1
|
Liu B, Christopoulos A, Thal DM, Capuano B, Valant C, Scammells PJ. The Prosperity and Adversity of M 4 Muscarinic Acetylcholine Receptor Activators in the Treatment of Neuropsychiatric Disorders. J Med Chem 2025. [PMID: 40237346 DOI: 10.1021/acs.jmedchem.5c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Since the serendipitous discovery of chlorpromazine in the 1950s, almost all current anti-schizophrenia drugs utilize the same mode of action by blocking the dopamine receptors in the brain. Unfortunately, these only treat part of the symptoms and are ineffective in almost 30% of patients. The recent FDA approval of Cobenfy, a coformulation of xanomeline, a M1/M4 muscarinic acetylcholine receptor (mAChR) agonist, and a peripherally restricted pan-mAChR blocker, has propelled the M4R as a validated and novel antipsychotic target. With >25 years of history in developing xanomeline, significant challenges remain in developing M4R activators, either at the ACh orthosteric binding site or allosterically via secondary less-conserved binding sites. Herein, we summarize recent successes and failures of M4R agonists and positive allosteric modulators, along with the progress in structure-activity relationship studies on both orthosteric and allosteric scaffolds to offer pathways for future therapeutics to this novel biological target for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Boqun Liu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Sugiura Y, Ikuta T, Sumii Y, Tsujimoto H, Suzuki K, Suno R, Ariff PNAM, Iwata S, Shibata N, Inoue A, Kobayashi T, Kandori H, Katayama K. Discovering Key Activation Hotspots in the M 2 Muscarinic Receptor. J Am Chem Soc 2025; 147:11754-11765. [PMID: 40086452 PMCID: PMC11987023 DOI: 10.1021/jacs.4c14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G protein-coupled receptor (GPCR) that serves as a model system for understanding ligand recognition and GPCR activation. Here, using vibrational spectroscopy, we identify the mechanisms governing M2R activation by its native agonist, acetylcholine. Combined with mutagenesis, computational chemistry, and organic synthetic chemistry, our analyses found that the precise distance between acetylcholine and Asn404, one of the amino acids constituting the ligand-binding site, is important for M2R activation and that the N404Q mutant undergoes partial active state-like conformational changes. We discovered that a water molecule bridging acetylcholine and Asn404 forms a precise and flexible hydrogen bond network, triggering the outward movement of transmembrane helix 6 in M2R. Consistent with this observation, disruptions in this hydrogen bond network via chemical modification at the α- or β-position of acetylcholine failed to activate M2R. Collectively, our findings pinpoint Asn404 as a critical residue that both senses acetylcholine binding and induces M2R activation.
Collapse
Affiliation(s)
- Yuya Sugiura
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Ikuta
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuji Sumii
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hirokazu Tsujimoto
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kohei Suzuki
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ryoji Suno
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department
of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | | | - So Iwata
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Norio Shibata
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Asuka Inoue
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department
of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department
of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025; 24:251-275. [PMID: 39747671 PMCID: PMC11968245 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
4
|
Tsimpili H, Zoidis G. A New Era of Muscarinic Acetylcholine Receptor Modulators in Neurological Diseases, Cancer and Drug Abuse. Pharmaceuticals (Basel) 2025; 18:369. [PMID: 40143145 PMCID: PMC11945405 DOI: 10.3390/ph18030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
The cholinergic pathways in the central nervous system (CNS) play a pivotal role in different cognitive functions of the brain, such as memory and learning. This review takes a dive into the pharmacological side of this important part of CNS function, taking into consideration muscarinic receptors and cholinesterase enzymes. Targeting a specific subtype of five primary muscarinic receptor subtypes (M1-M5) through agonism or antagonism may benefit patients; thus, there is a great pharmaceutical research interest. Inhibition of AChE and BChE, orthosteric or allosteric, or partial agonism of M1 mAChR are correlated with Alzheimer's disease (AD) symptoms improvement. Agonism or antagonism on different muscarinic receptor subunits may lessen schizophrenia symptoms (especially positive allosteric modulation of M4 mAChR). Selective antagonism of M4 mAChR is a promising treatment for Parkinson's disease and dystonia, and the adverse effects are limited compared to inhibition of all five mAChR. Additionally, selective M5 antagonism plays a role in drug independence behavior. M3 mAChR overexpression is associated with malignancies, and M3R antagonists seem to have a therapeutic potential in cancer, while M1R and M2R inhibition leads to reduction of neoangiogenesis. Depending on the type of cancer, agonism of mAChR may promote cancer cell proliferation (as M3R agonism does) or protection against further tumor development (M1R agonism). Thus, there is an intense need to discover new potent compounds with specific action on muscarinic receptor subtypes. Chemical structures, chemical modification of function groups aiming at action enhancement, reduction of adverse effects, and optimization of Drug Metabolism and Pharmacokinetics (DMPK) will be further discussed, as well as protein-ligand docking.
Collapse
Affiliation(s)
- Helena Tsimpili
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
5
|
Yavuz M, Kahyaogullari BN, Demircan T. Anti-carcinogenic effects of arecaidine but-2-ynyl ester tosylate on breast cancer: proliferation inhibition and activation of apoptosis. Mol Biol Rep 2025; 52:278. [PMID: 40035899 DOI: 10.1007/s11033-025-10385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer among women globally and is notoriously difficult to treat due to its heterogeneous nature and the lack of an effective treatment. Muscarinic receptors (MRs), which serve as key regulators in the parasympathetic nervous system, exhibit significant regulatory functions in non-neural cells. Recent studies suggest that modulating MR activity can elicit anti-carcinogenic effects across various malignancies, stimulating interest in their oncological implications. To investigate this further, we explored the anti-carcinogenic effects of arecaidine but-2-ynyl ester tosylate (ABET), a potential M2 receptor activator, in BC cells using several cellular and molecular assays. METHODS AND RESULTS Molecular docking assays were employed to confirm the binding affinity of ABET to M2/M4 receptors. Subsequently, we evaluated the impact of ABET on cell viability, proliferation, clonogenicity, and migration in MDA-MB-231 and MCF-7 BC cell lines. Computational analysis revealed preferential binding of ABET to M2 and M4 receptors. In-vitro experiments demonstrated that ABET markedly inhibits viability, growth, clonogenicity, and migration in BC cells. Notably, ABET induced cell cycle arrest in MDA-MB-231 cells and promoted apoptotic cell death in MCF-7 cells. Furthermore, ABET downregulated key proliferation- and cell cycle-associated genes, including CCND1, CDK6, and MKI67. CONCLUSIONS Our findings underscore ABET as a promising therapeutic candidate for BC treatment, capable of suppressing cell growth, survival, and migration. Additional in-vivo studies are necessary to validate ABET's anti-neoplastic efficacy and evaluate its feasibility as novel therapeutic agent in BC management.
Collapse
Affiliation(s)
- Mervenur Yavuz
- Institute of Natural Sciences, Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | | | - Turan Demircan
- Medical Biology Department, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
6
|
Burger WAC, Mobbs JI, Rana B, Wang J, Joshi K, Gentry PR, Yeasmin M, Venugopal H, Bender AM, Lindsley CW, Miao Y, Christopoulos A, Valant C, Thal DM. Cryo-EM reveals a new allosteric binding site at the M 5 mAChR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636602. [PMID: 39975287 PMCID: PMC11838558 DOI: 10.1101/2025.02.05.636602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The M5 muscarinic acetylcholine receptor (M5 mAChR) represents a promising therapeutic target for neurological disorders. However, the high conservation of its orthosteric binding site has posed significant challenges for drug development. While selective positive allosteric modulators (PAMs) offer a potential solution, a structural understanding of the M5 mAChR and its allosteric binding sites has remained limited. Here, we present a 2.8 Å cryo-electron microscopy structure of the M5 mAChR complexed with heterotrimeric Gq protein and the agonist iperoxo, completing the active-state structural characterization of the mAChR family. To identify the binding site of M5-selective PAMs, we implemented an integrated approach combining mutagenesis, pharmacological assays, structural biology, and molecular dynamics simulations. Our mutagenesis studies revealed that selective M5 PAMs bind outside previously characterized M5 mAChR allosteric sites. Subsequently, we obtained a 2.1 Å structure of M5 mAChR co-bound with acetylcholine and the selective PAM VU6007678, revealing a novel allosteric pocket at the extrahelical interface between transmembrane domains 3 and 4 that was confirmed through mutagenesis and simulations. These findings demonstrate the diverse mechanisms of allosteric regulation in mAChRs and highlight the value of integrating pharmacological and structural approaches to identify novel allosteric binding sites.
Collapse
Affiliation(s)
- Wessel A. C. Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Jesse I. Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Bhavika Rana
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Keya Joshi
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Patrick R. Gentry
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Aaron M. Bender
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M. Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Venugopal H, Mobbs J, Taveneau C, Fox DR, Vuckovic Z, Gulati S, Knott G, Grinter R, Thal D, Mick S, Czarnik C, Ramm G. High-resolution cryo-EM using a common LaB 6 120-keV electron microscope equipped with a sub-200-keV direct electron detector. SCIENCE ADVANCES 2025; 11:eadr0438. [PMID: 39752481 PMCID: PMC11698077 DOI: 10.1126/sciadv.adr0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
High-resolution cryo-electron microscopy (cryo-EM) requires costly 200- to 300-keV cryo-transmission electron microscopes (cryo-TEMs) with field emission gun (FEG) sources, stable columns, constant-powered lenses, autoloader, and direct electron detectors (DED). Recent advances in 100-keV imaging with the emergence of sub-200-keV optimized DED technology promises the development of more affordable cryo-TEMs. So far, 100-keV imaging has required microscopes with FEG sources. We here explored whether a standard 120-keV TEMs with thermionic lanthanum hexaboride (LaB6) source can be upgraded with a sub-200-keV DED for high-resolution cryo-EM. Using this imaging configuration, we successfully obtained a 2.65 Å reconstruction for apoferritin, 4.33 Å for 64-kDa hemoglobin, and 4.4 Å for an asymmetric 153kDa membrane protein GPCR. All results were achieved using standard automated data collection with SerialEM, demonstrating the feasibility to collect large cryo-EM datasets with a side-entry cryo-holder. These results showcase a widely accessible solution to obtaining interpretable cryo-EM structures at low cost and contribute to the "democratization" of cryo-EM.
Collapse
Affiliation(s)
- Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Jesse Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cyntia Taveneau
- GlycoEra AG, Einsiedlerstrasse 34, 8820 Wädenswil, Switzerland
| | - Daniel R. Fox
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ziva Vuckovic
- GlycoEra AG, Einsiedlerstrasse 34, 8820 Wädenswil, Switzerland
| | | | - Gavin Knott
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rhys Grinter
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - David Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Kaoullas MG, Thal DM, Christopoulos A, Valant C. Ligand bias at the muscarinic acetylcholine receptor family: Opportunities and challenges. Neuropharmacology 2024; 258:110092. [PMID: 39067666 DOI: 10.1016/j.neuropharm.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the endogenous neurotransmitter, acetylcholine (ACh). Disruption of mAChR signalling has been associated with a variety of neurological disorders and non-neurological diseases. Consequently, the development of agonists and antagonists of the mAChRs has been a major avenue in drug discovery. Unfortunately, mAChR ligands are often associated with on-target side effects for two reasons. The first reason is due to the high sequence conservation at the orthosteric ACh binding site among all five receptor subtypes (M1-M5), making on-target subtype selectivity a major challenge. The second reason is due to on-target side effects of mAChR drugs that are associated with the pleiotropic nature of mAChR signalling at the level of a single mAChR subtype. Indeed, there is growing evidence that within the myriad of signalling events produced by mAChR ligands, some will have therapeutic benefits, whilst others may promote cholinergic side effects. This paradigm of drug action, known as ligand bias or biased agonism, is an attractive feature for next-generation mAChR drugs, as it holds the promise of developing drugs devoid of on-target adverse effects. Although relatively simple to detect and even quantify in vitro, ligand bias, as observed in recombinant systems, does not always translate to in vivo systems, which remains a major hurdle in GPCR drug discovery, including the mAChR family. Here we report recent studies that have attempted to detect and quantify ligand bias at the mAChR family, and briefly discuss the challenges associated with biased agonist drug development. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Michaela G Kaoullas
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia.
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia.
| |
Collapse
|
9
|
Tobin AB. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 2024; 23:743-758. [PMID: 39143241 DOI: 10.1038/s41573-024-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Collapse
Affiliation(s)
- Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Kim MJ, Ibrahim MM, Jablonski MM. Deepening insights into cholinergic agents for intraocular pressure reduction: systems genetics, molecular modeling, and in vivo perspectives. Front Mol Biosci 2024; 11:1423351. [PMID: 39130374 PMCID: PMC11310038 DOI: 10.3389/fmolb.2024.1423351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Parasympathetic activation in the anterior eye segment regulates various physiological functions. This process, mediated by muscarinic acetylcholine receptors, also impacts intraocular pressure (IOP) through the trabecular meshwork. While FDA-approved M3 muscarinic receptor (M3R) agonists exist for IOP reduction, their systemic cholinergic adverse effects pose limitations in clinical use. Therefore, advancing our understanding of the cholinergic system in the anterior segment of the eye is crucial for developing additional IOP-reducing agents with improved safety profiles. Systems genetics analyses were utilized to explore correlations between IOP and the five major muscarinic receptor subtypes. Molecular docking and dynamics simulations were applied to human M3R homology model using a comprehensive set of human M3R ligands and 1,667 FDA-approved or investigational drugs. Lead compounds from the modeling studies were then tested for their IOP-lowering abilities in mice. Systems genetics analyses unveiled positive correlations in mRNA expressions among the five major muscarinic receptor subtypes, with a negative correlation observed only in M3R with IOP. Through modeling studies, rivastigmine and edrophonium emerged as the most optimally suited cholinergic drugs for reducing IOP via a potentially distinct mechanism from pilocarpine or physostigmine. Subsequent animal studies confirmed comparable IOP reductions among rivastigmine, edrophonium, and pilocarpine, with longer durations of action for rivastigmine and edrophonium. Mild cholinergic adverse effects were observed with pilocarpine and rivastigmine but absent with edrophonium. These findings advance ocular therapeutics, suggesting a more nuanced role of the parasympathetic system in the anterior eye segment for reducing IOP than previously thought.
Collapse
Affiliation(s)
- Minjae J. Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mohamed M. Ibrahim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Monica M. Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Kenakin T. Bias translation: The final frontier? Br J Pharmacol 2024; 181:1345-1360. [PMID: 38424747 DOI: 10.1111/bph.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024] Open
Abstract
Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Fu L, Luo Y, Niu L, Lin Y, Chen X, Zhang J, Tang W, Chen Y, Jiao Y. M 1/M 4 receptors as potential therapeutic treatments for schizophrenia: A comprehensive study. Bioorg Med Chem 2024; 105:117728. [PMID: 38640587 DOI: 10.1016/j.bmc.2024.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Muscarinic acetylcholine receptors (mAChRs) play a significant role in the pathophysiology of schizophrenia. Although activating mAChRs holds potential in addressing the full range of schizophrenia symptoms, clinical application of many non-selective mAChR agonists in cognitive deficits, positive and negative symptoms is hindered by peripheral side effects (gastrointestinal disturbances and cardiovascular effects) and dosage restrictions. Ligands binding to the allosteric sites of mAChRs, particularly the M1 and M4 subtypes, demonstrate activity in improving cognitive function and amelioration of positive and negative symptoms associated with schizophrenia, enhancing our understanding of schizophrenia. The article aims to critically examine current design concepts and clinical advancements in synthesizing and designing small molecules targeting M1/M4, providing theoretical insights and empirical support for future research in this field.
Collapse
Affiliation(s)
- Lingsheng Fu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Longyan Niu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Ying Lin
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xingru Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Junhao Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China..
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China..
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China..
| |
Collapse
|
14
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Adediwura VA, Miao Y. Mechanistic Insights into Peptide Binding and Deactivation of an Adhesion G Protein-Coupled Receptor. Molecules 2023; 29:164. [PMID: 38202747 PMCID: PMC10780249 DOI: 10.3390/molecules29010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Adhesion G protein-coupled receptors (ADGRGs) play critical roles in the reproductive, neurological, cardiovascular, and endocrine systems. In particular, ADGRG2 plays a significant role in Ewing sarcoma cell proliferation, parathyroid cell function, and male fertility. In 2022, a cryo-EM structure was reported for the active ADGRG2 bound by an optimized peptide agonist IP15 and the Gs protein. The IP15 peptide agonist was also modified to antagonists 4PH-E and 4PH-D with mutations of the 4PH residue to Glu and Asp, respectively. However, experimental structures of inactive antagonist-bound ADGRs remain to be resolved, and the activation mechanism of ADGRs such as ADGRG2 is poorly understood. Here, we applied Gaussian accelerated molecular dynamics (GaMD) simulations to probe conformational dynamics of the agonist- and antagonist-bound ADGRG2. By performing GaMD simulations, we were able to identify important low-energy conformations of ADGRG2 in the active, intermediate, and inactive states, as well as explore the binding conformations of each peptide. Moreover, our simulations revealed critical peptide-receptor residue interactions during the deactivation of ADGRG2. In conclusion, through GaMD simulations, we uncovered mechanistic insights into peptide (agonist and antagonist) binding and deactivation of the ADGRG2. These findings will potentially facilitate rational design of new peptide modulators of ADGRG2 and other ADGRs.
Collapse
Affiliation(s)
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
16
|
Do HN, Wang J, Miao Y. Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors. JACS AU 2023; 3:3165-3180. [PMID: 38034960 PMCID: PMC10685416 DOI: 10.1021/jacsau.3c00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) make up the largest superfamily of human membrane proteins and represent primary targets of ∼1/3 of currently marketed drugs. Allosteric modulators have emerged as more selective drug candidates compared with orthosteric agonists and antagonists. However, many X-ray and cryo-EM structures of GPCRs resolved so far exhibit negligible differences upon the binding of positive and negative allosteric modulators (PAMs and NAMs). The mechanism of dynamic allosteric modulation in GPCRs remains unclear. In this work, we have systematically mapped dynamic changes in free energy landscapes of GPCRs upon binding of allosteric modulators using the Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy prOfiling Workflow (GLOW). GaMD simulations were performed for a total of 66 μs on 44 GPCR systems in the presence and absence of the modulator. DL and free energy calculations revealed significantly reduced dynamic fluctuations and conformational space of GPCRs upon modulator binding. While the modulator-free GPCRs often sampled multiple low-energy conformational states, the NAMs and PAMs confined the inactive and active agonist-G-protein-bound GPCRs, respectively, to mostly only one specific conformation for signaling. Such cooperative effects were significantly reduced for binding of the selective modulators to "non-cognate" receptor subtypes. Therefore, GPCR allostery exhibits a dynamic "conformational selection" mechanism. In the absence of available modulator-bound structures as for most current GPCRs, it is critical to use a structural ensemble of representative GPCR conformations rather than a single structure for compound docking ("ensemble docking"), which will potentially improve structure-based design of novel allosteric drugs of GPCRs.
Collapse
Affiliation(s)
| | - Jinan Wang
- Computational Biology Program
and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
17
|
Burger WAC, Pham V, Vuckovic Z, Powers AS, Mobbs JI, Laloudakis Y, Glukhova A, Wootten D, Tobin AB, Sexton PM, Paul SM, Felder CC, Danev R, Dror RO, Christopoulos A, Valant C, Thal DM. Xanomeline displays concomitant orthosteric and allosteric binding modes at the M 4 mAChR. Nat Commun 2023; 14:5440. [PMID: 37673901 PMCID: PMC10482975 DOI: 10.1038/s41467-023-41199-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
The M4 muscarinic acetylcholine receptor (M4 mAChR) has emerged as a drug target of high therapeutic interest due to its expression in regions of the brain involved in the regulation of psychosis, cognition, and addiction. The mAChR agonist, xanomeline, has provided significant improvement in the Positive and Negative Symptom Scale (PANSS) scores in a Phase II clinical trial for the treatment of patients suffering from schizophrenia. Here we report the active state cryo-EM structure of xanomeline bound to the human M4 mAChR in complex with the heterotrimeric Gi1 transducer protein. Unexpectedly, two molecules of xanomeline were found to concomitantly bind to the monomeric M4 mAChR, with one molecule bound in the orthosteric (acetylcholine-binding) site and a second molecule in an extracellular vestibular allosteric site. Molecular dynamic simulations supports the structural findings, and pharmacological validation confirmed that xanomeline acts as a dual orthosteric and allosteric ligand at the human M4 mAChR. These findings provide a basis for further understanding xanomeline's complex pharmacology and highlight the myriad of ways through which clinically relevant ligands can bind to and regulate GPCRs.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Departments of Computer Science, Structural Biology, and Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Yianni Laloudakis
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Andrew B Tobin
- The Advanced Research Centre (ARC), Centre for Translational Science, School of Biomolecular Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | | | | | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Ron O Dror
- Departments of Computer Science, Structural Biology, and Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Neuromedicines Discovery Centre, Monash University, Parkville, VIC, 3052, Australia.
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|