1
|
Di Bello M, Chang C, McIntosh R. Dynamic vagal-mediated connectivity of cortical and subcortical central autonomic hubs predicts chronotropic response to submaximal exercise in healthy adults. Brain Cogn 2024; 175:106134. [PMID: 38266398 DOI: 10.1016/j.bandc.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Despite accumulation of a substantial body of literature supporting the role of exercise on frontal lobe functioning, relatively less is understood of the interconnectivity of ventromedial prefrontal cortical (vmPFC) regions that underpin cardio-autonomic regulation predict cardiac chronotropic competence (CC) in response to sub-maximal exercise. METHODS Eligibility of 161 adults (mean age = 48.6, SD = 18.3, 68% female) was based upon completion of resting state brain scan and sub-maximal bike test. Sliding window analysis of the resting state signal was conducted over 45-s windows, with 50% overlap, to assess how changes in photoplethysmography-derived HRV relate to vmPFC functional connectivity with the whole brain. CC was assessed based upon heart rate (HR) changes during submaximal exercise (HR change /HRmax (206-0.88 × age) - HRrest). RESULTS During states of elevated HRV the vmPFC showed greater rsFC with an 83-voxel region of the hypothalamus (p < 0.001, uncorrected). Beta estimates of vmPFC connectivity extracted from a 6-mm sphere around this region emerged as the strongest predictor of CC (b = 0.283, p <.001) than age, BMI, and resting HRV F(8,144) = 6.30, p <.001. CONCLUSION Extensive glutamatergic innervation of the hypothalamus by the vmPFC allows for top-down control of the hypothalamus and its various autonomic efferents which facilitate chronotropic response during sub-maximal exercise.
Collapse
Affiliation(s)
- Maria Di Bello
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Catie Chang
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA.
| |
Collapse
|
2
|
Tsukioka K, Yamanaka K, Waki H. Implication of the Central Nucleus of the Amygdala in Cardiovascular Regulation and Limiting Maximum Exercise Performance During High-intensity Exercise in Rats. Neuroscience 2022; 496:52-63. [PMID: 35690335 DOI: 10.1016/j.neuroscience.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022]
Abstract
To date, the mechanism of central fatigue during high-intensity exercise has remained unclear. Here we elucidate the central mechanisms of cardiovascular regulation during high-intensity exercise with a focus on the hypothesis that amygdala activation acts to limit maximum exercise performance. In the first of three experiments, we probed the involvement of the central nucleus of the amygdala (CeA) in such regulation. Wistar rats were subjected to a maximum exercise test and their total running time and cardiovascular responses were compared before and after bilateral CeA lesions. Next, probing the role of central pathways, we tested whether high-intensity exercise activated neurons in CeA and/or the hypothalamic paraventricular nucleus (PVN) that project to the nucleus tractus solitarius (NTS). Finally, to understand the potential autonomic mechanisms affecting maximum exercise performance, we measured the cardiovascular responses in anesthetized rats to electrical microstimulation of the CeA, PVN, or both. We have found that (1) CeA lesions resulted in an increase in the total exercise time and the time at which an abrupt increase in arterial pressure appeared, indicating an apparent suppression of fatigue. (2) We confirmed that high-intensity exercise activated both the PVN-NTS and CeA-NTS pathways. Moreover, we discovered that (3) while stimulation of the CeA or PVN alone both induced pressor responses, their simultaneous stimulation also increased muscle vascular resistance. These results are evidence that cardiovascular responses during high-intensity exercise are affected by CeA activation, which acts to limit maximum exercise performance, and may implicate autonomic control modulating the PVN-NTS pathway via the CeA.
Collapse
Affiliation(s)
- Kei Tsukioka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan.
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba 270-1695, Japan.
| |
Collapse
|
3
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
4
|
Potential Role of the Amygdala and Posterior Claustrum in Exercise Intensity-dependent Cardiovascular Regulation in Rats. Neuroscience 2020; 432:150-159. [PMID: 32109531 DOI: 10.1016/j.neuroscience.2020.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022]
Abstract
Tuning of the cardiovascular response is crucial to maintain performance during high-intensity exercise. It is well known that the nucleus of the solitary tract (NTS) in the brainstem medulla plays a central role in cardiovascular regulation; however, where and how upper brain regions form circuits with NTS and coordinately control cardiovascular responses during high-intensity exercise remain unclear. Here focusing on the amygdala and claustrum, we investigated part of the mechanism for regulation of the cardiovascular system during exercise. In rats, c-Fos immunostaining was used to examine whether the amygdala and claustrum were activated during treadmill exercise. Further, we examined arterial pressure responses to electrical and chemical stimulation of the claustrum region. We also confirmed the anatomical connections between the amygdala, claustrum, and NTS by retrograde tracer injections. Finally, we performed simultaneous electrical stimulation of the claustrum and amygdala to examine their functional connectivity. c-Fos expression was observed in the amygdala and the posterior part of the claustrum (pCL), but not in the anterior part, in an exercise intensity-dependent manner. pCL stimulation induced a depressor response. Using a retrograde tracer, we confirmed direct projections from the amygdala to the pCL and NTS. Simultaneous stimulation of the central nucleus of the amygdala and pCL showed a greater pressor response compared with the stimulation of the amygdala alone. These results suggest the amygdala and pCL are involved in different phases of exercise. More speculatively, these areas might coordinately tune cardiovascular responses that help maintain performance during high-intensity exercise.
Collapse
|
5
|
Tsukioka K, Yamanaka K, Waki H. Effects of bilateral lesions in the central amygdala on spontaneous baroreceptor reflex in conscious rats. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2019. [DOI: 10.7600/jpfsm.8.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kei Tsukioka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University
| |
Collapse
|
6
|
Yamanaka K, Takagishi M, Kim J, Gouraud SS, Waki H. Bidirectional cardiovascular responses evoked by microstimulation of the amygdala in rats. J Physiol Sci 2018; 68:233-242. [PMID: 28111704 PMCID: PMC10717243 DOI: 10.1007/s12576-017-0523-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/10/2017] [Indexed: 01/24/2023]
Abstract
Although the amygdala is known as a negative emotion center for coordinating defensive behaviors, its functions in autonomic control remain unclear. To resolve this issue, we examined effects on cardiovascular responses induced by stimulation and lesions of the amygdala in anesthetized and free-moving rats. Electrical microstimulation of the central nucleus of the amygdala (CeA) induced a gradual increase in arterial pressure (AP) and heart rate (HR), whereas stimulation of adjacent nuclei evoked a phasic AP decrease. The gain of the baroreceptor reflex was not altered by CeA stimulation, suggesting that CeA activity increases both AP and HR by resetting baroreceptor reflex function. Disinhibition of GABAergic input by amygdalar microinjection of the GABAA receptor antagonist induced robust increases in AP and HR. Furthermore, bilateral electrolytic lesions of CeA evoked consistent AP increases over the light/dark cycle. These results suggest that the amygdala exerts 'bidirectional' autonomic control over the cardiovascular system.
Collapse
Affiliation(s)
- Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka-Gakuendai, Inzai, Chiba, 270-1695, Japan
| | - Miwa Takagishi
- Department of Therapeutic Health Promotion, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatori, Sennan, Osaka, 590-0482, Japan
| | - Jimmy Kim
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka-Gakuendai, Inzai, Chiba, 270-1695, Japan
| | - Sabine S Gouraud
- Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraka-Gakuendai, Inzai, Chiba, 270-1695, Japan.
| |
Collapse
|
7
|
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton Neurosci 2018; 210:10-17. [DOI: 10.1016/j.autneu.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
8
|
Yamanaka K, Gouraud SS, Takagishi M, Kohsaka A, Maeda M, Waki H. Evidence for a histaminergic input from the ventral tuberomammillary nucleus to the solitary tract nucleus involved in arterial pressure regulation. Physiol Rep 2017; 5:5/5/e13095. [PMID: 28292881 PMCID: PMC5350161 DOI: 10.14814/phy2.13095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 02/04/2023] Open
Abstract
The tuberomammillary nucleus (TMN) of the posterior hypothalamus has a high density of histaminergic neurons, the projection fibers of which are present in many areas of the brain, including the nucleus tractus solitarius (NTS), which controls arterial pressure (AP). In this study, we investigated whether the TMN–NTS pathway is involved in central cardiovascular regulation. Bicuculline, a gamma‐aminobutyric acid type A (GABAA) receptor antagonist, was microinjected into the ventral TMN of anesthetized rats and its effects on AP and heart rate (HR) were observed. We also evaluated the effect of cetirizine, an H1 receptor antagonist, microinjected into the NTS on cardiovascular responses induced by electrical stimulation of the TMN. Both AP and HR increased following bicuculline microinjection into the ventral TMN. Similar pressor and tachycardic responses were observed after electrical stimulation of the ventral TMN. Microinjection of cetirizine into the NTS partially inhibited the pressor response but had no effect on HR. Finally, the treadmill test was associated with a high level of c‐Fos expression in both ventral TMN and NTS neurons. These results suggest that the TMN–NTS pathway is involved in regulation of AP, presumably under a high‐arousal phase, such as that during exercise.
Collapse
Affiliation(s)
- Ko Yamanaka
- Department of Physiology, School of Health and Sports Science Juntendo University, Chiba, Japan
| | - Sabine S Gouraud
- Department of Biology, Faculty of Science Ochanomizu University, Tokyo, Japan
| | - Miwa Takagishi
- Department of Therapeutic Health Promotion, Kansai University of Health Sciences, Osaka, Japan
| | - Akira Kohsaka
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Masanobu Maeda
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science Juntendo University, Chiba, Japan
| |
Collapse
|
9
|
Loy BD, O'Connor PJ. The effect of histamine on changes in mental energy and fatigue after a single bout of exercise. Physiol Behav 2015; 153:7-18. [PMID: 26482543 DOI: 10.1016/j.physbeh.2015.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/23/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022]
Abstract
The purpose of this research was to determine if histamine, acting on brain H1 receptors, influences changes in feelings of energy and fatigue or cognitive test performance after acute exercise. Women (n=20) with low vigor and high fatigue were administered the H1 antagonist drug doxepin hydrocholoride (6 mg) in tomato juice and tomato juice alone (placebo) in a randomized, double-blinded, cross-over experiment before performing 30 min of light intensity cycling exercise and completing energy, fatigue, sleepiness, and motivation scales, and cognitive tasks. After exercise, mental fatigue increased for the doxepin condition (p=0.014) but not placebo (p=0.700), while mental energy decreased for both PLA and DOX (p<0.001) and cognitive task performance was unaffected. It is inferred that histamine binding to H1 receptors in the brain has a role in exercise-induced reductions in mental fatigue, but not increases in energy.
Collapse
Affiliation(s)
- Bryan D Loy
- Department of Kinesiology, University of Georgia, Athens, Georgia.
| | | |
Collapse
|
10
|
Amano T, Ichinose M, Inoue Y, Nishiyasu T, Koga S, Kondo N. Modulation of muscle metaboreceptor activation upon sweating and cutaneous vascular responses to rising core temperature in humans. Am J Physiol Regul Integr Comp Physiol 2015; 308:R990-7. [PMID: 25855304 DOI: 10.1152/ajpregu.00005.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
Abstract
The present study investigated the role of muscle metaboreceptor activation on human thermoregulation by measuring core temperature thresholds and slopes for sweating and cutaneous vascular responses during passive heating associated with central and peripheral mechanisms. Six male and eight female subjects inserted their lower legs into hot water (43°C) while wearing a water perfusion suit on the upper body (34°C). One minute after immersion, an isometric handgrip exercise--40% of maximum voluntary contraction-was conducted for 1.5 min in both control and experimental conditions, while postexercise occlusion was performed in the experimental condition only for 9 min. The postexercise forearm occlusion during passive heating consistently stimulated muscle metaboreceptors, as implicated by significantly elevated mean arterial blood pressure throughout the experimental period (P <0.05). Stimulation of the forearm muscle metaboreceptors increased sweating and cutaneous vascular responses during passive heating, and was associated with significant reductions in esophageal temperature threshold of sweating and cutaneous vasodilation (Δ threshold, sweating: 0.33 ± 0.05 and 0.16 ± 0.04°C, cutaneous vascular conductance: 0.38 ± 0.08 and 0.16 ± 0.05°C for control and experimental groups, respectively, P < 0.05). The slopes of these responses were not different between the conditions. These results suggest that muscle metaboreceptor activation in the forearm accelerates sweating and cutaneous vasodilation during passive heating associated with a reduction in core temperature thresholds and may be related to central mechanisms controlling heat loss responses.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan;
| |
Collapse
|
11
|
Amano T, Ichinose M, Nishiyasu T, Inoue Y, Koga S, Miwa M, Kondo N. Sweating response to passive stretch of the calf muscle during activation of forearm muscle metaboreceptors in heated humans. Am J Physiol Regul Integr Comp Physiol 2014; 306:R728-34. [PMID: 24598460 DOI: 10.1152/ajpregu.00515.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of muscle metaboreceptors and mechanoreceptors has been shown to independently influence the sweating response, while their integrative control effects remain unclear. We examined the sweating response when the two muscle receptors are concurrently activated in different limbs, as well as the blood pressure response. In total, 27 young males performed passive calf muscle stretches (muscle mechanoreceptor activation) for 30 s in a semisupine position with and without postisometric handgrip exercise muscle ischemia (PEMI, muscle metaboreceptor activation) at exercise intensities of 35 and 50% of maximum voluntary contraction (MVC) under hot conditions (ambient temperature, 35°C, relative humidity, 50%). Passive calf muscle stretching alone increased the mean sweating rate significantly on the forehead, chest, and thigh (SRmean) and mean arterial blood pressure (MAP), but not the heart rate (HR), from prestretching levels by 0.04 ± 0.01 mg·cm(2)·min(-1), 4.0 ± 1.3 mmHg (P < 0.05), and -1.0 ± 0.5 beats/min (P > 0.05), respectively. The SRmean and MAP during PEMI were significantly higher than those at rest. The passive calf muscle stretch during PEMI increased MAP significantly by 3.4 ± 1.0 and 2.0 ± 0.7 mmHg for 35 and 50% of MVC, respectively (P < 0.05), but not that of SRmean or HR at either exercise intensity. These results suggest that sweating and blood pressure responses to concurrent activation of the two muscle receptors in different limbs differ and that the influence of calf muscle mechanoreceptor activation alone on the sweating response disappears during forearm muscle metaboreceptor activation.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan; and
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Mikio Miwa
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan;
| |
Collapse
|