1
|
Weinberg SE, Chandel NS. COQ6 defies immune and metabolic expectations. Nat Immunol 2024; 25:2170-2172. [PMID: 39496955 DOI: 10.1038/s41590-024-02005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Affiliation(s)
- Samuel E Weinberg
- Department of Pathology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Karageorgiou C, Gokcumen O, Dennis MY. Deciphering the role of structural variation in human evolution: a functional perspective. Curr Opin Genet Dev 2024; 88:102240. [PMID: 39121701 PMCID: PMC11485010 DOI: 10.1016/j.gde.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Advances in sequencing technologies have enabled the comparison of high-quality genomes of diverse primate species, revealing vast amounts of divergence due to structural variation. Given their large size, structural variants (SVs) can simultaneously alter the function and regulation of multiple genes. Studies estimate that collectively more than 3.5% of the genome is divergent in humans versus other great apes, impacting thousands of genes. Functional genomics and gene-editing tools in various model systems recently emerged as an exciting frontier - investigating the wide-ranging impacts of SVs on molecular, cellular, and systems-level phenotypes. This review examines existing research and identifies future directions to broaden our understanding of the functional roles of SVs on phenotypic innovations and diversity impacting uniquely human features, ranging from cognition to metabolic adaptations.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA. https://twitter.com/@evobioclio
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| | - Megan Y Dennis
- Department of Biochemistry & Molecular Medicine, Genome Center, and MIND Institute, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Aqil A, Li Y, Wang Z, Islam S, Russell M, Kallak TK, Saitou M, Gokcumen O, Masuda N. Switch-like Gene Expression Modulates Disease Susceptibility. RESEARCH SQUARE 2024:rs.3.rs-4974188. [PMID: 39315271 PMCID: PMC11419265 DOI: 10.21203/rs.3.rs-4974188/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A fundamental challenge in biomedicine is understanding the mechanisms predisposing individuals to disease. While previous research has suggested that switch-like gene expression is crucial in driving biological variation and disease susceptibility, a systematic analysis across multiple tissues is still lacking. By analyzing transcriptomes from 943 individuals across 27 tissues, we identified 1,013 switch-like genes. We found that only 31 (3.1%) of these genes exhibit switch-like behavior across all tissues. These universally switch-like genes appear to be genetically driven, with large exonic genomic structural variants explaining five (~18%) of them. The remaining switch-like genes exhibit tissue-specific expression patterns. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, likely under the influence of tissue-specific master regulators, including hormonal signals. Among our most significant findings, we identified hundreds of concordantly switched-off genes in the stomach and vagina that are linked to gastric cancer (41-fold, p<10-4) and vaginal atrophy (44-fold, p<10-4), respectively. Experimental analysis of vaginal tissues revealed that low systemic levels of estrogen lead to a significant reduction in both the epithelial thickness and the expression of the switch-like gene ALOX12. We propose a model wherein the switching off of driver genes in basal and parabasal epithelium suppresses cell proliferation therein, leading to epithelial thinning and, therefore, vaginal atrophy. Our findings underscore the significant biomedical implications of switch-like gene expression and lay the groundwork for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yanyan Li
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhiliang Wang
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Saiful Islam
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Aqil A, Li Y, Wang Z, Islam S, Russell M, Kallak TK, Saitou M, Gokcumen O, Masuda N. Switch-like Gene Expression Modulates Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609537. [PMID: 39229158 PMCID: PMC11370615 DOI: 10.1101/2024.08.24.609537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A fundamental challenge in biomedicine is understanding the mechanisms predisposing individuals to disease. While previous research has suggested that switch-like gene expression is crucial in driving biological variation and disease susceptibility, a systematic analysis across multiple tissues is still lacking. By analyzing transcriptomes from 943 individuals across 27 tissues, we identified 1,013 switch-like genes. We found that only 31 (3.1%) of these genes exhibit switch-like behavior across all tissues. These universally switch-like genes appear to be genetically driven, with large exonic genomic structural variants explaining five (~18%) of them. The remaining switch-like genes exhibit tissue-specific expression patterns. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, likely under the influence of tissue-specific master regulators, including hormonal signals. Among our most significant findings, we identified hundreds of concordantly switched-off genes in the stomach and vagina that are linked to gastric cancer (41-fold, p<10-4) and vaginal atrophy (44-fold, p<10-4), respectively. Experimental analysis of vaginal tissues revealed that low systemic levels of estrogen lead to a significant reduction in both the epithelial thickness and the expression of the switch-like gene ALOX12. We propose a model wherein the switching off of driver genes in basal and parabasal epithelium suppresses cell proliferation therein, leading to epithelial thinning and, therefore, vaginal atrophy. Our findings underscore the significant biomedical implications of switch-like gene expression and lay the groundwork for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yanyan Li
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhiliang Wang
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Saiful Islam
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
5
|
L Rocha J, Lou RN, Sudmant PH. Structural variation in humans and our primate kin in the era of telomere-to-telomere genomes and pangenomics. Curr Opin Genet Dev 2024; 87:102233. [PMID: 39042999 PMCID: PMC11695101 DOI: 10.1016/j.gde.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Structural variants (SVs) account for the majority of base pair differences both within and between primate species. However, our understanding of inter- and intra-species SV has been historically hampered by the quality of draft primate genomes and the absence of genome resources for key taxa. Recently, advances in long-read sequencing and genome assembly have begun to radically reshape our understanding of SVs. Two landmark achievements include the publication of a human telomere-to-telomere (T2T) genome as well as the development of the first human pangenome reference. In this review, we first look back to the major works laying the foundation for these projects. We then examine the ways in which T2T genome assemblies and pangenomes are transforming our understanding of and approach to primate SV. Finally, we discuss what the future of primate SV research may look like in the era of T2T genomes and pangenomics.
Collapse
Affiliation(s)
- Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@joanocha
| | - Runyang N Lou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@NicolasLou10
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, USA.
| |
Collapse
|
6
|
Pfennig A, Lachance J. The evolutionary fate of Neanderthal DNA in 30,780 admixed genomes with recent African-like ancestry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605203. [PMID: 39091830 PMCID: PMC11291122 DOI: 10.1101/2024.07.25.605203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Following introgression, Neanderthal DNA was initially purged from non-African genomes, but the evolutionary fate of remaining introgressed DNA has not been explored yet. To fill this gap, we analyzed 30,780 admixed genomes with African-like ancestry from the All of Us research program, in which Neanderthal alleles encountered novel genetic backgrounds during the last 15 generations. Observed amounts of Neanderthal DNA approximately match expectations based on ancestry proportions, suggesting neutral evolution. Nevertheless, we identified genomic regions that have significantly less or more Neanderthal ancestry than expected and are associated with spermatogenesis, innate immunity, and other biological processes. We also identified three novel introgression desert-like regions in recently admixed genomes, whose genetic features are compatible with hybrid incompatibilities and intrinsic negative selection. Overall, we find that much of the remaining Neanderthal DNA in human genomes is not under strong selection, and complex evolutionary dynamics have shaped introgression landscapes in our species.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| |
Collapse
|
7
|
Lockwood C, Vo AS, Bellafard H, Carter AJR. More evidence for widespread antagonistic pleiotropy in polymorphic disease alleles. Front Genet 2024; 15:1404516. [PMID: 38952711 PMCID: PMC11215129 DOI: 10.3389/fgene.2024.1404516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Many loci segregate alleles classified as "genetic diseases" due to their deleterious effects on health. However, some disease alleles have been reported to show beneficial effects under certain conditions or in certain populations. The beneficial effects of these antagonistically pleiotropic alleles may explain their continued prevalence, but the degree to which antagonistic pleiotropy is common or rare is unresolved. We surveyed the medical literature to identify examples of antagonistic pleiotropy to help determine whether antagonistic pleiotropy appears to be rare or common. Results We identified ten examples of loci with polymorphisms for which the presence of antagonistic pleiotropy is well supported by detailed genetic or epidemiological information in humans. One additional locus was identified for which the supporting evidence comes from animal studies. These examples complement over 20 others reported in other reviews. Discussion The existence of more than 30 identified antagonistically pleiotropic human disease alleles suggests that this phenomenon may be widespread. This poses important implications for both our understanding of human evolutionary genetics and our approaches to clinical treatment and disease prevention, especially therapies based on genetic modification.
Collapse
Affiliation(s)
| | | | | | - Ashley J. R. Carter
- California State University Long Beach, Department of Biological Sciences, Long Beach, CA, United States
| |
Collapse
|
8
|
Richard-St-Hilaire A, Gamache I, Pelletier J, Grenier JC, Poujol R, Hussin JG. Signatures of Co-evolution and Co-regulation in the CYP3A and CYP4F Genes in Humans. Genome Biol Evol 2024; 16:evad236. [PMID: 38207129 PMCID: PMC10805436 DOI: 10.1093/gbe/evad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cytochromes P450 (CYP450) are hemoproteins generally involved in the detoxification of the body of xenobiotic molecules. They participate in the metabolism of many drugs and genetic polymorphisms in humans have been found to impact drug responses and metabolic functions. In this study, we investigate the genetic diversity of CYP450 genes. We found that two clusters, CYP3A and CYP4F, are notably differentiated across human populations with evidence for selective pressures acting on both clusters: we found signals of recent positive selection in CYP3A and CYP4F genes and signals of balancing selection in CYP4F genes. Furthermore, an extensive amount of unusual linkage disequilibrium is detected in this latter cluster, indicating co-evolution signatures among CYP4F genes. Several of the selective signals uncovered co-localize with expression quantitative trait loci (eQTL), which could suggest epistasis acting on co-regulation in these gene families. In particular, we detected a potential co-regulation event between CYP3A5 and CYP3A43, a gene whose function remains poorly characterized. We further identified a causal relationship between CYP3A5 expression and reticulocyte count through Mendelian randomization analyses, potentially involving a regulatory region displaying a selective signal specific to African populations. Our findings linking natural selection and gene expression in CYP3A and CYP4F subfamilies are of importance in understanding population differences in metabolism of nutrients and drugs.
Collapse
Affiliation(s)
- Alex Richard-St-Hilaire
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine Hospital, Research Center, Montreal, QC, Canada
| | - Isabel Gamache
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Justin Pelletier
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, Canada
- McGill CERC in Genomic Medicine, McGill University, Montreal, Canada
| | | | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Département de médecine, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI institute, Montreal, QC, Canada
| |
Collapse
|
9
|
Russell M, Aqi A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. ARXIV 2023:arXiv:2305.12963v2. [PMID: 37292479 PMCID: PMC10246089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.
Collapse
Affiliation(s)
| | - Alber Aqi
- Department of Biological Sciences, University at Buffalo
| | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo
- Institute for Artificial Intelligence and Data Science, University at Buffalo
| |
Collapse
|
10
|
Urnikyte A, Masiulyte A, Pranckeniene L, Kučinskas V. Disentangling archaic introgression and genomic signatures of selection at human immunity genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105528. [PMID: 37977419 DOI: 10.1016/j.meegid.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Pathogens and infectious diseases have imposed exceptionally strong selective pressure on ancient and modern human genomes and contributed to the current variation in many genes. There is evidence that modern humans acquired immune variants through interbreeding with ancient hominins, but the impact of such variants on human traits is not fully understood. The main objectives of this research were to infer the genetic signatures of positive selection that may be involved in adaptation to infectious diseases and to investigate the function of Neanderthal alleles identified within a set of 50 Lithuanian genomes. Introgressed regions were identified using the machine learning tool ArchIE. Recent positive selection signatures were analysed using iHS. We detected high-scoring signals of positive selection at innate immunity genes (EMB, PARP8, HLAC, and CDSN) and evaluated their interactions with the structural proteins of pathogens. Interactions with human immunodeficiency virus (HIV) 1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified. Overall, genomic regions introgressed from Neanderthals were shown to be enriched in genes related to immunity, keratinocyte differentiation, and sensory perception.
Collapse
Affiliation(s)
- Alina Urnikyte
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| | - Abigaile Masiulyte
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania
| | - Laura Pranckeniene
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| | - Vaidutis Kučinskas
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| |
Collapse
|
11
|
Russell M, Aqil A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. PLoS Comput Biol 2023; 19:e1011616. [PMID: 37976327 PMCID: PMC10691702 DOI: 10.1371/journal.pcbi.1011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.
Collapse
Affiliation(s)
- Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
12
|
Pivirotto AM, Platt A, Patel R, Kumar S, Hey J. Analyses of allele age and fitness impact reveal human beneficial alleles to be older than neutral controls. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561569. [PMID: 37873438 PMCID: PMC10592680 DOI: 10.1101/2023.10.09.561569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A classic population genetic prediction is that alleles experiencing directional selection should swiftly traverse allele frequency space, leaving detectable reductions in genetic variation in linked regions. However, despite this expectation, identifying clear footprints of beneficial allele passage has proven to be surprisingly challenging. We addressed the basic premise underlying this expectation by estimating the ages of large numbers of beneficial and deleterious alleles in a human population genomic data set. Deleterious alleles were found to be young, on average, given their allele frequency. However, beneficial alleles were older on average than non-coding, non-regulatory alleles of the same frequency. This finding is not consistent with directional selection and instead indicates some type of balancing selection. Among derived beneficial alleles, those fixed in the population show higher local recombination rates than those still segregating, consistent with a model in which new beneficial alleles experience an initial period of balancing selection due to linkage disequilibrium with deleterious recessive alleles. Alleles that ultimately fix following a period of balancing selection will leave a modest 'soft' sweep impact on the local variation, consistent with the overall paucity of species-wide 'hard' sweeps in human genomes.
Collapse
Affiliation(s)
| | - Alexander Platt
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- University of Pennsylvania, Department of Genetics, Philadelphia PA 19104, USA
| | - Ravi Patel
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, PA 19122, USA
| | - Jody Hey
- Temple University, Department of Biology, Philadelphia PA 19122, USA
| |
Collapse
|
13
|
Brand CM, Colbran LL, Capra JA. Resurrecting the alternative splicing landscape of archaic hominins using machine learning. Nat Ecol Evol 2023; 7:939-953. [PMID: 37142741 PMCID: PMC11440953 DOI: 10.1038/s41559-023-02053-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Alternative splicing contributes to adaptation and divergence in many species. However, it has not been possible to directly compare splicing between modern and archaic hominins. Here, we unmask the recent evolution of this previously unobservable regulatory mechanism by applying SpliceAI, a machine-learning algorithm that identifies splice-altering variants (SAVs), to high-coverage genomes from three Neanderthals and a Denisovan. We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific and 3,607 also occur in modern humans via introgression (244) or shared ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute to traits potentially relevant to hominin phenotypic divergence, such as the epidermis, respiration and spinal rigidity. Compared to shared SAVs, archaic-specific SAVs occur in sites under weaker selection and are more common in genes with tissue-specific expression. Further underscoring the importance of negative selection on SAVs, Neanderthal lineages with low effective population sizes are enriched for SAVs compared to Denisovan and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans were shared across the three Neanderthals, suggesting that older SAVs were more tolerated in human genomes. Our results reveal the splicing landscape of archaic hominins and identify potential contributions of splicing to phenotypic differences among hominins.
Collapse
Affiliation(s)
- Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|