1
|
Lu C, Wang X, Ye P, Lu Z, Ma J, Luo W, Wang S, Chen X. Antimicrobial Peptides From the Gut Microbiome of the Centenarians: Diversification of Biosynthesis and Youthful Development of Resistance Genes. J Gerontol A Biol Sci Med Sci 2024; 79:glae218. [PMID: 39207726 DOI: 10.1093/gerona/glae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) offer a potential solution to the antibiotic crisis owing to their antimicrobial properties, and the human gut biome may be a source of these peptides. However, the potential AMPs and AMP resistance genes (AMPRGs) of gut microbes in different age groups have not been thoroughly assessed. Here, we investigated the potential development of AMPs and the distribution pattern of AMPRGs in the gut microbiome at different ages by analyzing the intestinal metagenomic data of healthy individuals at different life stages (CG: centenarians group n = 20; OAG: older adults group: n = 15; YG: young group: n = 15). Age-related increases were observed in the potential AMPs within the gut microbiome, with centenarians showing a greater diversity of these peptides. However, the gut microbiome of the CG group had a lower level of AMPRGs compared to that of the OAG group, and it was similar to the level found in the YG group. Additionally, conventional probiotic strains showed a significant positive correlation with certain potential AMPs and were associated with a lower detection of resistance genes. Furthermore, comparing potential AMPs with existing libraries revealed limited similarity, indicating that current machine learning models can identify novel peptides in the gut microbiota. These results indicate that longevity may benefit from the diversity of AMPs and lower resistance genes. Our findings help explain the age advantage of the centenarians and identify the potential for antimicrobial peptide biosynthesis in the human gut microbiome, offering insights into the development of antimicrobial peptide resistance and the screening of probiotic strains.
Collapse
Affiliation(s)
- Chunrong Lu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Xiaojun Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Pengpeng Ye
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Zhilong Lu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Jie Ma
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Shuai Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| |
Collapse
|
2
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Bhaumik KN, Spohn R, Dunai A, Daruka L, Olajos G, Zákány F, Hetényi A, Pál C, Martinek TA. Chemically diverse antimicrobial peptides induce hyperpolarization of the E. coli membrane. Commun Biol 2024; 7:1264. [PMID: 39367191 PMCID: PMC11452689 DOI: 10.1038/s42003-024-06946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The negative membrane potential within bacterial cells is crucial in various essential cellular processes. Sustaining a hyperpolarised membrane could offer a novel strategy to combat antimicrobial resistance. However, it remains uncertain which molecules are responsible for inducing hyperpolarization and what the underlying molecular mechanisms are. Here, we demonstrate that chemically diverse antimicrobial peptides (AMPs) trigger hyperpolarization of the bacterial cytosolic membrane when applied at subinhibitory concentrations. Specifically, these AMPs adopt a membrane-induced amphipathic structure and, thereby, generate hyperpolarization in Escherichia coli without damaging the cell membrane. These AMPs act as selective ionophores for K+ (over Na+) or Cl- (over H2PO4- and NO3-) ions, generating diffusion potential across the membrane. At lower dosages of AMPs, a quasi-steady-state membrane polarisation value is achieved. Our findings highlight the potential of AMPs as a valuable tool for chemically hyperpolarising bacteria, with implications for antimicrobial research and bacterial electrophysiology.
Collapse
Affiliation(s)
- Kaushik Nath Bhaumik
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Gábor Olajos
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Florina Zákány
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary.
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, Szeged, Hungary.
| |
Collapse
|
4
|
Erkoc P, Schiffmann S, Ulshöfer T, Henke M, Marner M, Krämer J, Predel R, Schäberle TF, Hurka S, Dersch L, Vilcinskas A, Fürst R, Lüddecke T. Determining the pharmacological potential and biological role of linear pseudoscorpion toxins via functional profiling. iScience 2024; 27:110209. [PMID: 39021791 PMCID: PMC11253529 DOI: 10.1016/j.isci.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Arthropod venoms contain bioactive molecules attractive for biomedical applications. However, few of these have been isolated, and only a tiny number has been characterized. Pseudoscorpions are small arachnids whose venom has been largely overlooked. Here, we present the first structural and functional assessment of the checacin toxin family, discovered in the venom of the house pseudoscorpion (Chelifer cancroides). We combined in silico and in vitro analyses to establish their bioactivity profile against microbes and various cell lines. This revealed inhibitory effects against bacteria and fungi. We observed cytotoxicity against specific cell types and effects involving second messengers. Our work provides insight into the biomedical potential and evolution of pseudoscorpion venoms. We propose that plesiotypic checacins evolved to defend the venom gland against infection, whereas apotypic descendants evolved additional functions. Our work highlights the importance of considering small and neglected species in biodiscovery programs.
Collapse
Affiliation(s)
- Pelin Erkoc
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, 60438 Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Thomas Ulshöfer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Marina Henke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Michael Marner
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Till F. Schäberle
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Ludwig Dersch
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Robert Fürst
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tim Lüddecke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| |
Collapse
|
5
|
Hsieh YYP, Sun W, Young JM, Cheung R, Hogan DA, Dandekar AA, Malik HS. Widespread fungal-bacterial competition for magnesium lowers bacterial susceptibility to polymyxin antibiotics. PLoS Biol 2024; 22:e3002694. [PMID: 38900845 PMCID: PMC11218974 DOI: 10.1371/journal.pbio.3002694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Fungi and bacteria coexist in many polymicrobial communities, yet the molecular basis of their interactions remains poorly understood. Here, we show that the fungus Candida albicans sequesters essential magnesium ions from the bacterium Pseudomonas aeruginosa. To counteract fungal Mg2+ sequestration, P. aeruginosa expresses the Mg2+ transporter MgtA when Mg2+ levels are low. Thus, loss of MgtA specifically impairs P. aeruginosa in co-culture with C. albicans, but fitness can be restored by supplementing Mg2+. Using a panel of fungi and bacteria, we show that Mg2+ sequestration is a general mechanism of fungal antagonism against gram-negative bacteria. Mg2+ limitation enhances bacterial resistance to polymyxin antibiotics like colistin, which target gram-negative bacterial membranes. Indeed, experimental evolution reveals that P. aeruginosa evolves C. albicans-dependent colistin resistance via non-canonical means; antifungal treatment renders resistant bacteria colistin-sensitive. Our work suggests that fungal-bacterial competition could profoundly impact polymicrobial infection treatment with antibiotics of last resort.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Wanting Sun
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Robin Cheung
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
7
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
8
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. Methods Mol Biol 2024; 2714:329-352. [PMID: 37676607 DOI: 10.1007/978-1-0716-3441-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico
| | - Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Fabien Plisson
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico.
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
10
|
Gao H, Jiang N, Niu Q, Mei S, Haugen HJ, Ma Q. Biocompatible Nanostructured Silver-Incorporated Implant Surfaces Show Effective Antibacterial, Osteogenic, and Anti-Inflammatory Effects in vitro and in Rat Model. Int J Nanomedicine 2023; 18:7359-7378. [PMID: 38090361 PMCID: PMC10711298 DOI: 10.2147/ijn.s435415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Titanium (Ti) and its alloys are widely utilized in endosseous implants. However, their clinical efficacy is marred by complications arising from bacterial infections owing to their inadequate antibacterial properties. Consequently, enhancing the antibacterial attributes of implant surfaces stands as a pivotal objective in the realm of implantable materials research. Methods In this study, we employed sequential anodization and plasma immersion ion implantation (PIII) technology to fabricate a silver-embedded sparsely titania nanotube array (SNT) on the near-β titanium alloy Ti-5Zr-3Sn-5Mo-15Nb (TLM) implants. The surface characteristics, antimicrobial properties, biocompatibility, and osteogenic activity of the silver-nanomodified SNT implant (SNT Ag) surface, alongside peri-implant inflammatory responses, were meticulously assessed through a combination of in vitro and in vivo analyses. Results Compared with polished TLM and SNT, the silver-embedded SNT (SNT Ag) surface retained the basic shape of nanotubes and stably released Ag+ at the ppm level for a long time, which demonstrated an effective inhibition and bactericidal activity against Staphylococcus aureus (SA) while maintaining ideal cytocompatibility. Additionally, the subtle modifications in nanotubular topography induced by silver implantation endowed SNT Ag with enhanced osteogenic activity and mitigated inflammatory capsulation in soft tissue peri-implants in a rat model. Conclusion Incorporating a silver-embedded SNT array onto the implant surface demonstrated robust antibacterial properties, impeccable cytocompatibility, exceptional osteogenic activity, and the potential to prevent inflammatory encapsulation around the implant site. The Silver-PIII modification strategy emerges as a highly promising approach for surface applications in endosseous implants and trans-gingival implant abutments.
Collapse
Affiliation(s)
- Hui Gao
- Department of Stomatology, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Jiang
- Department of Community Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Qiannan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shenglin Mei
- Xingrui Dental Clinic, Xi’an, Shaanxi Province, People’s Republic of China
- Department of Physics & Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|