1
|
Ma D, Le JQ, Dai X, Díaz MM, Abruzzi KC, Rosbash M. Transcriptomic DN3 clock neuron subtypes regulate Drosophila sleep. SCIENCE ADVANCES 2025; 11:eadr4580. [PMID: 39752484 PMCID: PMC11698076 DOI: 10.1126/sciadv.adr4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of Drosophila clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized. These DN3s are organized into 12 clusters with unusual gene expression features compared to the more well-studied clock neurons. We further show that previously uncharacterized DN3 subtypes promote sleep through a G protein-coupled receptor, TrissinR. Our findings indicate an intricate regulation of sleep behavior by clock neurons and highlight their remarkable diversity in gene expression and functional properties.
Collapse
Affiliation(s)
- Dingbang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Xihuimin Dai
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Madelen M. Díaz
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
2
|
Nikhil K, Singhal B, Granados-Fuentes D, Li JS, Kiss IZ, Herzog ED. The Functional Connectome Mediating Circadian Synchrony in the Suprachiasmatic Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627294. [PMID: 39713450 PMCID: PMC11661124 DOI: 10.1101/2024.12.06.627294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity. By analyzing 3447 hours of continuously recorded clock gene expression from 9011 cells in 17 mice, we found that the functional connectome of SCN was highly conserved bilaterally and across mice, sparse, and organized into a dorsomedial and a ventrolateral module. While most connections were local, we discovered long-range connections from ventral cells to cells in both the ventral and dorsal SCN. Based on their functional connectivity, SCN cells can be characterized as circadian signal generators, broadcasters, sinks, or bridges. For example, a subset of VIP neurons acts as hubs that generate circadian signals critical to synchronize daily rhythms across the SCN neural network. Simulations of the experimentally inferred SCN networks recapitulated the stereotypical dorsal-to-ventral wave of daily PER2 expression and ability to spontaneously synchronize, revealing that SCN emergent dynamics are sculpted by cell-cell connectivity. We conclude that MITE provides a powerful method to infer functional connectomes, and that the conserved architecture of cell-cell connections mediates circadian synchrony across space and time in the mammalian SCN.
Collapse
Affiliation(s)
- K.L. Nikhil
- Department of Biology, Washington University in Saint Louis, USA
| | - Bharat Singhal
- Department of Electrical and Systems Engineering, Washington University in Saint Louis, USA
| | | | - Jr-Shin Li
- Department of Electrical and Systems Engineering, Washington University in Saint Louis, USA
| | | | - Erik D. Herzog
- Department of Biology, Washington University in Saint Louis, USA
| |
Collapse
|
3
|
Reinhard N, Fukuda A, Manoli G, Derksen E, Saito A, Möller G, Sekiguchi M, Rieger D, Helfrich-Förster C, Yoshii T, Zandawala M. Synaptic connectome of the Drosophila circadian clock. Nat Commun 2024; 15:10392. [PMID: 39638801 PMCID: PMC11621569 DOI: 10.1038/s41467-024-54694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The circadian clock and its output pathways play a pivotal role in optimizing daily processes. To obtain insights into how diverse rhythmic physiology and behaviors are orchestrated, we have generated a comprehensive connectivity map of an animal circadian clock using the Drosophila FlyWire brain connectome. Intriguingly, we identified additional dorsal clock neurons, thus showing that the Drosophila circadian network contains ~240 instead of 150 neurons. We revealed extensive contralateral synaptic connectivity within the network and discovered novel indirect light input pathways to the clock neurons. We also elucidated pathways via which the clock modulates descending neurons that are known to regulate feeding and reproductive behaviors. Interestingly, we observed sparse monosynaptic connectivity between clock neurons and downstream higher-order brain centers and neurosecretory cells known to regulate behavior and physiology. Therefore, we integrated single-cell transcriptomics and receptor mapping to decipher putative paracrine peptidergic signaling by clock neurons. Our analyses identified additional novel neuropeptides expressed in clock neurons and suggest that peptidergic signaling significantly enriches interconnectivity within the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Emilia Derksen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Gabriel Möller
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of Biochemistry and Molecular Biology and Integrative Neuroscience Program, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
4
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2024:7487304241290861. [PMID: 39529231 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Damulewicz M, Mazzotta GM. A one-day journey to the suburbs: circadian clock in the Drosophila visual system. FEBS J 2024. [PMID: 39484992 DOI: 10.1111/febs.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Living organisms, which are constantly exposed to cyclical variations in their environment, need a high degree of plasticity in their visual system to respond to daily and seasonal fluctuations in lighting conditions. In Drosophila melanogaster, the visual system is a complex tissue comprising different photoreception structures that exhibit daily rhythms in gene expression, cell morphology, and synaptic plasticity, regulated by both the central and peripheral clocks. In this review, we briefly summarize the structure of the circadian clock and the visual system in Drosophila and comprehensively describe circadian oscillations in visual structures, from molecules to behaviors, which are fundamental for the fine-tuning of visual sensitivity. We also compare some features of the rhythmicity in the visual system with that of the central pacemaker and hypothesize about the differences in the regulatory signals and mechanisms that control these two clocks.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
6
|
Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM. Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619448. [PMID: 39484527 PMCID: PMC11526984 DOI: 10.1101/2024.10.21.619448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.
Collapse
Affiliation(s)
- Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Mark Eddison
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Preeti Sundaramurthi
- Department of Psychology, College of Science, California State University, Hayward, California 94542
| | - Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| |
Collapse
|
7
|
Saurabh S, Meier RJ, Pireva LM, Mirza RA, Cavanaugh DJ. Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila. J Biol Rhythms 2024; 39:440-462. [PMID: 39066485 DOI: 10.1177/07487304241263734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The circadian system coordinates multiple behavioral outputs to ensure proper temporal organization. Timing information underlying circadian regulation of behavior depends on a molecular circadian clock that operates within clock neurons in the brain. In Drosophila and other organisms, clock neurons can be divided into several molecularly and functionally discrete subpopulations that form an interconnected central clock network. It is unknown how circadian signals are coherently generated by the clock network and transmitted across output circuits that connect clock cells to downstream neurons that regulate behavior. Here, we have exhaustively investigated the contribution of clock neuron subsets to the control of two prominent behavioral outputs in Drosophila: locomotor activity and feeding. We have used cell-specific manipulations to eliminate molecular clock function or induce electrical silencing either broadly throughout the clock network or in specific subpopulations. We find that clock cell manipulations produce similar changes in locomotor activity and feeding, suggesting that overlapping central clock circuitry regulates these distinct behavioral outputs. Interestingly, the magnitude and nature of the effects depend on the clock subset targeted. Lateral clock neuron manipulations profoundly degrade the rhythmicity of feeding and activity. In contrast, dorsal clock neuron manipulations only subtly affect rhythmicity but produce pronounced changes in the distribution of activity and feeding across the day. These experiments expand our knowledge of clock regulation of activity rhythms and offer the first extensive characterization of central clock control of feeding rhythms. Despite similar effects of central clock cell disruptions on activity and feeding, we find that manipulations that prevent functional signaling in an identified output circuit preferentially degrade locomotor activity rhythms, leaving feeding rhythms relatively intact. This demonstrates that activity and feeding are indeed dissociable behaviors, and furthermore suggests that differential circadian control of these behaviors diverges in output circuits downstream of the clock network.
Collapse
Affiliation(s)
- Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Ruth J Meier
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Liliya M Pireva
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Rabab A Mirza
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
8
|
Iyer AR, Scholz-Carlson E, Bell E, Biondi G, Richhariya S, Fernandez MP. The Circadian Neuropeptide PDF has Sexually Dimorphic Effects on Activity Rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578273. [PMID: 38352594 PMCID: PMC10862788 DOI: 10.1101/2024.01.31.578273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The circadian system regulates the timing of multiple molecular, physiological, metabolic, and behavioral phenomena. In Drosophila as in other species, most of the research on how the timekeeping system in the brain controls timing of behavioral outputs has been conducted in males, or sex was not included as a biological variable. The main circadian pacemaker neurons in Drosophila release the neuropeptide Pigment Dispersing Factor (PDF), which functions as a key synchronizing factor in the network with complex effects on other clock neurons. Lack of Pdf or its receptor, PdfR, results in most flies displaying arrhythmicity in activity-rest cycles under constant conditions. However, our results show that female circadian rhythms are less affected by mutations in both Pdf and PdfR. Crispr-Cas9 mutagenesis of Pdf specifically in the ventral lateral neurons (LNvs) also has a greater effect on male rhythms. We tested the influence of the M-cells over the circadian network and show that speeding up the molecular clock specifically in the M-cells leads to sexually dimorphic phenotypes, with a more pronounced effect on male rhythmic behavior. Our results suggest that the female circadian system is more resilient to manipulations of the PDF pathway and that circadian timekeeping is more distributed across the clock neuron network in females.
Collapse
|
9
|
Le JQ, Ma D, Dai X, Rosbash M. Light and dopamine impact two circadian neurons to promote morning wakefulness. Curr Biol 2024; 34:3941-3954.e4. [PMID: 39142287 PMCID: PMC11404089 DOI: 10.1016/j.cub.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
In both mammals and flies, circadian brain neurons orchestrate physiological oscillations and behaviors like wake and sleep-these neurons can be subdivided by morphology and by gene expression patterns. Recent single-cell sequencing studies identified 17 Drosophila circadian neuron groups. One of these includes only two lateral neurons (LNs), which are marked by the expression of the neuropeptide ion transport peptide (ITP). Although these two ITP+ LNs have long been grouped with five other circadian evening activity cells, inhibiting the two neurons alone strongly reduces morning activity, indicating that they also have a prominent morning function. As dopamine signaling promotes activity in Drosophila, like in mammals, we considered that dopamine might influence this morning activity function. Moreover, the ITP+ LNs express higher mRNA levels than other LNs of the type 1-like dopamine receptor Dop1R1. Consistent with the importance of Dop1R1, cell-specific CRISPR-Cas9 mutagenesis of this receptor in the two ITP+ LNs renders flies significantly less active in the morning, and ex vivo live imaging shows Dop1R1-dependent cyclic AMP (cAMP) responses to dopamine in these two neurons. Notably, the response is more robust in the morning, reflecting higher morning Dop1R1 mRNA levels in the two neurons. As mRNA levels are not elevated in constant darkness, this suggests light-dependent upregulation of morning Dop1R1 transcript levels. Taken together with the enhanced morning cAMP response to dopamine, the data indicate how light and dopamine promote morning wakefulness in flies, mimicking the important effect of light on morning wakefulness in humans.
Collapse
Affiliation(s)
- Jasmine Quynh Le
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA; Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xihuimin Dai
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
10
|
Catterson JH, Mouofo EN, López De Toledo Soler I, Lean G, Dlamini S, Liddell P, Voong G, Katsinelos T, Wang YC, Schoovaerts N, Verstreken P, Spires-Jones TL, Durrant CS. Drosophila appear resistant to trans-synaptic tau propagation. Brain Commun 2024; 6:fcae256. [PMID: 39130515 PMCID: PMC11316205 DOI: 10.1093/braincomms/fcae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-β, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.
Collapse
Affiliation(s)
- James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Edmond N Mouofo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Gillian Lean
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Dlamini
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Phoebe Liddell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Graham Voong
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Taxiarchis Katsinelos
- Schaller Research Group at the University of Heidelberg and the DKFZ, German Cancer Research Center, Proteostasis in Neurodegenerative Disease (B180), INF 581, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, INF 234, 69120 Heidelberg, Germany
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
11
|
Sharma PN, Sheeba V. Reorganization of circadian activity and the pacemaker circuit under novel light regimes. Proc Biol Sci 2024; 291:20241190. [PMID: 39043245 PMCID: PMC11265910 DOI: 10.1098/rspb.2024.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Many environmental features are cyclic, with predictable changes across the day, seasons and latitudes. Additionally, anthropogenic, artificial-light-induced changes in photoperiod or shiftwork-driven novel light/dark cycles also occur. Endogenous timekeepers or circadian clocks help organisms cope with such changes. The remarkable plasticity of clocks is evident in the waveforms of behavioural and molecular rhythms they govern. Despite detailed mechanistic insights into the functioning of the circadian clock, practical means to manipulate activity waveform are lacking. Previous studies using a nocturnal rodent model showed that novel light regimes caused locomotor activity to bifurcate such that mice showed two bouts of activity restricted to the dimly lit phases. Here, we explore the generalizability of these findings and leverage the genetic toolkit of Drosophila melanogaster to obtain mechanistic insights into this unique phenomenon. We find that dim scotopic illumination of specific durations induces circadian photoreceptor CRYPTOCHROME-dependent activity bifurcation in male flies. We show circadian reorganization of the pacemaker circuit, wherein the 'evening' neurons regulate the timing of both bouts of activity under novel light regimes. Our findings indicate that such environmental regimes can be exploited to design light cycles, which can ease the circadian waveform into synchronizing with challenging conditions.
Collapse
Affiliation(s)
- Pragya Niraj Sharma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
12
|
Costa Petrillo C, Pírez N, Beckwith EJ. Social information as an entrainment cue for the circadian clock. Genet Mol Biol 2024; 47Suppl 1:e20240008. [PMID: 39037375 PMCID: PMC11262420 DOI: 10.1590/1678-4685-gmb-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 07/23/2024] Open
Abstract
Animals adapt to the daily changes in their environmental conditions by means of genetically encoded circadian clocks. These clocks, found throughout the tree of life, regulate diverse biological functions, and allow periodical changes in physiology and behaviour. The molecular underpinnings of these clocks have been extensively studied across taxa, revealing a brain-based system that coordinates rhythmic activities through neuronal networks and signalling pathways. Entrainment, the alignment of internal rhythms with external cues or zeitgebers, is crucial for the adaptive value of these internal clocks. While the solar light-dark cycle is a primary zeitgeber for most animals, other relevant cues such as temperature, meal timing, predators, anxiety, fear, physical activity, and social interactions also play roles in entraining circadian clocks. The search of a detailed description of the circadian clocks is a goal for neurobiology and an area of growing societal interests. Moreover, as disruptions in circadian rhythms are implicated in various diseases, understanding the entrainment pathways contributes to developing interventions for improved wellbeing and health outcomes. This review focuses on socially relevant cues, examining their impact on animal physiology and behaviour, and explores the sensory pathways transmitting information to the central clock.
Collapse
Affiliation(s)
- Chiara Costa Petrillo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Nicolás Pírez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Esteban J. Beckwith
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
13
|
Evans JA, Schwartz WJ. On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:503-511. [PMID: 37481773 PMCID: PMC10924288 DOI: 10.1007/s00359-023-01659-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Decades have now passed since Colin Pittendrigh first proposed a model of a circadian clock composed of two coupled oscillators, individually responsive to the rising and setting sun, as a flexible solution to the challenge of behavioral and physiological adaptation to the changing seasons. The elegance and predictive power of this postulation has stimulated laboratories around the world in searches to identify and localize such hypothesized evening and morning oscillators, or sets of oscillators, in insects, rodents, and humans, with experimental designs and approaches keeping pace over the years with technological advances in biology and neuroscience. Here, we recount the conceptual origin and highlight the subsequent evolution of this dual oscillator model for the circadian clock in the mammalian suprachiasmatic nucleus; and how, despite our increasingly sophisticated view of this multicellular pacemaker, Pittendrigh's binary conception has remained influential in our clock models and metaphors.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, WI, USA.
| | - William J Schwartz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Klose MK, Kim J, Schmidt BF, Levitan ES. Circadian Vesicle Capture Prepares Clock Neuron Synapses for Daily Phase-Delayed Neuropeptide Release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569590. [PMID: 38106047 PMCID: PMC10723267 DOI: 10.1101/2023.12.01.569590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Drosophila sLNv clock neurons release the neuropeptide PDF to control circadian rhythms. Strikingly, PDF content in sLNv terminals is rhythmic with a peak in the morning hours prior to the onset of activity-dependent release. Because synaptic PDF accumulation, rather than synaptic release, aligns with the late-night elevations in both sLNv neuron excitability and Ca2+, we explored the dependence of presynaptic neuropeptide accumulation on neuropeptide vesicle transport, electrical activity and the circadian clock. Live imaging reveals that anterograde axonal transport is constant throughout the day and capture of circulating neuropeptide vesicles rhythmically boosts presynaptic neuropeptide content hours prior to release. The late-night surge in vesicle capture, like release, requires electrical activity and results in a large releasable pool of presynaptic vesicles to support the later burst of neuropeptide release. The circadian clock is also required suggesting that it controls the switch from vesicle capture to exocytosis, which are normally coupled activity-dependent processes. This toggling of activity transduction maximizes rhythmic synaptic neuropeptide release needed for robust circadian behavior and resolves the previously puzzling delay in timing of synaptic neuropeptide release relative to changes in sLNv clock neuron physiology.
Collapse
Affiliation(s)
- Markus K. Klose
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junghun Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brigitte F. Schmidt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edwin S. Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Nern A, Loesche F, Takemura SY, Burnett LE, Dreher M, Gruntman E, Hoeller J, Huang GB, Januszewski M, Klapoetke NC, Koskela S, Longden KD, Lu Z, Preibisch S, Qiu W, Rogers EM, Seenivasan P, Zhao A, Bogovic J, Canino BS, Clements J, Cook M, Finley-May S, Flynn MA, Hameed I, Fragniere AM, Hayworth KJ, Hopkins GP, Hubbard PM, Katz WT, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Maldonado CA, Mooney C, Okeoma N, Olbris DJ, Ordish C, Paterson T, Phillips EM, Pietzsch T, Salinas JR, Rivlin PK, Schlegel P, Scott AL, Scuderi LA, Takemura S, Talebi I, Thomson A, Trautman ET, Umayam L, Walsh C, Walsh JJ, Xu CS, Yakal EA, Yang T, Zhao T, Funke J, George R, Hess HF, Jefferis GS, Knecht C, Korff W, Plaza SM, Romani S, Saalfeld S, Scheffer LK, Berg S, Rubin GM, Reiser MB. Connectome-driven neural inventory of a complete visual system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589741. [PMID: 38659887 PMCID: PMC11042306 DOI: 10.1101/2024.04.16.589741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain's volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male Drosophila central nervous system FIB-SEM volume and a comprehensive inventory of the fly's visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the ~53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in Drosophila, a foundation for a deeper understanding of sensory processing.
Collapse
Affiliation(s)
- Aljoscha Nern
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Frank Loesche
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Shin-Ya Takemura
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Laura E Burnett
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Marisa Dreher
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | | | - Judith Hoeller
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Gary B Huang
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | | | - Nathan C Klapoetke
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Sanna Koskela
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Kit D Longden
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Zhiyuan Lu
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Stephan Preibisch
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Wei Qiu
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Edward M Rogers
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Pavithraa Seenivasan
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Arthur Zhao
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - John Bogovic
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Brandon S Canino
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Jody Clements
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Michael Cook
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Samantha Finley-May
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Miriam A Flynn
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Imran Hameed
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Alexandra Mc Fragniere
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Kenneth J Hayworth
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Gary Patrick Hopkins
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Philip M Hubbard
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - William T Katz
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Julie Kovalyak
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Shirley A Lauchie
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Meghan Leonard
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Alanna Lohff
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Charli A Maldonado
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Caroline Mooney
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Nneoma Okeoma
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Donald J Olbris
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Christopher Ordish
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Tyler Paterson
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Emily M Phillips
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Tobias Pietzsch
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Jennifer Rivas Salinas
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Patricia K Rivlin
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Philipp Schlegel
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Ashley L Scott
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Louis A Scuderi
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Satoko Takemura
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Iris Talebi
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Alexander Thomson
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Eric T Trautman
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Lowell Umayam
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Claire Walsh
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - John J Walsh
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - C Shan Xu
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Emily A Yakal
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Tansy Yang
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Ting Zhao
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Jan Funke
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Reed George
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Harald F Hess
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Gregory Sxe Jefferis
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Christopher Knecht
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Wyatt Korff
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Stephen M Plaza
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Sandro Romani
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Stephan Saalfeld
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Louis K Scheffer
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Stuart Berg
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Gerald M Rubin
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| | - Michael B Reiser
- University of Toronto Scarborough
- Google Research, Google LLC, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK and Department of Zoology, University of Cambridge, UK
| |
Collapse
|
16
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
Affiliation(s)
- Alison Ehrlich
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Angelina A Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Sofia Luminari
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Simon Kidd
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, UK
- Current address: Department of Biology, University of Oxford, UK
| | - Jordan Russo
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
17
|
Brown MP, Verma S, Palmer I, Guerrero Zuniga A, Mehta A, Rosensweig C, Keles MF, Wu MN. A subclass of evening cells promotes the switch from arousal to sleep at dusk. Curr Biol 2024; 34:2186-2199.e3. [PMID: 38723636 PMCID: PMC11111347 DOI: 10.1016/j.cub.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Animals exhibit rhythmic patterns of behavior that are shaped by an internal circadian clock and the external environment. Although light intensity varies across the day, there are particularly robust differences at twilight (dawn/dusk). These periods are also associated with major changes in behavioral states, such as the transition from arousal to sleep. However, the neural mechanisms by which time and environmental conditions promote these behavioral transitions are poorly defined. Here, we show that the E1 subclass of Drosophila evening clock neurons promotes the transition from arousal to sleep at dusk. We first demonstrate that the cell-autonomous clocks of E2 neurons primarily drive and adjust the phase of evening anticipation, the canonical behavior associated with "evening" clock neurons. We next show that conditionally silencing E1 neurons causes a significant delay in sleep onset after dusk. However, rather than simply promoting sleep, activating E1 neurons produces time- and light-dependent effects on behavior. Activation of E1 neurons has no effect early in the day but then triggers arousal before dusk and induces sleep after dusk. Strikingly, these activation-induced phenotypes depend on the presence of light during the day. Despite their influence on behavior around dusk, in vivo voltage imaging of E1 neurons reveals that their spiking rate and pattern do not significantly change throughout the day. Moreover, E1-specific clock ablation has no effect on arousal or sleep. Thus, we suggest that, rather than specifying "evening" time, E1 neurons act, in concert with other rhythmic neurons, to promote behavioral transitions at dusk.
Collapse
Affiliation(s)
- Matthew P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shubha Verma
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Anuradha Mehta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Mehmet F Keles
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Hofbauer B, Zandawala M, Reinhard N, Rieger D, Werner C, Evers JF, Wegener C. The neuropeptide pigment-dispersing factor signals independently of Bruchpilot-labelled active zones in daily remodelled terminals of Drosophila clock neurons. Eur J Neurosci 2024; 59:2665-2685. [PMID: 38414155 DOI: 10.1111/ejn.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins. However, the role of these presynaptic sites for PDF release is ill-defined. Here, we combined expansion microscopy with labelling of active zones by endogenously tagged BRP to examine the spatial correlation between PDF-containing dense-core vesicles and BRP-labelled active zones. We found that the number of BRP-labelled puncta in the sLNv terminals was similar while their density differed between Zeitgeber time (ZT) 2 and 14. The relative distance between BRP- and PDF-labelled puncta was increased in the morning, around the reported time of PDF release. Spontaneous dense-core vesicle release profiles of sLNvs in a publicly available ssTEM dataset (FAFB) consistently lacked spatial correlation to BRP-organised active zones. RNAi-mediated downregulation of brp and other active zone proteins expressed by the sLNvs did not affect PDF-dependent locomotor rhythmicity. In contrast, down-regulation of genes encoding proteins of the canonical vesicle release machinery, the dense-core vesicle-related protein CADPS, as well as PDF impaired locomotor rhythmicity. Taken together, our study suggests that PDF release from the sLNvs is independent of BRP-organised active zones, while BRP may be redistributed to active zones in a time-dependent manner.
Collapse
Affiliation(s)
- Benedikt Hofbauer
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, USA
| | - Nils Reinhard
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dirk Rieger
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Werner
- Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Felix Evers
- Centre for organismal studies COS, Universität Heidelberg, Heidelberg, Germany
- Cairn GmbH, Heidelberg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Le JQ, Ma D, Dai X, Rosbash M. Light and dopamine impact two circadian neurons to promote morning wakefulness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583333. [PMID: 38496661 PMCID: PMC10942368 DOI: 10.1101/2024.03.04.583333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In both mammals and flies, circadian brain neurons orchestrate physiological oscillations and behaviors like wake and sleep; these neurons can be subdivided by morphology and by gene expression patterns. Recent single-cell sequencing studies identified 17 Drosophila circadian neuron groups. One of these include only two lateral neurons (LNs), which are marked by the expression of the neuropeptide ion transport peptide (ITP). Although these two ITP+ LNs have long been grouped with five other circadian evening activity cells, inhibiting the two neurons alone strongly reduces morning activity; this indicates that they are prominent morning neurons. As dopamine signaling promotes activity in Drosophila like in mammals, we considered that dopamine might influence this morning activity function. Moreover, the ITP+ LNs express higher mRNA levels than other LNs of the type 1-like dopamine receptor Dop1R1. Consistent with the importance of Dop1R1, CRISPR/Cas9 mutagenesis of this receptor only in the two ITP+ LNs renders flies significantly less active in the morning, and ex vivo live imaging shows that dopamine increases cAMP levels in these two neurons; cell-specific mutagenesis of Dop1R1 eliminates this cAMP response to dopamine. Notably, the response is more robust in the morning, reflecting higher morning Dop1R1 mRNA levels in the two neurons. As morning levels are not elevated in constant darkness, this suggests light-dependent upregulation of morning Dop1R1 transcript levels. Taken together with enhanced morning cAMP response to dopamine, the data indicate how light stimulates morning wakefulness in flies, which mimics the important effect of light on morning wakefulness in humans.
Collapse
Affiliation(s)
- Jasmine Quynh Le
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xihuimin Dai
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
20
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
21
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
22
|
Majcin Dorcikova M, Duret LC, Pottié E, Nagoshi E. Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat Commun 2023; 14:5908. [PMID: 37737209 PMCID: PMC10516932 DOI: 10.1038/s41467-023-41540-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Sleep and circadian rhythm disruptions are frequent comorbidities of Parkinson's disease (PD), a disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, the causal role of circadian clocks in the degenerative process remains uncertain. We demonstrated here that circadian clocks regulate the rhythmicity and magnitude of the vulnerability of DA neurons to oxidative stress in male Drosophila. Circadian pacemaker neurons are presynaptic to a subset of DA neurons and rhythmically modulate their susceptibility to degeneration. The arrhythmic period (per) gene null mutation exacerbates the age-dependent loss of DA neurons and, in combination with brief oxidative stress, causes premature animal death. These findings suggest that circadian clock disruption promotes dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Lou C Duret
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emma Pottié
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
23
|
Brown MP, Verma S, Palmer I, Zuniga AG, Rosensweig C, Keles MF, Wu MN. A subclass of evening cells promotes the switch from arousal to sleep at dusk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555147. [PMID: 37693540 PMCID: PMC10491161 DOI: 10.1101/2023.08.28.555147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Animals exhibit rhythmic patterns of behavior that are shaped by an internal circadian clock and the external environment. While light intensity varies across the day, there are particularly robust differences at twilight (dawn/dusk). These periods are also associated with major changes in behavioral states, such as the transition from arousal to sleep. However, the neural mechanisms by which time and environmental conditions promote these behavioral transitions are poorly defined. Here, we show that the E1 subclass of Drosophila evening clock neurons promotes the transition from arousal to sleep at dusk. We first demonstrate that the cell-autonomous clocks of E2 neurons alone are required to drive and adjust the phase of evening anticipation, the canonical behavior associated with "evening" clock neurons. We next show that conditionally silencing E1 neurons causes a significant delay in sleep onset after dusk. However, rather than simply promoting sleep, activating E1 neurons produces time- and light- dependent effects on behavior. Activation of E1 neurons has no effect early in the day, but then triggers arousal before dusk and induces sleep after dusk. Strikingly, these phenotypes critically depend on the presence of light during the day. Despite their influence on behavior around dusk, in vivo voltage imaging of E1 neurons reveals that their spiking rate does not vary between dawn and dusk. Moreover, E1-specific clock ablation has no effect on arousal or sleep. Thus, we suggest that, rather than specifying "evening" time, E1 neurons act, in concert with other rhythmic neurons, to promote behavioral transitions at dusk.
Collapse
Affiliation(s)
- Matthew P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - Shubha Verma
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | | | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, U.S.A
| | - Mehmet F. Keles
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - Mark N. Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, U.S.A
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| |
Collapse
|
24
|
Lange AP, Wolf FW. Alcohol sensitivity and tolerance encoding in sleep regulatory circadian neurons in Drosophila. Addict Biol 2023; 28:e13304. [PMID: 37500483 PMCID: PMC10911855 DOI: 10.1111/adb.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/29/2023]
Abstract
Alcohol tolerance is a simple form of behavioural and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is a useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was composed of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as, and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| |
Collapse
|
25
|
Roach ST, Ford MC, Simhambhatla V, Loutrianakis V, Farah H, Li Z, Periandri EM, Abdalla D, Huang I, Kalra A, Shaw PJ. Sleep deprivation, sleep fragmentation, and social jet lag increase temperature preference in Drosophila. Front Neurosci 2023; 17:1175478. [PMID: 37274220 PMCID: PMC10237294 DOI: 10.3389/fnins.2023.1175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.
Collapse
Affiliation(s)
- S. Tanner Roach
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Melanie C. Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vikram Simhambhatla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vasilios Loutrianakis
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Hamza Farah
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Dina Abdalla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Arjan Kalra
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
27
|
Ma D, Herndon N, Le JQ, Abruzzi KC, Zinn K, Rosbash M. Neural connectivity molecules best identify the heterogeneous clock and dopaminergic cell types in the Drosophila adult brain. SCIENCE ADVANCES 2023; 9:eade8500. [PMID: 36812309 PMCID: PMC9946362 DOI: 10.1126/sciadv.ade8500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/26/2023] [Indexed: 05/25/2023]
Abstract
Our recent single-cell sequencing of most adult Drosophila circadian neurons indicated notable and unexpected heterogeneity. To address whether other populations are similar, we sequenced a large subset of adult brain dopaminergic neurons. Their gene expression heterogeneity is similar to that of clock neurons, i.e., both populations have two to three cells per neuron group. There was also unexpected cell-specific expression of neuron communication molecule messenger RNAs: G protein-coupled receptor or cell surface molecule (CSM) transcripts alone can define adult brain dopaminergic and circadian neuron cell type. Moreover, the adult expression of the CSM DIP-beta in a small group of clock neurons is important for sleep. We suggest that the common features of circadian and dopaminergic neurons are general, essential for neuronal identity and connectivity of the adult brain, and that these features underlie the complex behavioral repertoire of Drosophila.
Collapse
Affiliation(s)
- Dingbang Ma
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nicholas Herndon
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
28
|
Lange AP, Wolf FW. Alcohol tolerance encoding in sleep regulatory circadian neurons in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526363. [PMID: 36778487 PMCID: PMC9915517 DOI: 10.1101/2023.01.30.526363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alcohol tolerance is a simple form of behavioral and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was comprised of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
| |
Collapse
|
29
|
Iyer AR, Sheeba V. A new player in circadian networks: Role of electrical synapses in regulating functions of the circadian clock. Front Physiol 2022; 13:968574. [PMID: 36406999 PMCID: PMC9669436 DOI: 10.3389/fphys.2022.968574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have indicated that coherent circadian rhythms in behaviour can be manifested only when the underlying circadian oscillators function as a well-coupled network. The current literature suggests that circadian pacemaker neuronal networks rely heavily on communication mediated by chemical synapses comprising neuropeptides and neurotransmitters to regulate several behaviours and physiological processes. It has become increasingly clear that chemical synapses closely interact with electrical synapses and function together in the neuronal networks of most organisms. However, there are only a few studies which have examined the role of electrical synapses in circadian networks and here, we review our current understanding of gap junction proteins in circadian networks of various model systems. We describe the general mechanisms by which electrical synapses function in neural networks, their interactions with chemical neuromodulators and their contributions to the regulation of circadian rhythms. We also discuss the various methods available to characterize functional electrical synapses in these networks and the potential directions that remain to be explored to understand the roles of this relatively understudied mechanism of communication in modulating circadian behaviour.
Collapse
Affiliation(s)
- Aishwarya Ramakrishnan Iyer
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, United States
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- *Correspondence: Vasu Sheeba,
| |
Collapse
|
30
|
Crespo-Flores SL, Barber AF. The Drosophila circadian clock circuit is a nonhierarchical network of peptidergic oscillators. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100944. [PMID: 35709899 DOI: 10.1016/j.cois.2022.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The relatively simple Drosophila circadian clock circuit consists of 150 clock neurons that coordinate rhythmic behavior and physiology, which are generally classified based on neuroanatomical location. Transcriptional and connectomic studies have identified novel subdivisions of these clock neuron populations, and identified neuropeptides not previously known to be expressed in the fly clock circuit. An additional feature of fly clock neurons is daily axonal remodeling, first noted in small ventrolateral neurons, but more recently also found in additional clock neuron groups. These findings raise new questions about the functional roles of clock neuron subpopulations and daily remodeling of network architecture in regulating circadian behavior and physiology.
Collapse
Affiliation(s)
- Sergio L Crespo-Flores
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, USA
| | - Annika F Barber
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, USA.
| |
Collapse
|
31
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|