1
|
Temereva EN, Kostyuchenko RP. Digestive System Development and Posterior Hox/Parahox Gene Expression During Larval Life and Metamorphosis of the Phoronid Phoronopsis harmeri. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025. [PMID: 39840529 DOI: 10.1002/jez.b.23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Phoronida is a small group of marine animals, most of which are characterized by a long larval period and complex metamorphosis. As a result of metamorphosis, their body changes so much that their true anterior and posterior ends are very close to each other, and the intestine becomes long and U-shaped. Using histology and electron microscopy, we have shown that the elongation and change in shape of the digestive tract that occurs during metamorphosis in Phoronopsis harmeri larvae is accompanied by the formation of new parts and changes in ultrastructure. At the same time, our in situ hybridization data suggest that the posterior markers Cdx and Post2 are expressed in posterior tissues at larval stages, during metamorphosis, and in juveniles, and that changes in their expression correlate with remodeling of the posterior parts of the digestive tract. Our data may shed light on the evolution of body patterning in animals undergoing complex metamorphosis.
Collapse
Affiliation(s)
- Elena N Temereva
- Biological Faculty, Moscow State University, Moscow, Russia
- Faculty Biology and Biotechnology, National Research University "Higher School of Economics", Moscow, Russia
| | - Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
2
|
Li X, Du YX, Yu CL, Niu N. Ion channels in macrophages: Implications for disease progression. Int Immunopharmacol 2025; 144:113628. [PMID: 39566388 DOI: 10.1016/j.intimp.2024.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
RATIONALE Macrophages are immune cells found throughout the body and exhibit morphological and functional diversity. Macrophages have been implicated in a wide range of diseases, including autoimmune diseases, acute liver injury, cardiovascular diseases, lung diseases and tumours. Ion channels are transmembrane glycoproteins with important functions in maintaining homeostasis in the intra- and extracellular environment and mediating signal transduction. Many studies have shown that different types of ion channels influence the role of macrophages in the development of various diseases. In recent years, studies on the role of ion channels in macrophages in immune regulation and inflammatory responses have attracted much attention. OBJECTIVE AND FINDINGS In order to gain a deeper understanding of the role of macrophage ion channels, this paper reviews the recent research progress on the role of macrophage ion channels in recent years. The aim is to explore the role of different ion channels in the regulation of macrophage function and their impact on a variety of disease processes. The most studied channels are calcium, sodium and potassium channels, most of which are located in the cell membrane. Among these, TRP channels have a more complex role in M1 and M2 macrophage types. CONCLUSION Ion channels are critical for the functional regulation of macrophages. Targeting ion channels provides new avenues for disease prevention and treatment. This review provides researchers with new ideas and introduces readers to the current state of research on ion channels in macrophages.
Collapse
Affiliation(s)
- Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Chun-Lei Yu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
3
|
Martí-Solans J, Børve A, Hejnol A, Lynagh T. Diarylamidine activation of a brachiopod DEG/ENaC/ASIC channel. J Biol Chem 2025; 301:108066. [PMID: 39662830 PMCID: PMC11750451 DOI: 10.1016/j.jbc.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Diarylamidines are a group of widely used small molecule drugs. One common use of diarylamidines is their pharmacological inhibition of ligand-gated cation channels, including tetrameric ionotropic glutamate receptors and trimeric degenerin/epithelial sodium channel/acid-sensing ion channels. Here, we discover a degenerin/epithelial sodium channel/acid-sensing ion channel from the brachiopod (lamp shell) Novocrania anomala, at which diarylamidines act as agonists. The channel is closely related to bile acid-gated, pH-gated, and peptide-gated channels but is not activated by such stimuli. We describe activation of the channel by diminazene, 4',6-diamidino-2-phenylindole, and pentamidine, examine several biophysical and pharmacological properties, and briefly explore the molecular determinants of channel activity with site-directed mutagenesis. We term this channel the diarylamidine-activated sodium channel.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Chanket W, Pipatthana M, Sangphukieo A, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T, Phanchana M. The complete catalog of antimicrobial resistance secondary active transporters in Clostridioides difficile: evolution and drug resistance perspective. Comput Struct Biotechnol J 2024; 23:2358-2374. [PMID: 38873647 PMCID: PMC11170357 DOI: 10.1016/j.csbj.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.
Collapse
Affiliation(s)
- Wannarat Chanket
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Methinee Pipatthana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Ortega-Ramírez AM, Albani S, Bachmann M, Schmidt A, Pinoé-Schmidt M, Assmann M, Augustinowski K, Rossetti G, Gründer S. A conserved peptide-binding pocket in HyNaC/ASIC ion channels. Proc Natl Acad Sci U S A 2024; 121:e2409097121. [PMID: 39365813 PMCID: PMC11474038 DOI: 10.1073/pnas.2409097121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.
Collapse
Affiliation(s)
- Audrey Magdalena Ortega-Ramírez
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Simone Albani
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Michèle Bachmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Axel Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Manuela Pinoé-Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Marc Assmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Katrin Augustinowski
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Stefan Gründer
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| |
Collapse
|
6
|
Gąsiorowski L. Phoronida-A small clade with a big role in understanding the evolution of lophophorates. Evol Dev 2024; 26:e12437. [PMID: 37119003 DOI: 10.1111/ede.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
Phoronids, together with brachiopods and bryozoans, form the animal clade Lophophorata. Modern lophophorates are quite diverse-some can biomineralize while others are soft-bodied, they could be either solitary or colonial, and they develop through various eccentric larval stages that undergo different types of metamorphoses. The diversity of this clade is further enriched by numerous extinct fossil lineages with their own distinct body plans and life histories. In this review, I discuss how data on phoronid development, genetics, and morphology can inform our understanding of lophophorate evolution. The actinotrocha larvae of phoronids is a well documented example of intercalation of the new larval body plan, which can be used to study how new life stages emerge in animals with biphasic life cycle. The genomic and embryonic data from phoronids, in concert with studies of the fossil lophophorates, allow the more precise reconstruction of the evolution of lophophorate biomineralization. Finally, the regenerative and asexual abilities of phoronids can shed new light on the evolution of coloniality in lophophorates. As evident from those examples, Phoronida occupies a central role in the discussion of the evolution of lophophorate body plans and life histories.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
7
|
Kalienkova V, Dandamudi M, Paulino C, Lynagh T. Structural basis for excitatory neuropeptide signaling. Nat Struct Mol Biol 2024; 31:717-726. [PMID: 38337033 PMCID: PMC11026163 DOI: 10.1038/s41594-023-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024]
Abstract
Rapid signaling between neurons is mediated by ligand-gated ion channels, cell-surface proteins with an extracellular ligand-binding domain and a membrane-spanning ion channel domain. The degenerin/epithelial sodium channel (DEG/ENaC) superfamily is diverse in terms of its gating stimuli, with some DEG/ENaCs gated by neuropeptides, and others gated by pH, mechanical force or enzymatic activity. The mechanism by which ligands bind to and activate DEG/ENaCs is poorly understood. Here we dissected the structural basis for neuropeptide-gated activity of a neuropeptide-gated DEG/ENaC, FMRFamide-gated sodium channel 1 (FaNaC1) from the annelid worm Malacoceros fuliginosus, using cryo-electron microscopy. Structures of FaNaC1 in the ligand-free resting state and in several ligand-bound states reveal the ligand-binding site and capture the ligand-induced conformational changes of channel gating, which we verified with complementary mutagenesis experiments. Our results illuminate channel gating in DEG/ENaCs and offer a structural template for experimental dissection of channel pharmacology and ion conduction.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Drozdov A, Lebedev E, Adonin L. Comparative Analysis of Bivalve and Sea Urchin Genetics and Development: Investigating the Dichotomy in Bilateria. Int J Mol Sci 2023; 24:17163. [PMID: 38138992 PMCID: PMC10742642 DOI: 10.3390/ijms242417163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
- Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
9
|
Elkhatib W, Yanez-Guerra LA, Mayorova TD, Currie MA, Singh A, Perera M, Gauberg J, Senatore A. Function and phylogeny support the independent evolution of an ASIC-like Deg/ENaC channel in the Placozoa. Commun Biol 2023; 6:951. [PMID: 37723223 PMCID: PMC10507113 DOI: 10.1038/s42003-023-05312-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
ASIC channels are bilaterian proton-gated sodium channels belonging to the large and functionally-diverse Deg/ENaC family that also includes peptide- and mechanically-gated channels. Here, we report that the non-bilaterian invertebrate Trichoplax adhaerens possesses a proton-activated Deg/ENaC channel, TadNaC2, with a unique combination of biophysical features including tachyphylaxis like ASIC1a, reduced proton sensitivity like ASIC2a, biphasic macroscopic currents like ASIC3, as well as low sensitivity to the Deg/ENaC channel blocker amiloride and Ca2+ ions. Structural modeling and mutation analyses reveal that TadNaC2 proton gating is different from ASIC channels, lacking key molecular determinants, and involving unique residues within the palm and finger regions. Phylogenetic analysis reveals that a monophyletic clade of T. adhaerens Deg/ENaC channels, which includes TadNaC2, is phylogenetically distinct from ASIC channels, instead forming a clade with BASIC channels. Altogether, this work suggests that ASIC-like channels evolved independently in T. adhaerens and its phylum Placozoa. Our phylogenetic analysis also identifies several clades of uncharacterized metazoan Deg/ENaC channels, and provides phylogenetic evidence for the existence of Deg/ENaC channels outside of Metazoa, present in the gene data of select unicellular heterokont and filasterea-related species.
Collapse
Affiliation(s)
- Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Luis A Yanez-Guerra
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, England
| | | | - Mark A Currie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Maria Perera
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|