could be an effective means of preventing bone loss during glucocorticoid treatment. We hypothesized that osteocrin, which preserves osteocyte viability and morphology in Sp7-deficient mice, could prevent osteocyte death and dysfunction in a glucocorticoid excess model. We used adeno-associated virus (AAV8) to induce osteocrin overexpression in mice one week before implantation with prednisolone or placebo pellets. After 28 days, prednisolone caused the expected reduction in cortical bone thickness and osteocyte canalicular length in control AAV8-treated mice, and these effects were blunted in mice receiving AAV8-osteocrin. Glucocorticoid-induced changes in cortical porosity, trabecular bone mass, and gene expression were not prevented by osteocrin. These findings support a modest therapeutic potential for AAV8-osteocrin in preserving osteocyte morphology during disease.
Collapse
Affiliation(s)
- Courtney M. Mazur
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jialiang S. Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
12
|
Zhou R, Chen Y, Li S, Wei X, Hu W, Tang S, Ding J, Fu W, Zhang H, Chen F, Hao W, Lin Y, Zhu R, Wang K, Dong L, Zhao Y, Feng X, Chen F, Ding C, Hu W. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα-NOX4 axis. Redox Biol 2022; 55:102411. [PMID: 35917680 PMCID: PMC9344030 DOI: 10.1016/j.redox.2022.102411] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
A role for ferroptosis in articular cartilage destruction associated with rheumatoid arthritis (RA) has not been identified. We previously reported transient receptor potential melastatin 7 (TRPM7) expression was correlated with RA cartilage destruction. Herein, we further characterized a role for TRPM7 in chondrocyte ferroptosis. The expression of TRPM7 was found to be elevated in articular chondrocytes derived from adjuvant arthritis (AA) rats, human RA patients, and cultured chondrocytes treated with the ferroptosis inducer, erastin. TRPM7 knockdown or pharmacological inhibition protected primary rat articular chondrocytes and human chondrocytes (C28/I2 cells) from ferroptosis. Moreover, TRPM7 channel activity was demonstrated to contribute to chondrocyte ferroptosis by elevation of intracellular Ca2+. Mechanistically, the PKCα-NOX4 axis was found to respond to stimulation with erastin, which resulted in TRPM7-mediated chondrocyte ferroptosis. Meanwhile, PKCα was shown to directly bind to NOX4, which could be reduced by TRPM7 channel inhibition. Adeno-associated virus 9-mediated TRPM7 silencing or TRPM7 blockade with 2-APB alleviated articular cartilage destruction in AA rats and inhibited chondrocyte ferroptosis. Collectively, both genetic and pharmacological inhibitions of TRPM7 attenuated articular cartilage damage and chondrocyte ferroptosis via the PKCα-NOX4 axis, suggesting that TRPM7-mediated chondrocyte ferroptosis is a promising target for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xin Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Weirong Hu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hailin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ke Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Xiaowen Feng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Feihu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|