1
|
Rançon U, Masquelier T, Cottereau BR. A general model unifying the adaptive, transient and sustained properties of ON and OFF auditory neural responses. PLoS Comput Biol 2024; 20:e1012288. [PMID: 39093852 PMCID: PMC11324186 DOI: 10.1371/journal.pcbi.1012288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Sounds are temporal stimuli decomposed into numerous elementary components by the auditory nervous system. For instance, a temporal to spectro-temporal transformation modelling the frequency decomposition performed by the cochlea is a widely adopted first processing step in today's computational models of auditory neural responses. Similarly, increments and decrements in sound intensity (i.e., of the raw waveform itself or of its spectral bands) constitute critical features of the neural code, with high behavioural significance. However, despite the growing attention of the scientific community on auditory OFF responses, their relationship with transient ON, sustained responses and adaptation remains unclear. In this context, we propose a new general model, based on a pair of linear filters, named AdapTrans, that captures both sustained and transient ON and OFF responses into a unifying and easy to expand framework. We demonstrate that filtering audio cochleagrams with AdapTrans permits to accurately render known properties of neural responses measured in different mammal species such as the dependence of OFF responses on the stimulus fall time and on the preceding sound duration. Furthermore, by integrating our framework into gold standard and state-of-the-art machine learning models that predict neural responses from audio stimuli, following a supervised training on a large compilation of electrophysiology datasets (ready-to-deploy PyTorch models and pre-processed datasets shared publicly), we show that AdapTrans systematically improves the prediction accuracy of estimated responses within different cortical areas of the rat and ferret auditory brain. Together, these results motivate the use of our framework for computational and systems neuroscientists willing to increase the plausibility and performances of their models of audition.
Collapse
Affiliation(s)
- Ulysse Rançon
- CerCo UMR 5549, CNRS – Université Toulouse III, Toulouse, France
| | | | - Benoit R. Cottereau
- CerCo UMR 5549, CNRS – Université Toulouse III, Toulouse, France
- IPAL, CNRS IRL62955, Singapore, Singapore
| |
Collapse
|
2
|
Wadle SL, Ritter TC, Wadle TTX, Hirtz JJ. Topography and Ensemble Activity in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. eNeuro 2024; 11:ENEURO.0396-23.2024. [PMID: 38627066 PMCID: PMC11097631 DOI: 10.1523/eneuro.0396-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is often associated with social communication impairments and specific sound processing deficits, for example, problems in following speech in noisy environments. To investigate underlying neuronal processing defects located in the auditory cortex (AC), we performed two-photon Ca2+ imaging in FMR1 (fragile X messenger ribonucleoprotein 1) knock-out (KO) mice, a model for fragile X syndrome (FXS), the most common cause of hereditary ASD in humans. For primary AC (A1) and the anterior auditory field (AAF), topographic frequency representation was less ordered compared with control animals. We additionally analyzed ensemble AC activity in response to various sounds and found subfield-specific differences. In A1, ensemble correlations were lower in general, while in secondary AC (A2), correlations were higher in response to complex sounds, but not to pure tones. Furthermore, sound specificity of ensemble activity was decreased in AAF. Repeating these experiments 1 week later revealed no major differences regarding representational drift. Nevertheless, we found subfield- and genotype-specific changes in ensemble correlation values between the two times points, hinting at alterations in network stability in FMR1 KO mice. These detailed insights into AC network activity and topography in FMR1 KO mice add to the understanding of auditory processing defects in FXS.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tamara C Ritter
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tatjana T X Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
3
|
Ford AN, Czarny JE, Rogalla MM, Quass GL, Apostolides PF. Auditory Corticofugal Neurons Transmit Auditory and Non-auditory Information During Behavior. J Neurosci 2024; 44:e1190232023. [PMID: 38123993 PMCID: PMC10869159 DOI: 10.1523/jneurosci.1190-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.
Collapse
Affiliation(s)
- Alexander N Ford
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Jordyn E Czarny
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Gunnar L Quass
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Schmitt TTX, Andrea KMA, Wadle SL, Hirtz JJ. Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex. Front Neural Circuits 2023; 17:1210057. [PMID: 37521334 PMCID: PMC10372447 DOI: 10.3389/fncir.2023.1210057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC). This corticocollicular (CC) pathway is involved in processing of complex sounds, auditory-related learning, and defense behavior. Partly due to their location in deep cortical layers, CC neuron population activity patterns within neuronal AC ensembles remain poorly understood. We employed two-photon imaging to record the activity of hundreds of L5 neurons in anesthetized as well as awake animals. CC neurons are broader tuned than other L5 pyramidal neurons and display weaker topographic order in core AC subfields. Network activity analyses revealed stronger clusters of CC neurons compared to non-CC neurons, which respond more reliable and integrate information over larger distances. However, results obtained from secondary auditory cortex (A2) differed considerably. Here CC neurons displayed similar or higher topography, depending on the subset of neurons analyzed. Furthermore, specifically in A2, CC activity clusters formed in response to complex sounds were spatially more restricted compared to other L5 neurons. Our findings indicate distinct network mechanism of CC neurons in analyzing sound properties with pronounced subfield differences, demonstrating that the topography of sound-evoked responses within AC is neuron-type dependent.
Collapse
|
5
|
Luo D, Liu J, Auksztulewicz R, Wing Yip TK, Kanold PO, Schnupp JW. Hierarchical Deviant Processing in Auditory Cortex of Awake Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524413. [PMID: 36711896 PMCID: PMC9882249 DOI: 10.1101/2023.01.18.524413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Detecting patterns, and noticing unexpected pattern changes, in the environment is a vital aspect of sensory processing. Adaptation and prediction error responses are two components of neural processing related to these tasks, and previous studies in the auditory system in rodents show that these two components are partially dissociable in terms of the topography and latency of neural responses to sensory deviants. However, many previous studies have focused on repetitions of single stimuli, such as pure tones, which have limited ecological validity. In this study, we tested whether the auditory cortical activity shows adaptation to repetition of more complex sound patterns (bisyllabic pairs). Specifically, we compared neural responses to violations of sequences based on single stimulus probability only, against responses to more complex violations based on stimulus order. We employed an auditory oddball paradigm and monitored the auditory cortex (ACtx) activity of awake mice (N=8) using wide-field calcium imaging. We found that cortical responses were sensitive both to single stimulus probabilities and to more global stimulus patterns, as mismatch signals were elicited following both substitution deviants and transposition deviants. Notably, A2 area elicited larger mismatch signaling to those deviants than primary ACtx (A1), which suggests a hierarchical gradient of prediction error signaling in the auditory cortex. Such a hierarchical gradient was observed for late but not early peaks of calcium transients to deviants, suggesting that the late part of the deviant response may reflect prediction error signaling in response to more complex sensory pattern violations.
Collapse
|
6
|
Olsen T, Hasenstaub AR. Offset Responses in the Auditory Cortex Show Unique History Dependence. J Neurosci 2022; 42:7370-7385. [PMID: 35999053 PMCID: PMC9525174 DOI: 10.1523/jneurosci.0494-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
Sensory responses typically vary depending on the recent history of sensory experience. This is essential for processes, including adaptation, efficient coding, and change detection. In the auditory cortex (AC), the short-term history dependence of sound-evoked (onset) responses has been well characterized. Yet many AC neurons also respond to sound terminations, and little is known about the history dependence of these "offset" responses, whether the short-term dynamics of onset and offset responses are correlated, or how these properties are distributed among cell types. Here we presented awake male and female mice with repeating noise burst stimuli while recording single-unit activity from primary AC. We identified parvalbumin and somatostatin interneurons through optotagging, and also separated narrow-spiking from broad-spiking units. We found that offset responses are typically less depressive than onset responses, and this result was robust to a variety of stimulus parameters, controls, measurement types, and selection criteria. Whether a cell's onset response facilitates or depresses does not predict whether its offset response facilitates or depresses. Cell types differed in the dynamics of their onset responses, and in the prevalence, but not the dynamics, of their offset responses. Finally, we clustered cells according to spiking responses and found that response clusters were associated with cell type. Each cluster contained cells of several types, but even within a cluster, cells often showed cell type-specific response dynamics. We conclude that onset and offset responses are differentially influenced by recent sound history, and discuss the implications of this for the encoding of ongoing sound stimuli.SIGNIFICANCE STATEMENT Sensory neuron responses depend on stimulus history. This history dependence is crucial for sensory processing, is precisely controlled at individual synapses and circuits, and is adaptive to the specific requirements of different sensory systems. In the auditory cortex, neurons respond to sound cessation as well as to sound itself, but how history dependence is used along this separate, "offset" information stream is unknown. We show that offset responses are more facilitatory than sound responses, even in neurons where sound responses depress. In contrast to sound onset responses, offset responses are absent in many cells, are relatively homogeneous, and show no cell type-specific differences in history dependence. Offset responses thus show unique response dynamics, suggesting their unique functions.
Collapse
Affiliation(s)
- Timothy Olsen
- Coleman Memorial Laboratory
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California 94143
| | - Andrea R Hasenstaub
- Coleman Memorial Laboratory
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
7
|
Anandakumar DB, Liu RC. More than the end: OFF response plasticity as a mnemonic signature of a sound’s behavioral salience. Front Comput Neurosci 2022; 16:974264. [PMID: 36148326 PMCID: PMC9485674 DOI: 10.3389/fncom.2022.974264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
In studying how neural populations in sensory cortex code dynamically varying stimuli to guide behavior, the role of spiking after stimuli have ended has been underappreciated. This is despite growing evidence that such activity can be tuned, experience-and context-dependent and necessary for sensory decisions that play out on a slower timescale. Here we review recent studies, focusing on the auditory modality, demonstrating that this so-called OFF activity can have a more complex temporal structure than the purely phasic firing that has often been interpreted as just marking the end of stimuli. While diverse and still incompletely understood mechanisms are likely involved in generating phasic and tonic OFF firing, more studies point to the continuing post-stimulus activity serving a short-term, stimulus-specific mnemonic function that is enhanced when the stimuli are particularly salient. We summarize these results with a conceptual model highlighting how more neurons within the auditory cortical population fire for longer duration after a sound’s termination during an active behavior and can continue to do so even while passively listening to behaviorally salient stimuli. Overall, these studies increasingly suggest that tonic auditory cortical OFF activity holds an echoic memory of specific, salient sounds to guide behavioral decisions.
Collapse
Affiliation(s)
- Dakshitha B Anandakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
O'Reilly JA, Angsuwatanakul T, Wehrman J. Decoding violated sensory expectations from the auditory cortex of anaesthetised mice: Hierarchical recurrent neural network depicts separate 'danger' and 'safety' units. Eur J Neurosci 2022; 56:4154-4175. [PMID: 35695993 PMCID: PMC9545291 DOI: 10.1111/ejn.15736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The ability to respond appropriately to sensory information received from the external environment is among the most fundamental capabilities of central nervous systems. In the auditory domain, processes underlying this behaviour are studied by measuring auditory‐evoked electrophysiology during sequences of sounds with predetermined regularities. Identifying neural correlates of ensuing auditory novelty responses is supported by research in experimental animals. In the present study, we reanalysed epidural field potential recordings from the auditory cortex of anaesthetised mice during frequency and intensity oddball stimulation. Multivariate pattern analysis (MVPA) and hierarchical recurrent neural network (RNN) modelling were adopted to explore these data with greater resolution than previously considered using conventional methods. Time‐wise and generalised temporal decoding MVPA approaches revealed previously underestimated asymmetry between responses to sound‐level transitions in the intensity oddball paradigm, in contrast with tone frequency changes. After training, the cross‐validated RNN model architecture with four hidden layers produced output waveforms in response to simulated auditory inputs that were strongly correlated with grand‐average auditory‐evoked potential waveforms (r2 > .9). Units in hidden layers were classified based on their temporal response properties and characterised using principal component analysis and sample entropy. These demonstrated spontaneous alpha rhythms, sound onset and offset responses and putative ‘safety’ and ‘danger’ units activated by relatively inconspicuous and salient changes in auditory inputs, respectively. The hypothesised existence of corresponding biological neural sources is naturally derived from this model. If proven, this could have significant implications for prevailing theories of auditory processing.
Collapse
Affiliation(s)
- Jamie A O'Reilly
- College of Biomedical Engineering, Rangsit University, Lak Hok, Thailand
| | | | - Jordan Wehrman
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
9
|
Distinct integration of spectrally complex sounds in mouse primary auditory cortices. Hear Res 2022; 417:108455. [DOI: 10.1016/j.heares.2022.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|