1
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture for stress to disrupt agency and promote habit. Nature 2025:10.1038/s41586-024-08580-w. [PMID: 39972126 DOI: 10.1038/s41586-024-08580-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/27/2024] [Indexed: 02/21/2025]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions1-5. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual-pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the projection from the basolateral amygdala to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision-making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the projection from the central amygdala to the dorsomedial striatum mediates habit formation. Following stress, this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision-making, and help understanding of how stress can lead to the disrupted decision-making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | - Natalie Paredes
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Wiener
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Chukwuebuka Oragwam
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hanniel O Uwadia
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Abigail L Yu
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kayla Lim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenna S Pimenta
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriela E Vilchez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gift Nnamdi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alicia Wang
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megha Sehgal
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando McV Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ana C Sias
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melissa Malvaez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Borkar CD, Fadok JP. Distributed circuits regulating defensive state transitions: freezing, flight and fight. Neuropsychopharmacology 2024; 50:320-321. [PMID: 39152220 PMCID: PMC11526118 DOI: 10.1038/s41386-024-01965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Affiliation(s)
- Chandrashekhar D Borkar
- Department of Psychology, Tulane University, New Orleans, LA, 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA, 70118, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
3
|
Carroll JN, Myers B, Vaaga CE. Repeated presentation of visual threats drives innate fear habituation and is modulated by environmental and physiological factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618513. [PMID: 39463941 PMCID: PMC11507848 DOI: 10.1101/2024.10.15.618513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
To survive predation, animals must be able to detect and appropriately respond to predator threats in their environment. Such defensive behaviors are thought to utilize hard-wired neural circuits for threat detection, sensorimotor integration, and execution of ethologically relevant behaviors. Despite being hard-wired, defensive behaviors (i.e. fear responses) are not fixed, but rather show remarkable flexibility, suggesting that extrinsic factors such as threat history, environmental contexts, and physiological state may alter innate defensive behavioral responses. The goal of the present study was to examine how extrinsic and intrinsic factors influence innate defensive behaviors in response to visual threats. In the absence of a protective shelter, our results indicate that mice showed robust freezing behavior following both looming (proximal) and sweeping (distal) threats, with increased behavioral vigor in response to looming stimuli, which represent a higher threat imminence. Repeated presentation of looming or sweeping stimuli at short inter-trial intervals resulted in robust habituation of freezing, which was accelerated at longer inter-trial intervals, regardless of contextual cues. Finally, physiological factors such as acute stress further disrupted innate freezing habituation, resulting in a delayed habituation phenotype, consistent with a heightened fear state. Together, our results indicate that extrinsic factors such as threat history, environmental familiarity, and physiological stressors have robust and diverse effects on defensive behaviors, highlighting the behavioral flexibility in how mice respond to predator threats.
Collapse
Affiliation(s)
- Jordan N. Carroll
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
| | - Christopher E. Vaaga
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
- Department of Neurobiology, Northwestern University Evanston IL 60208
| |
Collapse
|
4
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture enables chronic stress to disrupt agency and promote habit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560731. [PMID: 37873076 PMCID: PMC10592885 DOI: 10.1101/2023.10.03.560731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the basolateral amygdala projection to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the central amygdala projection to the dorsomedial striatum mediates habit formation. Following stress this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | | | - Anna Wiener
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | | | | | - Abigail L Yu
- Dept. of Physiology, UCLA, Los Angeles, CA 90095
| | - Kayla Lim
- Dept. of Biological Chemistry, UCLA, Los Angeles, CA 90095
| | | | | | - Gift Nnamdi
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alicia Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Megha Sehgal
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | - Ana C Sias
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alcino J Silva
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Fernández-Peña C, Pace RL, Fernando LM, Pittman BG, Schwarz LA. Adrenergic C1 neurons enhance anxiety via projections to PAG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612440. [PMID: 39314285 PMCID: PMC11419123 DOI: 10.1101/2024.09.11.612440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Anxiety is an emotional state precipitated by the anticipation of real or potential threats. Anxiety disorders are the most prevalent psychiatric illnesses globally and increase the risk of developing comorbid conditions that negatively impact the brain and body. The etiology of anxiety disorders remains unresolved, limiting improvement of therapeutic strategies to alleviate anxiety-related symptoms with increased specificity and efficacy. Here, we applied novel intersectional tools to identify a discrete population of brainstem adrenergic neurons, named C1 cells, that promote aversion and anxiety-related behaviors via projections to the periaqueductal gray matter (PAG). While C1 cells have traditionally been implicated in modulation of autonomic processes, rabies tracing revealed that they receive input from brain areas with diverse functions. Calcium-based in vivo imaging showed that activation of C1 cells enhances excitatory responses in vlPAG, activity that is exacerbated in times of heightened stress. Furthermore, inhibition of C1 cells impedes the development of anxiety-like behaviors in response to stressful situations. Overall, these findings suggest that C1 neurons are positioned to integrate complex information from the brain and periphery for the promotion of anxiety-like behaviors.
Collapse
Affiliation(s)
- Carlos Fernández-Peña
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Rachel L. Pace
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lourds M. Fernando
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pittman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| |
Collapse
|
6
|
Stempel AV. A conserved brainstem region for instinctive behaviour control: The vertebrate periaqueductal gray. Curr Opin Neurobiol 2024; 86:102878. [PMID: 38663047 DOI: 10.1016/j.conb.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Instinctive behaviours have evolved across animal phyla and ensure the survival of both the individual and species. They include behaviours that achieve defence, feeding, aggression, sexual reproduction, or parental care. Within the vertebrate subphylum, the brain circuits that support instinctive behaviour output are evolutionarily conserved, being present in the oldest group of living vertebrates, the lamprey. Here, I will provide an evolutionary and comparative perspective on the function of a conserved brainstem region central to the initiation and execution of virtually all instinctive behaviours-the periaqueductal gray. In particular, I will focus on recent advances on the neural mechanisms in the periaqueductal gray that underlie the production of different instinctive behaviours within and across species.
Collapse
Affiliation(s)
- A Vanessa Stempel
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany.
| |
Collapse
|
7
|
Reis FMCV, Maesta-Pereira S, Ollivier M, Schuette PJ, Sethi E, Miranda BA, Iniguez E, Chakerian M, Vaughn E, Sehgal M, Nguyen DCT, Yuan FTH, Torossian A, Ikebara JM, Kihara AH, Silva AJ, Kao JC, Khakh BS, Adhikari A. Control of feeding by a bottom-up midbrain-subthalamic pathway. Nat Commun 2024; 15:2111. [PMID: 38454000 PMCID: PMC10920831 DOI: 10.1038/s41467-024-46430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Investigative exploration and foraging leading to food consumption have vital importance, but are not well-understood. Since GABAergic inputs to the lateral and ventrolateral periaqueductal gray (l/vlPAG) control such behaviors, we dissected the role of vgat-expressing GABAergic l/vlPAG cells in exploration, foraging and hunting. Here, we show that in mice vgat l/vlPAG cells encode approach to food and consumption of both live prey and non-prey foods. The activity of these cells is necessary and sufficient for inducing food-seeking leading to subsequent consumption. Activation of vgat l/vlPAG cells produces exploratory foraging and compulsive eating without altering defensive behaviors. Moreover, l/vlPAG vgat cells are bidirectionally interconnected to several feeding, exploration and investigation nodes, including the zona incerta. Remarkably, the vgat l/vlPAG projection to the zona incerta bidirectionally controls approach towards food leading to consumption. These data indicate the PAG is not only a final downstream target of top-down exploration and foraging-related inputs, but that it also influences these behaviors through a bottom-up pathway.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthias Ollivier
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ekayana Sethi
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Blake A Miranda
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emily Iniguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eric Vaughn
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Megha Sehgal
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, USA
| | - Darren C T Nguyen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Faith T H Yuan
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anita Torossian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Alcino J Silva
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Baljit S Khakh
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Borkar CD, Stelly CE, Fu X, Dorofeikova M, Le QSE, Vutukuri R, Vo C, Walker A, Basavanhalli S, Duong A, Bean E, Resendez A, Parker JG, Tasker JG, Fadok JP. Top-down control of flight by a non-canonical cortico-amygdala pathway. Nature 2024; 625:743-749. [PMID: 38233522 PMCID: PMC10878556 DOI: 10.1038/s41586-023-06912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.
Collapse
Affiliation(s)
- Chandrashekhar D Borkar
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire E Stelly
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Psychological Sciences, Loyola University, New Orleans, LA, USA
| | - Xin Fu
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Maria Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Quan-Son Eric Le
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Rithvik Vutukuri
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Catherine Vo
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Alex Walker
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Samhita Basavanhalli
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Anh Duong
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Erin Bean
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jones G Parker
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey G Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
9
|
Coizet V, Al Tannir R, Pautrat A, Overton PG. Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures. Curr Neuropharmacol 2024; 22:1473-1490. [PMID: 37594168 PMCID: PMC11097992 DOI: 10.2174/1570159x21666230818154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 08/19/2023] Open
Abstract
The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animal's repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.
Collapse
Affiliation(s)
- Véronique Coizet
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Racha Al Tannir
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Arnaud Pautrat
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
de Almeida AP, Tamais AM, Zerbini C, Melleu FF, Canteras NS, Motta SC. Role of the rostral dorsomedial column of the periaqueductal gray during social defeat in rats. Ann N Y Acad Sci 2023; 1530:138-151. [PMID: 37818796 DOI: 10.1111/nyas.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Previous studies showed that the dorsal premammillary nucleus of the hypothalamus (PMD) is involved in social passive defensive behaviors likely to be meditated by descending projections to the periaqueductal gray (PAG). We focused on the rostral dorsomedial PAG (rPAGdm) to reveal its putative neural mechanisms involved in mediating social defensive responses. By combining retrograde tracing and FOS expression analysis, we showed that in addition to the PMD, the rPAGdm is influenced by several brain sites active during social defeat. Next, we found that cytotoxic lesions of the rPAGdm drastically reduced passive defense and did not affect active defensive responses. We then examined the rPAGdm's projection pattern and found that the PAGdm projections are mostly restricted to midbrain sites, including the precommissural nucleus, different columns of the PAG, and the cuneiform nucleus (CUN). Also, we found decreased FOS expression in the caudal PAGdm, CUN, and PMD after the rPAGdm was lesioned. The results support that the rPAGdm mediates passive social defensive responses through ascending paths to prosencephalic circuits likely mediated by the CUN. This study provides further support for the role of the PAG in the modulation of behavioral responses by working as a unique hub for influencing prosencephalic sites during the mediation of aversive responses.
Collapse
Affiliation(s)
- Alisson Pinto de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alicia Moraes Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Cristina Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Reis FMCV, Mobbs D, Canteras NS, Adhikari A. Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology 2023; 228:109458. [PMID: 36773777 DOI: 10.1016/j.neuropharm.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The midbrain periaqueductal gray (PAG) has been recognized for decades as having a central role in the control of a wide variety of defensive responses. Initial discoveries relied primarily on lesions, electrical stimulation and pharmacology. Recent developments in neural activity imaging and in methods to control activity with anatomical and genetic specificity have revealed additional streams of data informing our understanding of PAG function. Here, we discuss both classic and modern studies reporting on how PAG-centered circuits influence innate as well as learned defensive actions in rodents and humans. Though early discoveries emphasized the PAG's role in rapid induction of innate defensive actions, emerging new data indicate a prominent role for the PAG in more complex processes, including representing behavioral states and influencing fear learning and memory. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, CA, United States.
| | - Dean Mobbs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, CA, United States.
| |
Collapse
|
12
|
Xi K, Xiao H, Huang X, Yuan Z, Liu M, Mao H, Liu H, Ma G, Cheng Z, Xie Y, Liu Y, Feng D, Wang W, Guo B, Wu S. Reversal of hyperactive higher-order thalamus attenuates defensiveness in a mouse model of PTSD. SCIENCE ADVANCES 2023; 9:eade5987. [PMID: 36735778 PMCID: PMC9897664 DOI: 10.1126/sciadv.ade5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors. Moreover, we found that diminished thalamic inhibition derived from the thalamic reticular nucleus was the major cause of thalamic hyperactivity in PTSD mice. Overloaded thalamic innervation to the downstream cortical area, frontal association cortex, drove abnormal defensiveness. Overall, our study revealed that the malfunction of the higher-order thalamus mediates defensive behaviors and highlighted the thalamocortical circuit as a potential target for treating PTSD-related overreactivity symptoms.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ziduo Yuan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Mingyue Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Guaiguai Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
13
|
Zhang XO, Do Monte FH. Positioning the brainstem within the neural network of threat prediction. Trends Neurosci 2023; 46:91-93. [PMID: 36470706 PMCID: PMC9877175 DOI: 10.1016/j.tins.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
In a recent study, Strickland and McDannald dissected the role of brainstem networks in threat prediction. Using probabilistic threat discrimination in rats, the authors demonstrated that brainstem neurons estimate threat probability and generate positive aversive prediction errors after unexpected outcomes. Their findings suggest that, beyond organizing defensive behaviors, brainstem neurons are involved in threat prediction computations.
Collapse
Affiliation(s)
- Xu O Zhang
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|