1
|
Liu K, Chen H, Li Y, Wang B, Li Q, Zhang L, Liu X, Wang C, Ertas YN, Shi H. Autophagy flux in bladder cancer: Cell death crosstalk, drug and nanotherapeutics. Cancer Lett 2024; 591:216867. [PMID: 38593919 DOI: 10.1016/j.canlet.2024.216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Autophagy, a self-digestion mechanism, has emerged as a promising target in the realm of cancer therapy, particularly in bladder cancer (BCa), a urological malignancy characterized by dysregulated biological processes contributing to its progression. This highly conserved catabolic mechanism exhibits aberrant activation in pathological events, prominently featured in human cancers. The nuanced role of autophagy in cancer has been unveiled as a double-edged sword, capable of functioning as both a pro-survival and pro-death mechanism in a context-dependent manner. In BCa, dysregulation of autophagy intertwines with cell death mechanisms, wherein pro-survival autophagy impedes apoptosis and ferroptosis, while pro-death autophagy diminishes tumor cell survival. The impact of autophagy on BCa progression is multifaceted, influencing metastasis rates and engaging with the epithelial-mesenchymal transition (EMT) mechanism. Pharmacological modulation of autophagy emerges as a viable strategy to impede BCa progression and augment cell death. Notably, the introduction of nanoparticles for targeted autophagy regulation holds promise as an innovative approach in BCa suppression. This review underscores the intricate interplay of autophagy with cell death pathways and its therapeutic implications in the nuanced landscape of bladder cancer.
Collapse
Affiliation(s)
- Kuan Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Huijing Chen
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Yanhong Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Bei Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Qian Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Xiaohui Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| | - Ce Wang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey.
| | - Hongyun Shi
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| |
Collapse
|
2
|
Wang R, Li R, Yang H, Chen X, Wu L, Zheng X, Jin Y. Flavokawain C inhibits proliferation and migration of liver cancer cells through FAK/PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:117. [PMID: 38460052 PMCID: PMC10924746 DOI: 10.1007/s00432-024-05639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.
Collapse
Affiliation(s)
- Rong Wang
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Rizhao Li
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Huibing Yang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Chen
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | - Yuepeng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Liu Z, Song L, Xie J, Wu XR, Gin GE, Wang B, Uchio E, Zi X. Kavalactone Kawain Impedes Urothelial Tumorigenesis in UPII-Mutant Ha-Ras Mice via Inhibition of mTOR Signaling and Alteration of Cancer Metabolism. Molecules 2023; 28:1666. [PMID: 36838656 PMCID: PMC9966944 DOI: 10.3390/molecules28041666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
UPII-mutant Ha-ras transgenic mice develop urothelial hyperplasia and low-grade papillary carcinoma, which mimics human non-muscle invasive bladder cancer (NMIBC). We investigated the effects and mechanisms of kawain, a main kavalactone in the kava plant, on oncogenic Ha-ras-driven urothelial carcinoma in these mice. The mice were fed at six weeks of age with vehicle control or kawain (6 g/kg) formulated food for approximately five months. Seventy-eight percent of the mice or more fed with kawain food survived more than six months of age, whereas only 32% control food-fed male mice survived, (p = 0.0082). The mean wet bladder weights (a surrogate for tumor burden) of UPII-mutant Ha-ras transgenic mice with kawain diet was decreased by approximately 56% compared to those fed with the control diet (p = 0.035). The kawain diet also significantly reduced the occurrence of hydronephrosis and hematuria in UPII-mutant Ha-ras transgenic mice. Histological examination and immunohistochemistry analysis revealed that vehicle control-treated mice displayed more urothelial carcinoma and Ki67-positive cells in the bladder compared to kawain treated mice. Global metabolic profiling of bladder tumor samples from mice fed with kawain food showed significantly more enrichment of serotonin and less abundance of xylulose, prostaglandin A2, D2 and E2 compared to those from control diet-fed mice, suggesting decreased shunting of glucose to the pentose phosphate pathway (PPP) and reduced inflammation. In addition, kawain selectively inhibited the growth of human bladder cancer cell lines with a significant suppression of 4E-BP1 expression and rpS6 phosphorylation. These observations indicate a potential impact of kawain consumption on bladder cancer prevention by rewiring the metabolic programs of the tumor cells.
Collapse
Affiliation(s)
- Zhongbo Liu
- Department of Urology, University of California Irvine, Orange, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of California Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Jun Xie
- Department of Urology, University of California Irvine, Orange, CA 92868, USA
| | - Xue-Ru Wu
- Department of Urology, NYU School of Medicine, New York, NY 10016, USA
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
| | - Greg E. Gin
- Department of Urology, University of California Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Beverly Wang
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Edward Uchio
- Department of Urology, University of California Irvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
4
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
5
|
An Updated Review on the Psychoactive, Toxic and Anticancer Properties of Kava. J Clin Med 2022; 11:jcm11144039. [PMID: 35887801 PMCID: PMC9315573 DOI: 10.3390/jcm11144039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Kava (Piper methysticum) has been widely consumed for many years in the South Pacific Islands and displays psychoactive properties, especially soothing and calming effects. This plant has been used in Western countries as a natural anxiolytic in recent decades. Kava has also been used to treat symptoms associated with depression, menopause, insomnia, and convulsions, among others. Along with its putative beneficial health effects, kava has been associated with liver injury and other toxic effects, including skin toxicity in heavy consumers, possibly related to its metabolic profile or interference in the metabolism of other xenobiotics. Kava extracts and kavalactones generally displayed negative results in genetic toxicology assays although there is sufficient evidence for carcinogenicity in experimental animals, most likely through a non-genotoxic mode of action. Nevertheless, the chemotherapeutic/chemopreventive potential of kava against cancer has also been suggested. Both in vitro and in vivo studies have evaluated the effects of flavokavains, kavalactones and/or kava extracts in different cancer models, showing the induction of apoptosis, cell cycle arrest and other antiproliferative effects in several types of cancer, including breast, prostate, bladder, and lung. Overall, in this scoping review, several aspects of kava efficacy and safety are discussed and some pertinent issues related to kava consumption are identified.
Collapse
|
6
|
Saeed S, Zahoor AF, Ahmad S, Akhtar R, Sikandar S. Reformatsky reaction as a key step in the synthesis of natural products: A review. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2008447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sana Sikandar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Biological Activity, Hepatotoxicity, and Structure-Activity Relationship of Kavalactones and Flavokavins, the Two Main Bioactive Components in Kava ( Piper methysticum). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6851798. [PMID: 34471418 PMCID: PMC8405297 DOI: 10.1155/2021/6851798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Kava (Piper methysticum Forst) is a popular and favorable edible medicinal herb which was traditionally used to prepare a nonfermented beverage with relaxant beneficial for both social and recreational purposes. Numerous studies conducted on kava have confirmed the presence of kavalactones and flavokawains, two major groups of bioactive ingredients, in this miraculous natural plant. Expectedly, both kavalactone and flavokawain components exhibited potent antianxiety and anticancer activities, and their structure-activity relationships were also revealed. However, dozens of clinical data revealed the hepatotoxicity effect which is indirectly or directly associated with kava consumption, and most of the evidence currently seems to point the compounds of flavokawains in kava were responsible. Therefore, our aim is to conduct a systematic review of kavalactones and flavokawains in kava including their biological activities, structure-activity relationships, and toxicities, and as a result of our systematic investigations, suggestions on kava and its compounds are supplied for future research.
Collapse
|
8
|
Kong L, Dong R, Huang K, Wang X, Wang D, Yue N, Wang C, Sun P, Gu J, Luo H, Liu K, Wu J, Sun H, Meng Q. Yangonin modulates lipid homeostasis, ameliorates cholestasis and cellular senescence in alcoholic liver disease via activating nuclear receptor FXR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153629. [PMID: 34304130 DOI: 10.1016/j.phymed.2021.153629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a progressive disease beginning with simple steatosis but can progress to alcoholic steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. The morbidity of ALD is on the rise and has been a large burden on global healthcare system. It is unfortunately that there are currently no approved therapeutic drugs against ALD. Hence, it is of utmost urgency to develop the efficacious therapies. The ability of many molecular targets against ALD is under investigation. Farnesoid X receptor (FXR), a member of the ligand-activated transcription factor superfamily, has been recently demonstrated to have a crucial role in the pathogenesis and progression of ALD. PURPOSE The purpose of the study is to determine whether Yangonin (YAN), a FXR agonist previously demonstrated by us, exerts the hepatoprotective effects against ALD and further to clarify the mechanisms in vitro and in vivo. STUDY DESIGN The alcoholic liver disease model induced by Lieber-Decarli liquid diet was established with or without Yan treatment. METHODS We determined the liver to body weight ratios, the body weight, serum and hepatic biochemical indicators. The alleviation of the liver histopathological progression was evaluated by H&E and immunohistochemical staining. Western blot and quantitative real-time PCR were used to demonstrate YAN treatment-mediated alleviation mechanisms of ALD. RESULTS The data indicated that YAN existed hepatoprotective activity against ALD via FXR activation. YAN improved the lipid homeostasis by decreasing hepatic lipogenesis and increasing fatty acid β-oxidation and lipoprotein lipolysis through modulating the related protein. Also, YAN ameliorated ethanol-induced cholestasis via inhibiting bile acid uptake transporter Ntcp and inducing bile acid efflux transporter Bsep and Mrp2 expression. Besides, YAN improved bile acid homeostasis via inducing Sult2a1 expression and inhibiting Cyp7a1 and Cyp8b1 expression. Furthermore, YAN attenuated ethanol-triggered hepatocyte damage by inhibiting cellular senescence marker P16, P21 and Hmga1 expression. Also, YAN alleviated ethanol-induced inflammation by down-regulating the inflammation-related gene IL-6, IL-1β and TNF-α expression. Notably, the protective effects of YAN were cancelled by FXR siRNA in vitro and FXR antagonist GS in vivo. CONCLUSIONS YAN exerted significant hepatoprotective effects against liver injury triggered by ethanol via FXR-mediated target gene modulation.
Collapse
Affiliation(s)
- Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Renchao Dong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kai Huang
- Drug Clinical Trial Institution, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Dalong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Nan Yue
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Bian T, Corral P, Wang Y, Botello J, Kingston R, Daniels T, Salloum RG, Johnston E, Huo Z, Lu J, Liu AC, Xing C. Kava as a Clinical Nutrient: Promises and Challenges. Nutrients 2020; 12:E3044. [PMID: 33027883 PMCID: PMC7600512 DOI: 10.3390/nu12103044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Kava beverages are typically prepared from the root of Piper methysticum. They have been consumed among Pacific Islanders for centuries. Kava extract preparations were once used as herbal drugs to treat anxiety in Europe. Kava is also marketed as a dietary supplement in the U.S. and is gaining popularity as a recreational drink in Western countries. Recent studies suggest that kava and its key phytochemicals have anti-inflammatory and anticancer effects, in addition to the well-documented neurological benefits. While its beneficial effects are widely recognized, rare hepatotoxicity had been associated with use of certain kava preparations, but there are no validations nor consistent mechanisms. Major challenges lie in the diversity of kava products and the lack of standardization, which has produced an unmet need for quality initiatives. This review aims to provide the scientific community and consumers, as well as regulatory agencies, with a broad overview on kava use and its related research. We first provide a historical background for its different uses and then discuss the current state of the research, including its chemical composition, possible mechanisms of action, and its therapeutic potential in treating inflammatory and neurological conditions, as well as cancer. We then discuss the challenges associated with kava use and research, focusing on the need for the detailed characterization of kava components and associated risks such as its reported hepatotoxicity. Lastly, given its growing popularity in clinical and recreational use, we emphasize the urgent need for quality control and quality assurance of kava products, pharmacokinetics, absorption, distribution, metabolism, excretion, and foundational pharmacology. These are essential in order to inform research into the molecular targets, cellular mechanisms, and creative use of early stage human clinical trials for designer kava modalities to inform and guide the design and execution of future randomized placebo controlled trials to maximize kava's clinical efficacy and to minimize its risks.
Collapse
Affiliation(s)
- Tengfei Bian
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Pedro Corral
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Yuzhi Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Jordy Botello
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Rick Kingston
- College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Tyler Daniels
- Thorne Research Inc., Industrial Road, 620 Omni Dr, Summerville, SC 29483, USA;
| | - Ramzi G. Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Edward Johnston
- The Association for Hawaiian Awa (kava), Pepe’ekeo, HI 96783, USA;
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Junxuan Lu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Andrew C. Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| |
Collapse
|
10
|
Celentano A, Yiannis C, Paolini R, Zhang P, Farah CS, Cirillo N, Yap T, McCullough M. Kava constituents exert selective anticancer effects in oral squamous cell carcinoma cells in vitro. Sci Rep 2020; 10:15904. [PMID: 32985597 PMCID: PMC7522996 DOI: 10.1038/s41598-020-73058-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Kava is a beverage made from the ground roots of the plant Piper Methysticum. Active compounds of Kava have previously been demonstrated to exert an antiproliferative effect through cell cycle arrest and promotion of apoptosis. Our aim was to investigate the in vitro effects of the main constituents derived from Kava on oral squamous cell carcinoma (OSCC) activity. Gas chromatography mass spectrometry (GCMS) was used to characterise the main constituents of two Kava preparations. Cell proliferation was assessed in two human OSCC cell lines (H400 and BICR56) and in normal oral keratinocytes (OKF6) treated with the identified Kava constituents, namely Flavokawain A (FKA), Flavokawain B (FKB), yangonin, kavain and methysticin using an MTS in vitro assay. Cell migration at 16 h was assessed using a Transwell migration assay. Cell invasion was measured at 22 h using a Matrigel assay. Cell adhesion was assessed at 90 min with a Cytoselect Adhesion assay. The two Kava preparations contained substantially different concentrations of the main chemical constituents. Treatment of malignant and normal oral keratinocyte cell lines with three of the identified constituents, 10 μg/ml FKA, 2.5 μg/ml FKB and 10 μg/ml yangonin, showed a significant reduction in cell proliferation in both H400 and BICR56 cancer cell lines but not in normal OKF6 cells. Remarkably, the same Kava constituents induced a significant reduction of OSCC cell migration and invasion. We have demonstrated, for the first time, that Kava constituents, FKA, FKB and yangonin have potential anticancer effects on OSCC. This highlights an avenue for further research of Kava constituents in the development of future cancer therapies to prevent and treat OSCC.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| | - Callisthenis Yiannis
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 142 Royal Parade, Parkville, VIC, 3052, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Perth, WA, 6009, Australia.,Oral, Maxillofacial and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, 6150, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| |
Collapse
|
11
|
Yiannis C, Huang K, Tran AN, Zeng C, Dao E, Baselyous O, Mithwani MA, Paolini R, Cirillo N, Yap T, McCullough M, Celentano A. Protective effect of kava constituents in an in vitro model of oral mucositis. J Cancer Res Clin Oncol 2020; 146:1801-1811. [DOI: 10.1007/s00432-020-03253-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
|
12
|
Quan Y, Lei H, Wahafu W, Liu Y, Ping H, Zhang X. Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer. Biomed Pharmacother 2019; 120:109490. [DOI: 10.1016/j.biopha.2019.109490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022] Open
|
13
|
Hepatoprotection of yangonin against hepatic fibrosis in mice via farnesoid X receptor activation. Int Immunopharmacol 2019; 75:105833. [PMID: 31450152 DOI: 10.1016/j.intimp.2019.105833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 01/05/2023]
Abstract
Hepatic fibrosis is a reversible would-healing response following chronic liver injury of different aetiologies and represents a major worldwide health problem. Up to date, there is no satisfactory drugs treated for liver fibrosis. The present study was to investigate hepatoprotection of yangonin against liver fibrosis induced by thioacetamide (TAA) in mice and further to clarify the involvement of farnesoid X receptor (FXR) in vivo and in vitro. Yangonin treatment remarkably ameliorated TAA-induced liver injury by reducing relative liver weight, as well as serum ALT and AST activities. Moreover, yangonin alleviated TAA-induced accumulation of bile acids through increasing the expression of bile acid efflux transporters such as Bsep and Mrp2, and reducing hepatic uptake transporter Ntcp expression, all of these are FXR-target genes. The liver sections stained by H&E indicated that the histopathological change induced by TAA was improved by yangonin. Masson and Sirius red staining indicated the obvious anti-fibrotic effect of yangonin. The mechanism of anti-fibrotic effect of yangonin was that yangonin reduced collagen content by regulating the genes involved in hepatic fibrosis including COL1-α1 and TIMP-1. Besides, yangonin inhibited hepatic stellate cell activation by reducing TGF-β1 and α-SMA expression. In addition, yangonin protected against TAA-induced hepatic inflammation via its inhibition of NF-κB and TNF-α. These hepatoprotective effects of yangonin were abrogated by guggulsterone which is a FXR antagonist. In vitro experiment further demonstrated dose-dependent activation of FXR by yangonin using dual-luciferase reporter assay. In summary, yangonin produces hepatoprotection against TAA-induced liver fibrosis via FXR activation.
Collapse
|
14
|
Dong R, Wang J, Gao X, Wang C, Liu K, Wu J, Liu Z, Sun H, Ma X, Meng Q. Yangonin protects against estrogen–induced cholestasis in a farnesoid X receptor-dependent manner. Eur J Pharmacol 2019; 857:172461. [DOI: 10.1016/j.ejphar.2019.172461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
|
15
|
Celentano A, Tran A, Testa C, Thayanantha K, Tan-Orders W, Tan S, Syamal M, McCullough MJ, Yap T. The protective effects of Kava (Piper Methysticum) constituents in cancers: A systematic review. J Oral Pathol Med 2019; 48:510-529. [PMID: 31172600 DOI: 10.1111/jop.12900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Kava is a beverage made from the ground roots of the plant Piper Methysticum and has long-held a significant place within Pacific island communities. Active compounds were extracted from kava, and secondary metabolites include kavalactones, chalcones, cinnamic acid derivatives and flavanones. It is thought that components of kava may exert an antiproliferative effect through cell cycle arrest and promotion of apoptosis. METHODS We conducted a systematic review to summarize available evidence of the anticancer effects of kava components and investigate their potential use for oral squamous cell carcinoma (OSCC) treatment. Eligible studies were identified through a comprehensive search of OVID EMBASE, OVID MEDLINE and Web of Science, as at April 2018. RESULTS Of 39 papers that met the inclusion criteria, 32 included in vitro models and 13 included animal studies. A total of 26 different cancers were assessed with 32 studies solely assessing epithelial cancers, 6 mesenchymal cancers and 1 study including both. There was only one report assessing an OSCC cell line. Antiproliferative properties were demonstrated in 32 out of 39 papers. The most researched constituent of kava was flavokavain B followed by flavokavain A. Both were associated with increased expression of pro-apoptotic proteins and decreased expression of anti-apoptotic proteins. Further, they were associated with a dose-dependent reduction of angiogenesis. CONCLUSION There was heterogeneity of study models and methods of investigation across the studies identified. Components of kava appear to present an area of interest with chemotherapeutic potential in cancer prevention and treatment, particularly for epithelial neoplasms. To date, there is a paucity of literature of the utility of kava components in the prevention and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Tran
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Testa
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Krishen Thayanantha
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - William Tan-Orders
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie Tan
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mitali Syamal
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Awad D, Prattes M, Kofler L, Rössler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H. Inhibiting eukaryotic ribosome biogenesis. BMC Biol 2019; 17:46. [PMID: 31182083 PMCID: PMC6558755 DOI: 10.1186/s12915-019-0664-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.
Collapse
Affiliation(s)
- Dominik Awad
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
- Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Melanie Pertl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| |
Collapse
|
17
|
Dong R, Yang X, Wang C, Liu K, Liu Z, Ma X, Sun H, Huo X, Fu T, Meng Q. Yangonin protects against non-alcoholic fatty liver disease through farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:134-142. [PMID: 30668392 DOI: 10.1016/j.phymed.2018.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUD Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. Dyslipidemia, pathoglycemia and insulin resistance are the major risk factors for the development of NAFLD. To date, no effective drug therapies for this condition have been approved. PURPOSE The present study was to investigate the protective effects of yangonin, a kavalactone isolated from Kava, against NAFLD and further elucidate the mechanisms in vivo and in vitro. STUDY DESIGN A high-fat diet (HFD) induced mouse NAFLD model was used with or without yangonin treatment. METHODS The body weight, relative liver weight and serum biochemical indicators were measured. H&E and Oil Red O staining were used to identify the amelioration of the liver histopathological changes. Serum and hepatic triglyceride, free fatty acids and total cholesterol were analyzed. siRNA, quantitative real-time PCR and Western blot assay were used to clarify the mechanisms underlying yangonin protection. RESULTS Yangonin had obvious protective effects against NAFLD via farnesoid X receptor (FXR) activation. Through FXR activation, yangonin attenuated lipid accumulation in the liver via inhibition of hepatic lipogenesis-related protein including sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthetase (FAS), acetyl-CoA carboxylase 1 (ACC1) and stearoyl-CoA desaturase 1 (SCD1). Besides, yangonin promoted lipid metabolism through an induction in genes required for lipoprotein lipolysis and fatty acid β-oxidation. Furthermore, yangonin modulated blood glucose homeostasis through regulation of gluconeogenesis-related gene phosphoenol pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), and glycogen synthesis-related gene glycogen synthase kinase 3β (GSK3β) and pyruvate dehydrogenase (PDase). Also, yangonin increased insulin sensitivity through upregulating phosphorylation of insulin responsive substrate 1, 2 (IRS-1 and IRS-2). Then, in vivo and in vitro evidence further demonstrated the involvement of FXR activation in yangonin hepatoprotection. CONCLUSIONS Yangonin protects against NAFLD due to its activation of FXR signalling to inhibit hepatic lipogenesis and gluconeogenesis, and to promote lipid metabolism and glycogen synthesis, as well as insulin sensitivity.
Collapse
Affiliation(s)
- Renchao Dong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaobo Yang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Ting Fu
- Pharmacy Department of Affiliated Zhongshan hospital of Dalian University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
18
|
Lin X, Duan X, Jacobs C, Ullmann J, Chan CY, Chen S, Cheng SH, Zhao WN, Poduri A, Wang X, Haggarty SJ, Shi P. High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nat Commun 2018; 9:5142. [PMID: 30510233 PMCID: PMC6277389 DOI: 10.1038/s41467-018-07289-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
Technologies for mapping the spatial and temporal patterns of neural activity have advanced our understanding of brain function in both health and disease. An important application of these technologies is the discovery of next-generation neurotherapeutics for neurological and psychiatric disorders. Here, we describe an in vivo drug screening strategy that combines high-throughput technology to generate large-scale brain activity maps (BAMs) with machine learning for predictive analysis. This platform enables evaluation of compounds’ mechanisms of action and potential therapeutic uses based on information-rich BAMs derived from drug-treated zebrafish larvae. From a screen of clinically used drugs, we found intrinsically coherent drug clusters that are associated with known therapeutic categories. Using BAM-based clusters as a functional classifier, we identify anti-seizure-like drug leads from non-clinical compounds and validate their therapeutic effects in the pentylenetetrazole zebrafish seizure model. Collectively, this study provides a framework to advance the field of systems neuropharmacology. A major goal in neuropharmacology is to develop new tools to effectively test the therapeutic potential of pharmacological agents to treat neurological and psychiatric conditions. Here, authors present an in vivo drug screening system that generates large-scale brain activity maps to be used with machine learning to predict the therapeutic potential of clinically relevant drug leads.
Collapse
Affiliation(s)
- Xudong Lin
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Xin Duan
- Department of Biomedical Science, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Claire Jacobs
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jeremy Ullmann
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chung-Yuen Chan
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Siya Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Shuk-Han Cheng
- Department of Biomedical Science, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Department of Biomedical Science, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China. .,Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Kowloon, Hong Kong SAR, China. .,Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| |
Collapse
|
19
|
Kong Y, Gao X, Wang C, Ning C, Liu K, Liu Z, Sun H, Ma X, Sun P, Meng Q. Protective effects of yangonin from an edible botanical Kava against lithocholic acid-induced cholestasis and hepatotoxicity. Eur J Pharmacol 2018; 824:64-71. [PMID: 29427579 DOI: 10.1016/j.ejphar.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
Accumulation of toxic bile acids in liver could cause cholestasis and liver injury. The purpose of the current study is to evaluate the hepatoprotective effect of yangonin, a product isolated from an edible botanical Kava against lithocholic acid (LCA)-induced cholestasis, and further to elucidate the involvement of farnesoid X receptor (FXR) in the anticholestatic effect using in vivo and in vitro experiments. The cholestatic liver injury model was established by intraperitoneal injections of LCA in C57BL/6 mice. Serum biomarkers and H&E staining were used to identify the amelioration of cholestasis after yangonin treatment. Mice hepatocytes culture, gene silencing experiment, real-time PCR and Western blot assay were used to elucidate the mechanisms underlying yangonin hepatoprotection. The results indicated that yangonin promoted bile acid efflux and reduced hepatic uptake via an induction in FXR-target genes Bsep, Mrp2 expression and an inhibition in Ntcp, all of which are responsible for bile acid transport. Furthermore, yangonin reduced bile acid synthesis through repressing FXR-target genes Cyp7a1 and Cyp8b1, and increased bile acid metabolism through an induction in gene expression of Sult2a1, which are involved in bile acid synthesis and metabolism. In addition, yangonin suppressed liver inflammation through repressing inflammation-related gene NF-κB, TNF-α and IL-1β. In vitro evidences showed that the changes in transporters and enzymes induced by yangonin were abrogated when FXR was silenced. In conclusions, yangonin produces protective effect against LCA-induced hepatotoxity and cholestasis due to FXR-mediated regulation. Yangonin may be an effective approach for the prevention against cholestatic liver diseases.
Collapse
Affiliation(s)
- Yulong Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaoguang Gao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Chenqing Ning
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|