1
|
Enríquez DJ, Alonso JC, Hille L, Brand S, Holzgrabe U, Vergara D, Montoya G, Ramírez YA. Unveiling Colombia's medicinal Cannabis sativa treasure trove: Phenotypic and Chemotypic diversity in legal cultivation. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:246-260. [PMID: 39169651 DOI: 10.1002/pca.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Cannabis sativa is a highly versatile plant with a long history of cultivation and domestication. It produces multiple compounds that exert distinct and valuable therapeutic effects by modulating diverse biological systems, including the endocannabinoid system (ECS). Access to standardized, metabolically diverse, and reproducible C. sativa chemotypes and chemovars is essential for physicians to optimize individualized patient treatment and for industries to conduct drug-discovery campaigns. OBJECTIVE This study aimed to characterize and assess the phytochemical diversity of C. sativa chemotypes in diverse ecological regions of Colombia, South America. METHODOLOGY Ten cannabinoids and 23 terpenes were measured using liquid and gas chromatography, in addition to other phenotypic traits, in 156 C. sativa plants that were grown in diverse ecological regions in Colombia, a hotspot for global biodiversity. RESULTS Our results reveal significant phytochemical diversity in Colombian-grown C. sativa plants, with four distinct chemotypes based on cannabinoid profile. The significant amount of usually uncommon terpenes suggests that Colombia's environments may have unique capabilities that allow the plant to express these compounds. Colombia's diverse climates offer enormous cultivation potential, making it a key player in both domestic and international medicinal and recreational C. sativa trade. CONCLUSION These findings underscore Colombia's capacity to pioneer global C. sativa production diversification, particularly in South America with new emerging markets.
Collapse
Affiliation(s)
- Diego J Enríquez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Julio C Alonso
- Facultad de Ciencias Administrativas y Económicas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Lucas Hille
- Institute for Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Stefan Brand
- Symrise AG, Mühlenfeldstrasse1, Holzminden, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| | - Daniela Vergara
- Harvest New York, Cornell Cooperative Extension, Geneva, New York, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Guillermo Montoya
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yesid A Ramírez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
2
|
Paryani T, Sosa ME, Page MFZ, Martin TJ, Hearvy MV, Ojeda MA, Koby KA, Grandy JJ, Melshenker BG, Skelly I, Oswald IWH. Nonterpenoid Chemical Diversity of Cannabis Phenotypes Predicts Differentiated Aroma Characteristics. ACS OMEGA 2024; 9:28806-28815. [PMID: 38973868 PMCID: PMC11223244 DOI: 10.1021/acsomega.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
The recent increase in legality of Cannabis Sativa L. has led to interest in developing new varieties with unique aromatic or effect-driven traits. Selectively breeding plants for the genetic stability and consistency of their secondary metabolite profiles is one application of phenotyping. While this horticultural process is used extensively in the cannabis industry, few studies exist examining the chemical data that may differentiate phenotypes aromatically. To gain insight into the diversity of secondary metabolite profiles between progeny, we analyzed five ice water hash rosin extracts created from five different phenotypes of the same crossing using comprehensive 2-dimensional gas chromatography coupled to time-of-flight mass spectrometry, flame ionization detection, and sulfur chemiluminescence detection. These results were then correlated to results from a human sensory panel, which revealed specific low-concentration compounds that strongly influence sensory perception. We found aroma differences between certain phenotypes that are driven by key minor, nonterpenoid compounds, including the newly reported 3-mercaptohexyl hexanoate. We further report the identification of octanoic and decanoic acids, which are implicated in the production of cheese-like aromas in cannabis. These results establish that even genetically similar phenotypes can possess diverse and distinct aromas arising not from the dominant terpenes, but rather from key minor volatile compounds. Moreover, our study underscores the value of detailed chemical analyses in enhancing cannabis selective breeding practices, offering insights into the chemical basis of aroma and sensory differences.
Collapse
Affiliation(s)
- Twinkle
R. Paryani
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Manuel E. Sosa
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Michael F. Z. Page
- Science,
Engineering, and Mathematics Division, Cerritos
College, 11110 Alondra
Blvd, Norwalk, California 90650, United States
| | - Thomas J. Martin
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Melissa V. Hearvy
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Marcos A. Ojeda
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Kevin A. Koby
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Jonathan J. Grandy
- Sepsolve
Analytical, Schauenburg Analytics, Waterloo, Ontario N2J
4G8, Canada
| | - Bradley G. Melshenker
- 710
Laboratories, 8149 Santa
Monica Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Ian Skelly
- 710
Laboratories, 8149 Santa
Monica Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Iain W. H. Oswald
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| |
Collapse
|
3
|
Balant M, Garnatje T, Vitales D, Hidalgo O, Chitwood DH. Intra-leaf modeling of Cannabis leaflet shape produces leaf models that predict genetic and developmental identities. THE NEW PHYTOLOGIST 2024; 243:781-796. [PMID: 38757746 DOI: 10.1111/nph.19817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.
Collapse
Affiliation(s)
- Manica Balant
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Laboratori de Botànica, Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Teresa Garnatje
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Jardí Botànic Marimurtra - Fundació Carl Faust, pg. Carles Faust, 9, 17300, Blanes, Spain
| | - Daniel Vitales
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
| | - Oriane Hidalgo
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Cosner JB, Grant JF. Influence of varieties of hemp, Cannabis sativa (Rosales: Cannabaceae), and fertilization rates on damage caused by corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:26-33. [PMID: 37431786 DOI: 10.1093/ee/nvad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Industrial hemp, Cannabis sativa L., production has been negatively impacted by larvae of corn earworm, Helicoverpa zea (Boddie), which feed on developing inflorescences. Adult H. zea oviposit on hemp once flowers develop, and late-instar larvae can cause serious loss to both quality and yield. A 2-year study to assess the influence of hemp variety and fertilization practices on damage caused by H. zea was conducted. Differences in damage ratings among varieties were observed in both years; however, the rate of nitrogen applied did not influence biomass yield or damage rating. These results indicate that increasing nitrogen fertility may not be an effective means of cultural control for mitigating damage from H. zea. Floral maturity was very influential on damage caused by H. zea as late-maturing varieties had much less floral injury than those which matured early in outdoor field trials. Some cannabinoids were also correlated to damage rating, but this relationship was due to late-maturing plants with immature flowers low in cannabinoid concentrations receiving less floral injury. Based on these results, the selection of high-yielding varieties that flower when ovipositional activity of H. zea is expected to decline should be the first step in an integrated pest management program for hemp production. This research expanded our knowledge of the role of fertility rate, varietal characteristics, cannabinoid profile, and floral maturity on damage caused by H. zea to hemp. Findings from this research will allow growers to make more informed agronomic decisions before planting to improve hemp production.
Collapse
Affiliation(s)
- Julian B Cosner
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 E J. Chapman Drive, Knoxville, TN 37996, USA
| | - Jerome F Grant
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 E J. Chapman Drive, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Lapierre É, de Ronne M, Boulanger R, Torkamaneh D. Comprehensive Phenotypic Characterization of Diverse Drug-Type Cannabis Varieties from the Canadian Legal Market. PLANTS (BASEL, SWITZERLAND) 2023; 12:3756. [PMID: 37960111 PMCID: PMC10648736 DOI: 10.3390/plants12213756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Cannabis (Cannabis sativa L.) stands as a historically significant and culturally important plant, embodying economic, social, and medicinal relevance for human societies. However, years of prohibition and stigmatization have hindered the cannabis research community, which is hugely undersized and suffers from a scarcity of understanding of cannabis genetics and how key traits are expressed or inherited. In this study, we conducted a comprehensive phenotypic characterization of 176 drug-type cannabis accessions, representative of Canada's legal market. We assessed germination methods, evaluated various traits including agronomic, morphological, and cannabinoid profiles, and uncovered significant variation within this population. Notably, the yield displayed a negative correlation with maturity-related traits but a positive correlation with the fresh biomass. Additionally, the potential THC content showed a positive correlation with maturity-related traits but a negative correlation with the yield. Significant differences were observed between the plants derived from regular female seeds and feminized seeds, as well as between the plants derived from cuttings and seeds for different traits. This study advances our understanding of cannabis cultivation, offering insights into germination practices, agronomic traits, morphological characteristics, and biochemical diversity. These findings establish a foundation for precise breeding and cultivar development, enhancing cannabis's potential in the legal market.
Collapse
Affiliation(s)
- Éliana Lapierre
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | - Rosemarie Boulanger
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada; (É.L.); (M.d.R.); (R.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Okey SA, Waddell JT, Shah RV, Kennedy GM, Frangos MP, Corbin WR. An Ecological Examination of Indica Versus Sativa and Primary Terpenes on the Subjective Effects of Smoked Cannabis: A Preliminary Investigation. Cannabis Cannabinoid Res 2023; 8:857-866. [PMID: 36648357 DOI: 10.1089/can.2022.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: The legal cannabis landscape has greatly outpaced scientific knowledge. Many popular cannabis claims, such as cultivar (colloquially referred to as strain) classification and terpene content producing different subjective effects, are unsubstantiated. This study examined, for the first time, whether cultivar classification (sativa/indica) and terpene content (caryophyllene, limonene, myrcene, pinene, and terpinolene) were associated with subjective cannabis effects (i.e., pain levels, low-arousal ["indica-like"] effects, high-arousal ["sativa-like"] effects, and negative effects). Methods: Regular cannabis users (n=101) took part in a 2-week long ecological momentary assessment study in which they responded to questions about their cannabis use, stated their preference for sativa versus indica, and reported their in-the-moment subjective effects within 30 min of smoking cannabis. Cultivars were coded for sativa versus indica classification and primary terpene content using Leafly, a popular search engine. Linear mixed-effect models then examined subjective response by sativa/indica and primary terpene. Covariates included demographics (age, sex, race, income), cannabis use (medical use, cannabis use frequency, stated preference for sativa/indica, global expected cannabis effects), morning pain ratings, and specific smoked cannabis occasions (hour of day, minutes since use, context, number of hits, and tetrahydrocannabinol). Results: The majority of participants (78.3%) had a preference for either sativa or indica and reported reasons for their preference that aligned with industry claims. After controlling for covariates, findings revealed that cultivars classified as indica dominant were associated with greater low-arousal (e.g., sluggish, slow) effects relative to the unweighted mean of all cannabis cultivars (b = 0.44, SE=0.16, p=0.01). Cultivars with primary caryophyllene were associated with greater pain ratings (b = 0.53, SE=0.24, p=0.03) and negative effects (b = 0.22, SE=0.08, p=0.01) relative to the mean of all other terpene types. Cultivars with primary pinene were associated with less negative effects (b = -0.35, SE=0.18, p=0.04). Conclusions: Cultivars classified as indica dominant were associated with greater low-arousal effects in models that accounted for both within- and between-person variation, despite the scientific challenges distinguishing between sativa and indica. Preliminary findings also suggest terpenes may play a role in subjective effects. These results emphasize the need for further research, particularly controlled lab studies.
Collapse
Affiliation(s)
- Sarah A Okey
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Jack T Waddell
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Rishika V Shah
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Gillian M Kennedy
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Maria P Frangos
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - William R Corbin
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
8
|
Balant M, Rodríguez González R, Garcia S, Garnatje T, Pellicer J, Vallès J, Vitales D, Hidalgo O. Novel Insights into the Nature of Intraspecific Genome Size Diversity in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2736. [PMID: 36297761 PMCID: PMC9607409 DOI: 10.3390/plants11202736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cannabis sativa has been used for millennia in traditional medicine for ritual purposes and for the production of food and fibres, thus, providing important and versatile services to humans. The species, which currently has a worldwide distribution, strikes out for displaying a huge morphological and chemical diversity. Differences in Cannabis genome size have also been found, suggesting it could be a useful character to differentiate between accessions. We used flow cytometry to investigate the extent of genome size diversity across 483 individuals belonging to 84 accessions, with a wide range of wild/feral, landrace, and cultivated accessions. We also carried out sex determination using the MADC2 marker and investigated the potential of flow cytometry as a method for early sex determination. All individuals were diploid, with genome sizes ranging from 1.810 up to 2.152 pg/2C (1.189-fold variation), apart from a triploid, with 2.884 pg/2C. Our results suggest that the geographical expansion of Cannabis and its domestication had little impact on its overall genome size. We found significant differences between the genome size of male and female individuals. Unfortunately, differences were, however, too small to be discriminated using flow cytometry through the direct processing of combined male and female individuals.
Collapse
Affiliation(s)
- Manica Balant
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
| | - Roi Rodríguez González
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
| | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
| | - Joan Vallès
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació–Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació–Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Catalonia, Spain
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
| |
Collapse
|
9
|
Sirangelo TM, Ludlow RA, Spadafora ND. Multi-Omics Approaches to Study Molecular Mechanisms in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:2182. [PMID: 36015485 PMCID: PMC9416457 DOI: 10.3390/plants11162182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cannabis (Cannabis sativa L.), also known as hemp, is one of the oldest cultivated crops, grown for both its use in textile and cordage production, and its unique chemical properties. However, due to the legislation regulating cannabis cultivation, it is not a well characterized crop, especially regarding molecular and genetic pathways. Only recently have regulations begun to ease enough to allow more widespread cannabis research, which, coupled with the availability of cannabis genome sequences, is fuelling the interest of the scientific community. In this review, we provide a summary of cannabis molecular resources focusing on the most recent and relevant genomics, transcriptomics and metabolomics approaches and investigations. Multi-omics methods are discussed, with this combined approach being a powerful tool to identify correlations between biological processes and metabolic pathways across diverse omics layers, and to better elucidate the relationships between cannabis sub-species. The correlations between genotypes and phenotypes, as well as novel metabolites with therapeutic potential are also explored in the context of cannabis breeding programs. However, further studies are needed to fully elucidate the complex metabolomic matrix of this crop. For this reason, some key points for future research activities are discussed, relying on multi-omics approaches.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- CREA—Council for Agricultural Research and Agricultural Economy Analysis, Genomics and Bioinformatics Department, 26836 Montanaso Lombardo, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
10
|
The phytochemical diversity of commercial Cannabis in the United States. PLoS One 2022; 17:e0267498. [PMID: 35588111 PMCID: PMC9119530 DOI: 10.1371/journal.pone.0267498] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The legal status of Cannabis is changing, fueling an increasing diversity of Cannabis-derived products. Because Cannabis contains dozens of chemical compounds with potential psychoactive or medicinal effects, understanding this phytochemical diversity is crucial. The legal Cannabis industry heavily markets products to consumers based on widely used labeling systems purported to predict the effects of different "strains." We analyzed the cannabinoid and terpene content of commercial Cannabis samples across six US states, finding distinct chemical phenotypes (chemotypes) which are reliably present. By comparing the observed phytochemical diversity to the commercial labels commonly attached to Cannabis-derived product samples, we show that commercial labels do not consistently align with the observed chemical diversity. However, certain labels do show a biased association with specific chemotypes. These results have implications for the classification of commercial Cannabis, design of animal and human research, and regulation of consumer marketing-areas which today are often divorced from the chemical reality of the Cannabis-derived material they wish to represent.
Collapse
|
11
|
Amarasinghe P, Pierre C, Moussavi M, Geremew A, Woldesenbet S, Weerasooriya A. The morphological and anatomical variability of the stems of an industrial hemp collection and the properties of its fibres. Heliyon 2022; 8:e09276. [PMID: 35497024 PMCID: PMC9043397 DOI: 10.1016/j.heliyon.2022.e09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022] Open
Abstract
Industrial hemp (Cannabis sativa L.) is identified as a leading fibre crop and there is increasing interest in C. sativa fibre due to its new range of industrial applications. However, the complexity of hemp germplasm resulted in insufficient information on the effect of genotypes on fibre quality and quantity. In this study, 16 fibre and non-fibre type hemp genotypes were evaluated to compare the morpho-anatomical differences of stems and physico-mechanical fibre properties under three retting methods and to understand the effect of stem colour on the properties of hemp fibres. Morphological markers were scored and stem anatomy was examined using live and herbarium collections. Stems were retted using chemical, enzymatic, and microbiological methods. The resulting fibres were tested for tensile strength, moisture retention, colour, bast and hurd dry weights. Hemp genotypes showed morphological variations that affect fibre processing and a unique pattern of fibre wedges in cross-sections of the basal internode. Fibre yield, tensile strength, colour, and moisture retention significantly varied among the genotypes. The hemp collection used in this study formed three clusters in principal component analysis and traits such as internodal length, node number, hurd yield, and tensile strength highly contributed to the total variability. Additionally, non-fibre type hemp genotypes that showed important fibre properties were identified. The hemp genotypes that were selected based on our approaches can be tailored towards the specificities of the end-usage of choice. Our methods will enable the exploration of hemp genetic diversity pertaining to fibre properties and contribute to the preliminary identification of genotypes as a supplement to genetic analyses.
Collapse
Affiliation(s)
- Prabha Amarasinghe
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446.,MOgene LC, 2252 Welsch Industrial Ct, St. Louis, Missouri 63146
| | - Camille Pierre
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Mahta Moussavi
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Addisie Geremew
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| | - Aruna Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas 77446
| |
Collapse
|
12
|
Carlson CH, Stack GM, Jiang Y, Taşkıran B, Cala AR, Toth JA, Philippe G, Rose JKC, Smart CD, Smart LB. Morphometric relationships and their contribution to biomass and cannabinoid yield in hybrids of hemp (Cannabis sativa). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7694-7709. [PMID: 34286838 PMCID: PMC8643699 DOI: 10.1093/jxb/erab346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The breeding of hybrid cultivars of hemp (Cannabis sativa L.) is not well described, especially the segregation and inheritance of traits that are important for yield. A total of 23 families were produced from genetically diverse parents to investigate the inheritance of morphological traits and their association with biomass accumulation and cannabinoid yield. In addition, a novel classification method for canopy architecture was developed. The strong linear relationship between wet and dry biomass provided an accurate estimate of final dry stripped floral biomass. Of all field and aerial measurements, basal stem diameter was determined to be the single best selection criterion for final dry stripped floral biomass yield. Along with stem diameter, canopy architecture and stem growth predictors described the majority of the explainable variation of biomass yield. Within-family variance for morphological and cannabinoid measurements reflected the heterozygosity of the parents. While selfed populations suffered from inbreeding depression, hybrid development in hemp will require at least one inbred parent to achieve uniform growth and biomass yield. Nevertheless, floral phenology remains a confounding factor in selection because of its underlying influence on biomass production, highlighting the need to understand the genetic basis for flowering time in the breeding of uniform cultivars.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - George M Stack
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Yu Jiang
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Bircan Taşkıran
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Ali R Cala
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY,USA
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY,USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| |
Collapse
|