1
|
Medeiros AT, Gratz SJ, Delgado A, Ritt JT, O'Connor-Giles KM. Ca 2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity. eLife 2024; 12:RP88412. [PMID: 39291956 PMCID: PMC11410372 DOI: 10.7554/elife.88412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.
Collapse
Affiliation(s)
- Audrey T Medeiros
- Neuroscience Graduate Training Program, Brown University, Providence, United States
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, United States
| | - Ambar Delgado
- Department of Neuroscience, Brown University, Providence, United States
| | - Jason T Ritt
- Department of Neuroscience, Brown University, Providence, United States
- Carney Institute for Brain Science, Brown University, Providence, United States
| | - Kate M O'Connor-Giles
- Neuroscience Graduate Training Program, Brown University, Providence, United States
- Department of Neuroscience, Brown University, Providence, United States
- Carney Institute for Brain Science, Brown University, Providence, United States
| |
Collapse
|
2
|
Medeiros AT, Gratz S, Delgado A, Ritt J, O’Connor-Giles KM. Ca 2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535290. [PMID: 37034654 PMCID: PMC10081318 DOI: 10.1101/2023.04.02.535290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.
Collapse
Affiliation(s)
- A. T. Medeiros
- Neuroscience Graduate Training Program, Brown University, Providence, RI
| | - S.J. Gratz
- Department of Neuroscience, Brown University, Providence, RI
| | - A. Delgado
- Department of Neuroscience, Brown University, Providence, RI
| | - J.T. Ritt
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| | - Kate M. O’Connor-Giles
- Neuroscience Graduate Training Program, Brown University, Providence, RI
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| |
Collapse
|
3
|
Crane AB, Jetti SK, Littleton JT. A stochastic RNA editing process targets a limited number of sites in individual Drosophila glutamatergic motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594696. [PMID: 38798345 PMCID: PMC11118563 DOI: 10.1101/2024.05.17.594696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
RNA editing is a post-transcriptional source of protein diversity and occurs across the animal kingdom. Given the complete profile of mRNA targets and their editing rate in individual cells is unclear, we analyzed single cell RNA transcriptomes from Drosophila larval tonic and phasic glutamatergic motoneuron subtypes to determine the most highly edited targets and identify cell-type specific editing. From ∼15,000 genes encoded in the genome, 316 high confidence A-to-I canonical RNA edit sites were identified, with 102 causing missense amino acid changes in proteins regulating membrane excitability, synaptic transmission, and cellular function. Some sites showed 100% editing in single neurons as observed with mRNAs encoding mammalian AMPA receptors. However, most sites were edited at lower levels and generated variable expression of edited and unedited mRNAs within individual neurons. Together, these data provide insights into how the RNA editing landscape alters protein function to modulate the properties of two well-characterized neuronal populations in Drosophila .
Collapse
|
4
|
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst TW, Groffen AJ, van Weering JRT, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nat Commun 2024; 15:2652. [PMID: 38531902 PMCID: PMC10965968 DOI: 10.1038/s41467-024-46828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Avinash Kumar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zicheng Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Torben W van Voorst
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular logic of synaptic diversity between Drosophila tonic and phasic motoneurons. Neuron 2023; 111:3554-3569.e7. [PMID: 37611584 DOI: 10.1016/j.neuron.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features are poorly understood. To identify molecular pathways that contribute to synaptic diversity, single-neuron Patch-seq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated that synaptic active zones in phasic motoneurons are more compact and display enhanced Ca2+ influx compared with their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications, and intracellular Ca2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Gruden MA, Ratmirov AM, Storozheva ZI, Sewell RDE. Analysis of NAPA Gene Expression in Brain Structures of Wistar Rats during the Formation of Long-Term Spatial Memory and Physical Activity under Stress Situation. Bull Exp Biol Med 2023; 175:810-813. [PMID: 37979021 DOI: 10.1007/s10517-023-05952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 11/19/2023]
Abstract
In the cerebellum, hippocampus, and prefrontal cortex of mature male Wistar rats with trained spatial navigational skill in the Morris water maze, the transcriptional activity the NAPA gene that regulates the transport and secretion of synaptic vesicles, release of neurotransmitters, and protein degradation was determined by real-time PCR. Animals subjected to forced swimming in a time-matched regime (active control) and naïve rats were used as the comparison groups. Suppression of NAPA gene activity was found in the hippocampus and cerebellum of the active control group, while navigation skill training led to a significant increase in gene expression in all brain structures under study. The findings suggest the existence of specific mechanisms regulating NAPA gene activity during the formation of spatial memory and adaptive behavior under stress conditions.
Collapse
Affiliation(s)
- M A Gruden
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - A M Ratmirov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Z I Storozheva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - R D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Subkhangulova A, Gonzalez-Lozano MA, Groffen AJA, van Weering JRT, Smit AB, Toonen RF, Verhage M. Tomosyn affects dense core vesicle composition but not exocytosis in mammalian neurons. eLife 2023; 12:e85561. [PMID: 37695731 PMCID: PMC10495110 DOI: 10.7554/elife.85561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.
Collapse
Affiliation(s)
- Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Alexander JA Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| | - Jan RT van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) AmsterdamAmsterdamNetherlands
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center (UMC)AmsterdamNetherlands
| |
Collapse
|
8
|
He K, Han Y, Li X, Hernandez RX, Riboul DV, Feghhi T, Justs KA, Mahneva O, Perry S, Macleod GT, Dickman D. Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons. J Neurosci 2023; 43:4598-4611. [PMID: 37221096 PMCID: PMC10286941 DOI: 10.1523/jneurosci.0046-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant "tonic" rate, while others fire in bursts, a "phasic" pattern. Synapses formed by tonic versus phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge toward illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At the Drosophila neuromuscular junction, most muscle fibers are coinnervated by two motor neurons: the tonic "MN-Ib" and phasic "MN-Is." Here, we used selective expression of a newly developed botulinum neurotoxin transgene to silence tonic or phasic motor neurons in Drosophila larvae of either sex. This approach highlighted major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+ imaging demonstrated ∼2-fold greater Ca2+ influx at phasic neuron release sites relative to tonic, along with an enhanced synaptic vesicle coupling. Finally, confocal and super-resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+ channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+ influx collaborate to differentially tune glutamate release at tonic versus phasic synaptic subtypes.SIGNIFICANCE STATEMENT "Tonic" and "phasic" neuronal subtypes, based on differential firing properties, are common across many nervous systems. Using a recently developed approach to selectively silence transmission from one of these two neurons, we reveal specialized synaptic functional and structural properties that distinguish these specialized neurons. This study provides important insights into how input-specific synaptic diversity is achieved, which could have implications for neurologic disorders that involve changes in synaptic function.
Collapse
Affiliation(s)
- Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
- USC Neuroscience Graduate Program, Los Angeles, California 90089
| | - Roberto X Hernandez
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
- International Max Planck Research School for Brain and Behavior, Jupiter, Florida 33458
| | - Danielle V Riboul
- Integrative Biology Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Touhid Feghhi
- Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431
| | - Karlis A Justs
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olena Mahneva
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| | - Gregory T Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, Florida 33458
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
9
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
10
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular Logic of Synaptic Diversity Between Drosophila Tonic and Phasic Motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524447. [PMID: 36711745 PMCID: PMC9882338 DOI: 10.1101/2023.01.17.524447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features is poorly understood. To identify molecular pathways that contribute to synaptic diversity, single neuron PatchSeq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated synaptic active zones in phasic motoneurons are more compact and display enhanced Ca 2+ influx compared to their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications and intracellular Ca 2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
11
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
12
|
Armstrong NS, Frank CA. The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction. Front Synaptic Neurosci 2023; 14:1033743. [PMID: 36685082 PMCID: PMC9846150 DOI: 10.3389/fnsyn.2022.1033743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The ability of synapses to maintain physiological levels of evoked neurotransmission is essential for neuronal stability. A variety of perturbations can disrupt neurotransmission, but synapses often compensate for disruptions and work to stabilize activity levels, using forms of homeostatic synaptic plasticity. Presynaptic homeostatic potentiation (PHP) is one such mechanism. PHP is expressed at the Drosophila melanogaster larval neuromuscular junction (NMJ) synapse, as well as other NMJs. In PHP, presynaptic neurotransmitter release increases to offset the effects of impairing muscle transmitter receptors. Prior Drosophila work has studied PHP using different ways to perturb muscle receptor function-either acutely (using pharmacology) or chronically (using genetics). Some of our prior data suggested that cytoplasmic calcium signaling was important for expression of PHP after genetic impairment of glutamate receptors. Here we followed up on that observation. Methods: We used a combination of transgenic Drosophila RNA interference and overexpression lines, along with NMJ electrophysiology, synapse imaging, and pharmacology to test if regulators of the calcium/calmodulin-dependent protein phosphatase calcineurin are necessary for the normal expression of PHP. Results: We found that either pre- or postsynaptic dysregulation of a Drosophila gene regulating calcineurin, sarah (sra), blocks PHP. Tissue-specific manipulations showed that either increases or decreases in sra expression are detrimental to PHP. Additionally, pharmacologically and genetically induced forms of expression of PHP are functionally separable depending entirely upon which sra genetic manipulation is used. Surprisingly, dual-tissue pre- and postsynaptic sra knockdown or overexpression can ameliorate PHP blocks revealed in single-tissue experiments. Pharmacological and genetic inhibition of calcineurin corroborated this latter finding. Discussion: Our results suggest tight calcineurin regulation is needed across multiple tissue types to stabilize peripheral synaptic outputs.
Collapse
Affiliation(s)
- Noah S. Armstrong
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States,*Correspondence: C. Andrew Frank
| |
Collapse
|
13
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Chow CH, Huang M, Sugita S. The Role of Tomosyn in the Regulation of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:233-254. [PMID: 37615869 DOI: 10.1007/978-3-031-34229-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in synaptic vesicle (SV) exocytosis. These proteins include the vesicle-associated SNARE protein (v-SNARE) synaptobrevin and the target membrane-associated SNARE proteins (t-SNAREs) syntaxin and SNAP-25. Together, these proteins drive membrane fusion between synaptic vesicles (SV) and the presynaptic plasma membrane to generate SV exocytosis. In the presynaptic active zone, various proteins may either enhance or inhibit SV exocytosis by acting on the SNAREs. Among the inhibitory proteins, tomosyn, a syntaxin-binding protein, is of particular importance because it plays a critical and evolutionarily conserved role in controlling synaptic transmission. In this chapter, we describe how tomosyn was discovered, how it interacts with SNAREs and other presynaptic regulatory proteins to regulate SV exocytosis and synaptic plasticity, and how its various domains contribute to its synaptic functions.
Collapse
Affiliation(s)
- Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Han Y, Chien C, Goel P, He K, Pinales C, Buser C, Dickman D. Botulinum neurotoxin accurately separates tonic vs. phasic transmission and reveals heterosynaptic plasticity rules in Drosophila. eLife 2022; 11:e77924. [PMID: 35993544 PMCID: PMC9439677 DOI: 10.7554/elife.77924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like Is and weak tonic-like Ib, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs. phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Chun Chien
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Pragya Goel
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Kaikai He
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | | | | | - Dion Dickman
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|