1
|
Piette C, Tin SNW, Liège AD, Bloch-Queyrat C, Degos B, Venance L, Touboul J. Deep Brain Stimulation restores information processing in parkinsonian cortical networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.25.24310748. [PMID: 39252923 PMCID: PMC11383511 DOI: 10.1101/2024.08.25.24310748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with alterations of neural activity and information processing primarily in the basal ganglia and cerebral cortex. Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) is the most effective therapy when patients experience levodopa-induced motor complications. A growing body of evidence points towards a cortical effect of STN-DBS, restoring key electrophysiological markers, such as excessive beta band oscillations, commonly observed in PD. However, the mechanisms of STN-DBS remain elusive. Here, we aim to better characterize the cortical substrates underlying STN-DBS-induced improvement in motor symptoms. We recorded electroencephalograms (EEG) from PD patients and found that, although apparent EEG features were not different with or without therapy, EEG signals could more accurately predict limb movements under STN-DBS. To understand the origins of this enhanced information transmission under STN-DBS in the human EEG data, we investigated the information capacity and dynamics of a variety of computational models of cortical networks. The extent of improvement in decoding accuracy of complex naturalistic inputs under STN-DBS depended on the synaptic parameters of the network as well as its excitability and synchronization levels. Additionally, decoding accuracy could be optimized by adjusting STN-DBS parameters. Altogether, this work draws a comprehensive link between known alterations in cortical activity and the degradation of information processing capacity, as well as its restoration under DBS. These results also offer new perspectives for optimizing STN-DBS parameters based on clinically accessible measures of cortical information processing capacity.
Collapse
Affiliation(s)
- Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, MA Waltham, USA
| | - Sophie Ng Wing Tin
- Service de Physiologie, Explorations Fonctionnelles et Médecine du Sport, Assistance Publique-Hôpitaux de Paris (AP-HP), Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
- Inserm UMR 1272, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Astrid De Liège
- Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Coralie Bloch-Queyrat
- Department of Clinical Research, Avicenne University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 93009, Bobigny, France
| | - Bertrand Degos
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
- Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, 93009 Bobigny, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, PSL University, 75005 Paris, France
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, MA Waltham, USA
| |
Collapse
|
2
|
陈 衍, 张 喆, 王 帆, 丁 鹏, 赵 磊, 伏 云. [An emerging discipline: brain-computer interfaces medicine]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:641-649. [PMID: 39218588 PMCID: PMC11366471 DOI: 10.7507/1001-5515.202310028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/24/2024] [Indexed: 09/04/2024]
Abstract
With the development of brain-computer interface (BCI) technology and its translational application in clinical medicine, BCI medicine has emerged, ushering in profound changes to the practice of medicine, while also bringing forth a series of ethical issues related to BCI medicine. BCI medicine is progressively emerging as a new disciplinary focus, yet to date, there has been limited literature discussing it. Therefore, this paper focuses on BCI medicine, firstly providing an overview of the main potential medical applications of BCI technology. It then defines the discipline, outlines its objectives, methodologies, potential efficacy, and associated translational medical research. Additionally, it discusses the ethics associated with BCI medicine, and introduces the standardized operational procedures for BCI medical applications and the methods for evaluating the efficacy of BCI medical applications. Finally, it anticipates the challenges and future directions of BCI medicine. In the future, BCI medicine may become a new academic discipline or major in higher education. In summary, this article is hoped to provide thoughts and references for the development of the discipline of BCI medicine.
Collapse
Affiliation(s)
- 衍肖 陈
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 喆 张
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 帆 王
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 鹏 丁
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 磊 赵
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 云发 伏
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Kim J, Hong J, Park K, Lee S, Hoang AT, Pak S, Zhao H, Ji S, Yang S, Chung CK, Yang S, Ahn JH. Injectable 2D Material-Based Sensor Array for Minimally Invasive Neural Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400261. [PMID: 38741451 DOI: 10.1002/adma.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Intracranial implants for diagnosis and treatment of brain diseases have been developed over the past few decades. However, the platform of conventional implantable devices still relies on invasive probes and bulky sensors in conjunction with large-area craniotomy and provides only limited biometric information. Here, an implantable multi-modal sensor array that can be injected through a small hole in the skull and inherently spread out for conformal contact with the cortical surface is reported. The injectable sensor array, composed of graphene multi-channel electrodes for neural recording and electrical stimulation and MoS2-based sensors for monitoring intracranial temperature and pressure, is designed based on a mesh structure whose elastic restoring force enables the contracted device to spread out. It is demonstrated that the sensor array injected into a rabbit's head can detect epileptic discharges on the surface of the cortex and mitigate it by electrical stimulation while monitoring both intracranial temperature and pressure. This method provides good potential for implanting a variety of functional devices via minimally invasive surgery.
Collapse
Affiliation(s)
- Jejung Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungtai Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sangwon Lee
- gBrain Inc., Incheon, 21984, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Huilin Zhao
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungchil Yang
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sunggu Yang
- gBrain Inc., Incheon, 21984, Republic of Korea
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Yin Z, Yu H, Yuan T, Smyth C, Anjum MF, Zhu G, Ma R, Xu Y, An Q, Gan Y, Merk T, Qin G, Xie H, Zhang N, Wang C, Jiang Y, Meng F, Yang A, Neumann WJ, Starr P, Little S, Li L, Zhang J. Generalized sleep decoding with basal ganglia signals in multiple movement disorders. NPJ Digit Med 2024; 7:122. [PMID: 38729977 PMCID: PMC11087561 DOI: 10.1038/s41746-024-01115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany.
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Clay Smyth
- Department of Bioengineering, University of California, San Francisco, UCSF Byers Hall Box 2520, 1700 Fourth St Ste 203, San Francisco, CA, 94143, USA
| | - Md Fahim Anjum
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Philip Starr
- Department of Neurosurgery, University of California, San Francisco, Eighth Floor, 400 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA.
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
5
|
Cavallo A, Neumann WJ. Dopaminergic reinforcement in the motor system: Implications for Parkinson's disease and deep brain stimulation. Eur J Neurosci 2024; 59:457-472. [PMID: 38178558 DOI: 10.1111/ejn.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024]
Abstract
Millions of people suffer from dopamine-related disorders spanning disturbances in movement, cognition and emotion. These changes are often attributed to changes in striatal dopamine function. Thus, understanding how dopamine signalling in the striatum and basal ganglia shapes human behaviour is fundamental to advancing the treatment of affected patients. Dopaminergic neurons innervate large-scale brain networks, and accordingly, many different roles for dopamine signals have been proposed, such as invigoration of movement and tracking of reward contingencies. The canonical circuit architecture of cortico-striatal loops sparks the question, of whether dopamine signals in the basal ganglia serve an overarching computational principle. Such a holistic understanding of dopamine functioning could provide new insights into symptom generation in psychiatry to neurology. Here, we review the perspective that dopamine could bidirectionally control neural population dynamics, increasing or decreasing their strength and likelihood to reoccur in the future, a process previously termed neural reinforcement. We outline how the basal ganglia pathways could drive strengthening and weakening of circuit dynamics and discuss the implication of this hypothesis on the understanding of motor signs of Parkinson's disease (PD), the most frequent dopaminergic disorder. We propose that loss of dopamine in PD may lead to a pathological brain state where repetition of neural activity leads to weakening and instability, possibly explanatory for the fact that movement in PD deteriorates with repetition. Finally, we speculate on how therapeutic interventions such as deep brain stimulation may be able to reinstate reinforcement signals and thereby improve treatment strategies for PD in the future.
Collapse
Affiliation(s)
- Alessia Cavallo
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Germann J, Gouveia FV, Beyn ME, Elias GJB, Lozano AM. Computational Neurosurgery in Deep Brain Stimulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:435-451. [PMID: 39523281 DOI: 10.1007/978-3-031-64892-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Computational methods and technologies are critical for neurosurgery in general and in deep brain stimulation (DBS) in particular. They increasingly inform every aspect of clinical DBS therapy, from presurgical planning and hardware implantation to postoperative adjustment of stimulation parameters. Computational methods also occupy a prominent position within the DBS research sphere, where they facilitate efforts to better understand DBS' underlying mechanisms and optimize and individualize its delivery. This chapter provides a high-level overview of the various computational tools and methods that have been applied to DBS. First, we discuss the invaluable contribution of computational neuroimaging (primarily magnetic resonance imaging) to DBS, targeting and the role of postoperative methods of image analysis-specifically, electrode localization, volume of activated tissue modeling, and sweet-spot mapping-in precisely localizing DBS' targets in the brain and discerning optimal treatment loci. We then address the growing field of connectomics, which leverages specific magnetic resonance imaging (MRI) sequences and post-acquisition processing algorithms to explore how DBS operates at the level of brain-wide networks. Next, the search for electrophysiological and imaging-based biomarkers of optimal DBS therapy is explored. We lastly touch on the incipient field of spatial characterization analysis and discuss the ongoing development of adaptive, closed-loop DBS systems.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | | | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
7
|
Neumann WJ. Cortical brain signals improve decoding of movement and tremor for clinical brain computer interfaces. Clin Neurophysiol 2024; 157:143-145. [PMID: 38097414 DOI: 10.1016/j.clinph.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Todorov D, Schnitzler A, Hirschmann J. Parkinsonian rest tremor can be distinguished from voluntary hand movements based on subthalamic and cortical activity. Clin Neurophysiol 2024; 157:146-155. [PMID: 38030516 DOI: 10.1016/j.clinph.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To distinguish Parkinsonian rest tremor and different voluntary hand movements by analyzing brain activity. METHODS We re-analyzed magnetoencephalography and local field potential recordings from the subthalamic nucleus of six patients with Parkinson's disease. Data were obtained after withdrawal from dopaminergic medication (Med Off) and after administration of levodopa (Med On). Using gradient-boosted tree learning, we classified epochs as tremor, fist-clenching, forearm extension or tremor-free rest. RESULTS Subthalamic activity alone was insufficient for distinguishing the four different motor states (balanced accuracy mean: 38%, std: 7%). The combination of cortical and subthalamic features, in contrast, allowed for a much more accurate classification (balanced accuracy mean: 75%, std: 17%). Adding a single cortical area improved balanced accuracy by 17% on average, as compared to classification based on subthalamic activity alone. In most patients, the most informative cortical areas were sensorimotor cortical regions. Decoding performance was similar in Med On and Med Off. CONCLUSIONS Electrophysiological recordings allow for distinguishing several motor states, provided that cortical signals are monitored in addition to subthalamic activity. SIGNIFICANCE By combining cortical recordings, subcortical recordings and machine learning, adaptive deep brain stimulation systems might be able to detect tremor specifically and to respond adequately to several motor states.
Collapse
Affiliation(s)
- Dmitrii Todorov
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Centre de Recherche en Neurosciences de Lyon - Inserm U1028, 69675 Bron, France; Centre de Recerca Matemática, Campus UAB edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Department of Neurology Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
9
|
He S, Baig F, Merla A, Torrecillos F, Perera A, Wiest C, Debarros J, Benjaber M, Hart MG, Ricciardi L, Morgante F, Hasegawa H, Samuel M, Edwards M, Denison T, Pogosyan A, Ashkan K, Pereira E, Tan H. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson's disease. Brain 2023; 146:5015-5030. [PMID: 37433037 PMCID: PMC10690014 DOI: 10.1093/brain/awad233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.
Collapse
Affiliation(s)
- Shenghong He
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fahd Baig
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Anca Merla
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Andrea Perera
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jean Debarros
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michael G Hart
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Lucia Ricciardi
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Francesca Morgante
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Michael Samuel
- Department of Neurology, King’s College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Mark Edwards
- Department of Clinical and Basic Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Erlick Pereira
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
10
|
Wilkins KB, Melbourne JA, Akella P, Bronte-Stewart HM. Unraveling the complexities of programming neural adaptive deep brain stimulation in Parkinson's disease. Front Hum Neurosci 2023; 17:1310393. [PMID: 38094147 PMCID: PMC10716917 DOI: 10.3389/fnhum.2023.1310393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Over the past three decades, deep brain stimulation (DBS) for Parkinson's disease (PD) has been applied in a continuous open loop fashion, unresponsive to changes in a given patient's state or symptoms over the course of a day. Advances in recent neurostimulator technology enable the possibility for closed loop adaptive DBS (aDBS) for PD as a treatment option in the near future in which stimulation adjusts in a demand-based manner. Although aDBS offers great clinical potential for treatment of motor symptoms, it also brings with it the need for better understanding how to implement it in order to maximize its benefits. In this perspective, we outline considerations for programing several key parameters for aDBS based on our experience across several aDBS-capable research neurostimulators. At its core, aDBS hinges on successful identification of relevant biomarkers that can be measured reliably in real-time working in cohesion with a control policy that governs stimulation adaption. However, auxiliary parameters such as the window in which stimulation is allowed to adapt, as well as the rate it changes, can be just as impactful on performance and vary depending on the control policy and patient. A standardize protocol for programming aDBS will be crucial to ensuring its effective application in clinical practice.
Collapse
Affiliation(s)
- Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jillian A. Melbourne
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Pranav Akella
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Bok I, Vareberg A, Gokhale Y, Bhatt S, Masterson E, Phillips J, Zhu T, Ren X, Hai A. Wireless agents for brain recording and stimulation modalities. Bioelectron Med 2023; 9:20. [PMID: 37726851 PMCID: PMC10510192 DOI: 10.1186/s42234-023-00122-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Adam Vareberg
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Yash Gokhale
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Suyash Bhatt
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Emily Masterson
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Jack Phillips
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
| | - Tianxiang Zhu
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Xiaoxuan Ren
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA.
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
12
|
Merk T, Köhler R, Peterson V, Lyra L, Vanhoecke J, Chikermane M, Binns T, Li N, Walton A, Bush A, Sisterson N, Busch J, Lofredi R, Habets J, Huebl J, Zhu G, Yin Z, Zhao B, Merkl A, Bajbouj M, Krause P, Faust K, Schneider GH, Horn A, Zhang J, Kühn A, Richardson RM, Neumann WJ. Invasive neurophysiology and whole brain connectomics for neural decoding in patients with brain implants. RESEARCH SQUARE 2023:rs.3.rs-3212709. [PMID: 37790428 PMCID: PMC10543023 DOI: 10.21203/rs.3.rs-3212709/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Brain computer interfaces (BCI) provide unprecedented spatiotemporal precision that will enable significant expansion in how numerous brain disorders are treated. Decoding dynamic patient states from brain signals with machine learning is required to leverage this precision, but a standardized framework for identifying and advancing novel clinical BCI approaches does not exist. Here, we developed a platform that integrates brain signal decoding with connectomics and demonstrate its utility across 123 hours of invasively recorded brain data from 73 neurosurgical patients treated for movement disorders, depression and epilepsy. First, we introduce connectomics-informed movement decoders that generalize across cohorts with Parkinson's disease and epilepsy from the US, Europe and China. Next, we reveal network targets for emotion decoding in left prefrontal and cingulate circuits in DBS patients with major depression. Finally, we showcase opportunities to improve seizure detection in responsive neurostimulation for epilepsy. Our platform provides rapid, high-accuracy decoding for precision medicine approaches that can dynamically adapt neuromodulation therapies in response to the individual needs of patients.
Collapse
|
13
|
Yin Z, Ma R, An Q, Xu Y, Gan Y, Zhu G, Jiang Y, Zhang N, Yang A, Meng F, Kühn AA, Bergman H, Neumann WJ, Zhang J. Pathological pallidal beta activity in Parkinson's disease is sustained during sleep and associated with sleep disturbance. Nat Commun 2023; 14:5434. [PMID: 37669927 PMCID: PMC10480217 DOI: 10.1038/s41467-023-41128-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
- Exzellenzcluster - NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology (Physiology), Institute of Medical Research - Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
14
|
Rodriguez F, He S, Tan H. The potential of convolutional neural networks for identifying neural states based on electrophysiological signals: experiments on synthetic and real patient data. Front Hum Neurosci 2023; 17:1134599. [PMID: 37333834 PMCID: PMC10272439 DOI: 10.3389/fnhum.2023.1134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Processing incoming neural oscillatory signals in real-time and decoding from them relevant behavioral or pathological states is often required for adaptive Deep Brain Stimulation (aDBS) and other brain-computer interface (BCI) applications. Most current approaches rely on first extracting a set of predefined features, such as the power in canonical frequency bands or various time-domain features, and then training machine learning systems that use those predefined features as inputs and infer what the underlying brain state is at each given time point. However, whether this algorithmic approach is best suited to extract all available information contained within the neural waveforms remains an open question. Here, we aim to explore different algorithmic approaches in terms of their potential to yield improvements in decoding performance based on neural activity such as measured through local field potentials (LFPs) recordings or electroencephalography (EEG). In particular, we aim to explore the potential of end-to-end convolutional neural networks, and compare this approach with other machine learning methods that are based on extracting predefined feature sets. To this end, we implement and train a number of machine learning models, based either on manually constructed features or, in the case of deep learning-based models, on features directly learnt from the data. We benchmark these models on the task of identifying neural states using simulated data, which incorporates waveform features previously linked to physiological and pathological functions. We then assess the performance of these models in decoding movements based on local field potentials recorded from the motor thalamus of patients with essential tremor. Our findings, derived from both simulated and real patient data, suggest that end-to-end deep learning-based methods may surpass feature-based approaches, particularly when the relevant patterns within the waveform data are either unknown, difficult to quantify, or when there may be, from the point of view of the predefined feature extraction pipeline, unidentified features that could contribute to decoding performance. The methodologies proposed in this study might hold potential for application in adaptive deep brain stimulation (aDBS) and other brain-computer interface systems.
Collapse
|
15
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
16
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
17
|
Wang S, Zhu G, Shi L, Zhang C, Wu B, Yang A, Meng F, Jiang Y, Zhang J. Closed-Loop Adaptive Deep Brain Stimulation in Parkinson's Disease: Procedures to Achieve It and Future Perspectives. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225053. [PMID: 37182899 DOI: 10.3233/jpd-225053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a heavy burden on patients, families, and society. Deep brain stimulation (DBS) can improve the symptoms of PD patients for whom medication is insufficient. However, current open-loop uninterrupted conventional DBS (cDBS) has inherent limitations, such as adverse effects, rapid battery consumption, and a need for frequent parameter adjustment. To overcome these shortcomings, adaptive DBS (aDBS) was proposed to provide responsive optimized stimulation for PD. This topic has attracted scientific interest, and a growing body of preclinical and clinical evidence has shown its benefits. However, both achievements and challenges have emerged in this novel field. To date, only limited reviews comprehensively analyzed the full framework and procedures for aDBS implementation. Herein, we review current preclinical and clinical data on aDBS for PD to discuss the full procedures for its achievement and to provide future perspectives on this treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Bing Wu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
18
|
Widge AS. Closed-Loop Deep Brain Stimulation for Psychiatric Disorders. Harv Rev Psychiatry 2023; 31:162-171. [PMID: 37171475 PMCID: PMC10188203 DOI: 10.1097/hrp.0000000000000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Deep brain stimulation (DBS) is a well-established approach to treating medication-refractory neurological disorders and holds promise for treating psychiatric disorders. Despite strong open-label results in extremely refractory patients, DBS has struggled to meet endpoints in randomized controlled trials. A major challenge is stimulation "dosing"-DBS systems have many adjustable parameters, and clinicians receive little feedback on whether they have chosen the correct parameters for an individual patient. Multiple groups have proposed closed loop technologies as a solution. These systems sense electrical activity, identify markers of an (un)desired state, then automatically deliver or adjust stimulation to alter that electrical state. Closed loop DBS has been successfully deployed in movement disorders and epilepsy. The availability of that technology, as well as advances in opportunities for invasive research with neurosurgical patients, has yielded multiple pilot demonstrations in psychiatric illness. Those demonstrations split into two schools of thought, one rooted in well-established diagnoses and symptom scales, the other in the more experimental Research Domain Criteria (RDoC) framework. Both are promising, and both are limited by the boundaries of current stimulation technology. They are in turn driving advances in implantable recording hardware, signal processing, and stimulation paradigms. The combination of these advances is likely to change both our understanding of psychiatric neurobiology and our treatment toolbox, though the timeframe may be limited by the realities of implantable device development.
Collapse
Affiliation(s)
- Alik S Widge
- From the Department of Psychiatry & Behavioral Sciences and Medical Discovery Team on Addictions, University of Minnesota
| |
Collapse
|
19
|
Neumann WJ, Horn A, Kühn AA. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci 2023; 46:472-487. [PMID: 37105806 DOI: 10.1016/j.tins.2023.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
20
|
Morelli N, Summers RLS. Association of subthalamic beta frequency sub-bands to symptom severity in patients with Parkinson's disease: A systematic review. Parkinsonism Relat Disord 2023; 110:105364. [PMID: 36997437 DOI: 10.1016/j.parkreldis.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Local field potentials (LFP), specifically beta (13-30Hz) frequency measures, have been found to be associated with motor dysfunction in people with Parkinson's disease (PwPD). A consensus on beta subband (low- and high-beta) relationships to clinical state or therapy response has yet to be determined. The objective of this review is to synthesize literature reporting the association of low- and high-beta characteristics to clinical ratings of motor symptoms in PwPD. METHODS A systematic search of existing literature was completed using EMBASE. Articles which collected subthalamic nucleus (STN) LFPs using macroelectrodes in PwPD, analyzed low- (13-20 Hz) and high-beta (21-35 Hz) bands, collected UPDRS-III, and reported correlational strength or predictive capacity of LFPs to UPDRS-III scores. RESULTS The initial search yielded 234 articles, with 11 articles achieving inclusion. Beta measures included power spectral density, peak characteristics, and burst characteristics. High-beta was a significant predictor of UPDRS-III responses to therapy in 5 (100%) articles. Low-beta was significantly associated with UPDRS-III total score in 3 (60%) articles. Low- and high-beta associations to UPDRS-III subscores were mixed. CONCLUSION This systematic review reinforces previous reports that beta band oscillatory measures demonstrate a consistent relationship to Parkinsonian motor symptoms and ability to predict motor response to therapy. Specifically, high-beta, demonstrated a consistent ability to predict UPDRS-III responses to common PD therapies, while low-beta measures were associated with general Parkinsonian symptom severity. Continued research is needed to determine which beta subband demonstrates the greatest association to motor symptom subtypes and potentially offers clinical utility toward LFP-guided DBS programming and adaptive DBS.
Collapse
|
21
|
A systematic review of local field potential physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms. J Neurol 2023; 270:1162-1177. [PMID: 36209243 PMCID: PMC9886603 DOI: 10.1007/s00415-022-11388-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Deep brain stimulation (DBS) treatment has proven effective in suppressing symptoms of rigidity, bradykinesia, and tremor in Parkinson's disease. Still, patients may suffer from disabling fluctuations in motor and non-motor symptom severity during the day. Conventional DBS treatment consists of continuous stimulation but can potentially be further optimised by adapting stimulation settings to the presence or absence of symptoms through closed-loop control. This critically relies on the use of 'physiomarkers' extracted from (neuro)physiological signals. Ideal physiomarkers for adaptive DBS (aDBS) are indicative of symptom severity, detectable in every patient, and technically suitable for implementation. In the last decades, much effort has been put into the detection of local field potential (LFP) physiomarkers and in their use in clinical practice. We conducted a research synthesis of the correlations that have been reported between LFP signal features and one or more specific PD motor symptoms. Features based on the spectral beta band (~ 13 to 30 Hz) explained ~ 17% of individual variability in bradykinesia and rigidity symptom severity. Limitations of beta band oscillations as physiomarker are discussed, and strategies for further improvement of aDBS are explored.
Collapse
|
22
|
Subthalamic beta bursts correlate with dopamine-dependent motor symptoms in 106 Parkinson's patients. NPJ Parkinsons Dis 2023; 9:2. [PMID: 36611027 PMCID: PMC9825387 DOI: 10.1038/s41531-022-00443-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pathologically increased beta power has been described as a biomarker for Parkinson's disease (PD) and related to prolonged bursts of subthalamic beta synchronization. Here, we investigate the association between subthalamic beta dynamics and motor impairment in a cohort of 106 Parkinson's patients in the ON- and OFF-medication state, using two different methods of beta burst determination. We report a frequency-specific correlation of low beta power and burst duration with motor impairment OFF dopaminergic medication. Furthermore, reduction of power and burst duration correlated significantly with symptom alleviation through dopaminergic medication. Importantly, qualitatively similar results were yielded with two different methods of beta burst definition. Our findings validate the robustness of previous results on pathological changes in subcortical oscillations both in the frequency- as well as in the time-domain in the largest cohort of PD patients to date with important implications for next-generation adaptive deep brain stimulation control algorithms.
Collapse
|
23
|
Belkacem AN, Jamil N, Khalid S, Alnajjar F. On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci 2023; 17:1085173. [PMID: 37033911 PMCID: PMC10076878 DOI: 10.3389/fnhum.2023.1085173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Emerging brain technologies have significantly transformed human life in recent decades. For instance, the closed-loop brain-computer interface (BCI) is an advanced software-hardware system that interprets electrical signals from neurons, allowing communication with and control of the environment. The system then transmits these signals as controlled commands and provides feedback to the brain to execute specific tasks. This paper analyzes and presents the latest research on closed-loop BCI that utilizes electric/magnetic stimulation, optogenetic, and sonogenetic techniques. These techniques have demonstrated great potential in improving the quality of life for patients suffering from neurodegenerative or psychiatric diseases. We provide a comprehensive and systematic review of research on the modalities of closed-loop BCI in recent decades. To achieve this, the authors used a set of defined criteria to shortlist studies from well-known research databases into categories of brain stimulation techniques. These categories include deep brain stimulation, transcranial magnetic stimulation, transcranial direct-current stimulation, transcranial alternating-current stimulation, and optogenetics. These techniques have been useful in treating a wide range of disorders, such as Alzheimer's and Parkinson's disease, dementia, and depression. In total, 76 studies were shortlisted and analyzed to illustrate how closed-loop BCI can considerably improve, enhance, and restore specific brain functions. The analysis revealed that literature in the area has not adequately covered closed-loop BCI in the context of cognitive neural prosthetics and implanted neural devices. However, the authors demonstrate that the applications of closed-loop BCI are highly beneficial, and the technology is continually evolving to improve the lives of individuals with various ailments, including those with sensory-motor issues or cognitive deficiencies. By utilizing emerging techniques of stimulation, closed-loop BCI can safely improve patients' cognitive and affective skills, resulting in better healthcare outcomes.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem
| | - Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Sumayya Khalid
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Fady Alnajjar
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- Center for Brain Science, RIKEN, Saitama, Japan
- Fady Alnajjar
| |
Collapse
|
24
|
Peterson V, Merk T, Bush A, Nikulin V, Kühn AA, Neumann WJ, Richardson RM. Movement decoding using spatio-spectral features of cortical and subcortical local field potentials. Exp Neurol 2023; 359:114261. [PMID: 36349662 DOI: 10.1016/j.expneurol.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022]
Abstract
The first commercially sensing enabled deep brain stimulation (DBS) devices for the treatment of movement disorders have recently become available. In the future, such devices could leverage machine learning based brain signal decoding strategies to individualize and adapt therapy in real-time. As multi-channel recordings become available, spatial information may provide an additional advantage for informing machine learning models. To investigate this concept, we compared decoding performances from single channels vs. spatial filtering techniques using intracerebral multitarget electrophysiology in Parkinson's disease patients undergoing DBS implantation. We investigated the feasibility of spatial filtering in invasive neurophysiology and the putative utility of combined cortical ECoG and subthalamic local field potential signals for decoding grip-force, a well-defined and continuous motor readout. We found that adding spatial information to the model can improve decoding (6% gain in decoding), but the spatial patterns and additional benefit was highly individual. Beyond decoding performance results, spatial filters and patterns can be used to obtain meaningful neurophysiological information about the brain networks involved in target behavior. Our results highlight the importance of individualized approaches for brain signal decoding, for which multielectrode recordings and spatial filtering can improve precision medicine approaches for clinical brain computer interfaces.
Collapse
Affiliation(s)
- Victoria Peterson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
25
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|