1
|
Rey-Villiers N, González-Díaz P, Sánchez A. Octocoral growth rate and mortality along a eutrophication gradient in Cuban reefs. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106739. [PMID: 39255630 DOI: 10.1016/j.marenvres.2024.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Octocorals are showing resilience to local and global stressors, while the decline in zooxanthellate corals continues. One of the processes that helps explain this ecological succession is the vertical growth of octocorals, which allows colonies to avoid stressors occurring at the substrate level. However, the growth and survival of octocorals could be affected by eutrophication, similar to what has happened with zooxanthellate corals. For this reason, the growth rate, mortality and survival of two octocoral species were determined along a eutrophication gradient in Cuba. A permanent band transect (250 × 2 m) was established on seven frontal reefs, and marked colonies were monitored for one year. The growth rates in height, width and colony area of Eunicea flexuosa and Plexaura kükenthali were significantly greater in the reefs near the polluted river basins. The eutrophication gradient, water visibility, and sediment accumulation on the bottom explained 36-78% of the variability in the growth of both species. The positive and significant correlations between the growth rate and stable nitrogen isotopes in both species and the microbiological variables, suggest that the contributions of dissolved inorganic nitrogen and organic matter from sewage discharge favor the growth of colonies. The eutrophication gradient did not explain the variability in mortality of either species in the short term, while hydrodynamic stress did. The results of this research highlight the resilience of both species and their ability to grow more rapidly in areas with eutrophic conditions, low water visibility, and greater sediment accumulation on the bottom, which may help explain the abundance of octocorals in the western tropical Atlantic.
Collapse
Affiliation(s)
- Néstor Rey-Villiers
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, B.C.S., México. Av. IPN S/N, Col. Playa Palo de Sta. Rita, Apdo. Postal #592, 23096, La Paz, Baja California Sur, Mexico.
| | - Patricia González-Díaz
- Centro de Investigaciones Marinas, Universidad de La Habana, La Habana, Cuba, Calle 16 No. 114, Playa, CP 11300, La Habana, Cuba.
| | - Alberto Sánchez
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, B.C.S., México. Av. IPN S/N, Col. Playa Palo de Sta. Rita, Apdo. Postal #592, 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
2
|
Tilstra A, Braxator L, Thobor B, Mezger SD, Hill CEL, El-Khaled YC, Caporale G, Kim S, Wild C. Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata. PLoS One 2023; 18:e0294470. [PMID: 37967066 PMCID: PMC10651030 DOI: 10.1371/journal.pone.0294470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Coral reefs may experience lower pH values as a result of ocean acidification (OA), which has negative consequences, particularly for calcifying organisms. Thus far, the effects of this global factor have been mainly investigated on hard corals, while the effects on soft corals remain relatively understudied. We therefore carried out a manipulative aquarium experiment for 21 days to study the response of the widespread pulsating soft coral Xenia umbellata to simulated OA conditions. We gradually decreased the pH from ambient (~8.3) to three consecutive 7-day long pH treatments of 8.0, 7.8, and 7.6, using a CO2 dosing system. Monitored response variables included pulsation rate, specific growth rate, visual coloration, survival, Symbiodiniaceae cell densities and chlorophyll a content, photosynthesis and respiration, and finally stable isotopes of carbon (C) and nitrogen (N) as well as CN content. Pulsation decreased compared to controls with each consecutive lowering of the pH, i.e., 17% at pH 8.0, 26% at pH 7.8 and 32% at pH 7.6, accompanied by an initial decrease in growth rates of ~60% at pH 8.0, not decreasing further at lower pH. An 8.3 ‰ decrease of δ13C confirmed that OA exposed colonies had a higher uptake and availability of atmospheric CO2. Coral productivity, i.e., photosynthesis, was not affected by higher dissolved inorganic C availability and none of the remaining response variables showed any significant differences. Our findings suggest that pulsation is a phenotypically plastic mechanism for X. umbellata to adjust to different pH values, resulting in reduced growth rates only, while maintaining high productivity. Consequently, pulsation may allow X. umbellata to inhabit a broad pH range with minimal effects on its overall health. This resilience may contribute to the competitive advantage that soft corals, particularly X. umbellata, have over hard corals.
Collapse
Affiliation(s)
- Arjen Tilstra
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Lorena Braxator
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Bianca Thobor
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Selma D. Mezger
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | | | | | - Giulia Caporale
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Sohyoung Kim
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Hill CEL, Abbass SG, Caporale G, El‐Khaled YC, Kuhn L, Schlenzig T, Wild C, Tilstra A. Physiology of the widespread pulsating soft coral Xenia umbellata is affected by food sources, but not by water flow. Ecol Evol 2023; 13:e10483. [PMID: 37664515 PMCID: PMC10472534 DOI: 10.1002/ece3.10483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Coral energy and nutrient acquisition strategies are complex and sensitive to environmental conditions such as water flow. While high water flow can enhance feeding in hard corals, knowledge about the effects of water flow on the feeding of soft corals, particularly those pulsating, is still limited. In this study, we thus investigated the effects of feeding and water flow on the physiology of the pulsating soft coral Xenia umbellata. We crossed three feeding treatments: (i) no feeding, (ii) particulate organic matter (POM) in the form of phytoplankton and (iii) dissolved organic carbon (DOC) in the form of glucose, with four water volume exchange rates (200, 350, 500 and 650 L h-1) over 15 days. Various ecophysiological parameters were assessed including pulsation rate, growth rate, isotopic and elemental ratios of carbon (C) and nitrogen (N) as well as photo-physiological parameters of the Symbiodiniaceae (cell density, chlorophyll-a and mitotic index). Water flow had no significant effect but feeding had a substantial impact on the physiology of the X. umbellata holobiont. In the absence of food, corals exhibited significantly lower pulsation rates, lower Symbiodiniaceae cell density and lower mitotic indices compared to the fed treatments, yet significantly higher chlorophyll-a per cell and total N content. Differences were also observed between the two feeding treatments, with significantly higher pulsation rates and lower chlorophyll-a per cell in the DOC treatment, but higher C and N content in the POM treatment. Our findings suggest that the X. umbellata holobiont can be viable under different trophic strategies, though favouring mixotrophy. Additionally, the physiology of the X. umbellata may be regulated through its own pulsating behaviour without any positive or negative effects from different water flow. Therefore, this study contributes to our understanding of soft coral ecology, particularly regarding the competitive success and widespread distribution of X. umbellata.
Collapse
Affiliation(s)
- C. E. L. Hill
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
| | - S. G. Abbass
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
- Marine Science Department, Faculty of SciencePort Said UniversityPort SaidEgypt
| | - G. Caporale
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
| | - Y. C. El‐Khaled
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
- Red Sea Research Center, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and TechnologyJeddahSaudi Arabia
| | - L. Kuhn
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
| | - T. Schlenzig
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
| | - C. Wild
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
| | - A. Tilstra
- Marine Ecology Department, Faculty of Biology and ChemistryUniversity of BremenBremenGermany
| |
Collapse
|
4
|
Xiang N, Meyer A, Pogoreutz C, Rädecker N, Voolstra CR, Wild C, Gärdes A. Excess labile carbon promotes diazotroph abundance in heat-stressed octocorals. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221268. [PMID: 36938541 PMCID: PMC10014249 DOI: 10.1098/rsos.221268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen limitation is the foundation of stable coral-algal symbioses. Diazotrophs, prokaryotes capable of fixing N2 into ammonia, support the productivity of corals in oligotrophic waters, but could contribute to the destabilization of holobiont functioning when overstimulated. Recent studies on reef-building corals have shown that labile dissolved organic carbon (DOC) enrichment or heat stress increases diazotroph abundance and activity, thereby increasing nitrogen availability and destabilizing the coral-algal symbiosis. However, the (a)biotic drivers of diazotrophs in octocorals are still poorly understood. We investigated diazotroph abundance (via relative quantification of nifH gene copy numbers) in two symbiotic octocorals, the more mixotrophic soft coral Xenia umbellata and the more autotrophic gorgonian Pinnigorgia flava, under (i) labile DOC enrichment for 21 days, followed by (ii) combined labile DOC enrichment and heat stress for 24 days. Without heat stress, relative diazotroph abundances in X. umbellata and P. flava were unaffected by DOC enrichment. During heat stress, DOC enrichment (20 and 40 mg glucose l-1) increased the relative abundances of diazotrophs by sixfold in X. umbellata and fourfold in P. flava, compared with their counterparts without excess DOC. Our data suggest that labile DOC enrichment and concomitant heat stress could disrupt the nitrogen limitation in octocorals by stimulating diazotroph proliferation. Ultimately, the disruption of nitrogen cycling may further compromise octocoral fitness by destabilizing symbiotic nutrient cycling. Therefore, improving local wastewater facilities to reduce labile DOC input into vulnerable coastal ecosystems may help octocorals cope with ocean warming.
Collapse
Affiliation(s)
- Nan Xiang
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen Bremen 28359, Germany
- Section of Polar Biological Oceanography, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Leibniz Center for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Achim Meyer
- Leibniz Center for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen Bremen 28359, Germany
| | - Astrid Gärdes
- Section of Polar Biological Oceanography, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Leibniz Center for Tropical Marine Research (ZMT), Bremen 28359, Germany
- Hochschule Bremerhaven, Fachbereich 1, An der Karlstadt 8, Bremerhaven 27568, Germany
| |
Collapse
|
5
|
Travesso M, Missionário M, Cruz S, Calado R, Madeira D. Combined effect of marine heatwaves and light intensity on the cellular stress response and photophysiology of the leather coral Sarcophyton cf. glaucum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160460. [PMID: 36435249 DOI: 10.1016/j.scitotenv.2022.160460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Marine heatwaves (MHW) are threatening tropical coral reef ecosystems, leading to mass bleaching events worldwide. The combination of heat stress with high irradiance is known to shape the health and redox status of corals, but research is biased toward scleractinian corals, while much less is known on tropical symbiotic soft corals. Here, we evaluated the cellular stress response and the photophysiological performance of the soft coral Sarcophyton cf. glaucum, popularly termed as leather coral, under different global change scenarios. Corals were exposed to different light intensities (high light, low light, ∼662 and 253 μmol photons m-2 s-1) for 30 days (time-point 1) and a subsequent MHW simulation was carried out for 10 days (control 26 vs 32 °C) (time-point 2). Subsequently, corals were returned to control temperature and allowed to recover for 30 days (time-point 3). Photophysiological performance (maximum quantum yield of photosystem II (Fv/Fm), a measure of photosynthetic activity; dark-level fluorescence (F0), as a proxy of chlorophyll a content (Chl a); and zooxanthellae density) and stress biomarkers (total protein, antioxidants, lipid peroxidation, ubiquitin, and heat shock protein 70) were assessed in corals at these three time-points. Corals were especially sensitive to the combination of heat and high light stress, experiencing a decrease in their photosynthetic efficiency under these conditions. Heat stress resulted in bleaching via zooxanthellae loss while high light stress led to pigment (Chl a) loss. This species' antioxidant defenses, and protein degradation were particularly enhanced under heat stress. A recovery was clear for molecular parameters after 30 days of recovery, whereby photophysiological performance required more time to return to basal levels. We conclude that soft corals distributed along intertidal areas, where the light intensity is high, could be especially vulnerable to marine heatwave events, highlighting the need to direct conservation efforts toward these organisms.
Collapse
Affiliation(s)
- Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
6
|
Zelli E, Simancas-Giraldo SM, Xiang N, Dessì C, Katzer ND, Tilstra A, Wild C. Individual and combined effect of organic eutrophication (DOC) and ocean warming on the ecophysiology of the Octocoral Pinnigorgia flava. PeerJ 2023; 11:e14812. [PMID: 36814959 PMCID: PMC9940650 DOI: 10.7717/peerj.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/06/2023] [Indexed: 02/19/2023] Open
Abstract
Dissolved organic carbon (DOC) enrichment and ocean warming both negatively affect hard corals, but studies on their combined effects on other reef organisms are scarce. Octocorals are likely to become key players in future reef communities, but they are still highly under-investigated with regard to their responses to global and local environmental changes. Thus, we evaluated the individual and combined effects of DOC enrichment (10, 20 and 40 mg L-1 DOC, added as glucose) and warming (stepwise from 26 to 32 °C) on the widespread Indo-Pacific gorgonian Pinnigorgia flava in a 45-day laboratory experiment. Oxygen fluxes (net photosynthesis and respiration), as well as Symbiodiniaceae cell density and coral growth were assessed. Our results highlight a differential ecophysiological response to DOC enrichment and warming as well as their combination. Individual DOC addition did not significantly affect oxygen fluxes nor Symbiodiniaceae cell density and growth, while warming significantly decreased photosynthesis rates and Symbiodiniaceae cell density. When DOC enrichment and warming were combined, no effect on P. flava oxygen fluxes was observed while growth responded to certain DOC conditions depending on the temperature. Our findings indicate that P. flava is insensitive to the individual effect of DOC enrichment, but not to warming and the two stressors combined. This suggests that, if temperature remains below certain thresholds, this gorgonian species may gain a competitive advantage over coral species that are reportedly more affected by DOC eutrophication. However, under the expected increasing temperature scenarios, it is also likely that this octocoral species will be negatively affected, with potential consequences on community structure. This study contributes to our understanding of the conditions that drive phase shift dynamics in coastal coral reef ecosystemds.
Collapse
Affiliation(s)
- Edoardo Zelli
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany,School of Science, University of Waikato, Tauranga, New Zealand
| | | | - Nan Xiang
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Claudia Dessì
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany,Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cagliari, Italy
| | - Nadim Daniel Katzer
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany
| | - Arjen Tilstra
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology & Chemistry (FB 2), University of Bremen, Bremen, Germany
| |
Collapse
|
7
|
Mezger SD, Klinke A, Tilstra A, El-Khaled YC, Thobor B, Wild C. The widely distributed soft coral Xenia umbellata exhibits high resistance against phosphate enrichment and temperature increase. Sci Rep 2022; 12:22135. [PMID: 36550166 PMCID: PMC9780247 DOI: 10.1038/s41598-022-26325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Both global and local factors affect coral reefs worldwide, sometimes simultaneously. An interplay of these factors can lead to phase shifts from hard coral dominance to algae or other invertebrates, particularly soft corals. However, most studies have targeted the effects of single factors, leaving pronounced knowledge gaps regarding the effects of combined factors on soft corals. Here, we investigated the single and combined effects of phosphate enrichment (1, 2, and 8 μM) and seawater temperature increase (26 to 32 °C) on the soft coral Xenia umbellata by quantifying oxygen fluxes, protein content, and stable isotope signatures in a 5-week laboratory experiment. Findings revealed no significant effects of temperature increase, phosphate enrichment, and the combination of both factors on oxygen fluxes. However, regardless of the phosphate treatment, total protein content and carbon stable isotope ratios decreased significantly by 62% and 7% under temperature increase, respectively, suggesting an increased assimilation of their energy reserves. Therefore, we hypothesize that heterotrophic feeding may be important for X. umbellata to sustain their energy reserves under temperature increase, highlighting the advantages of a mixotrophic strategy. Overall, X. umbellata shows a high tolerance towards changes in global and local factors, which may explain their competitive advantage observed at many Indo-Pacific reef locations.
Collapse
Affiliation(s)
- Selma D. Mezger
- grid.7704.40000 0001 2297 4381Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Annabell Klinke
- grid.7704.40000 0001 2297 4381Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany ,grid.461729.f0000 0001 0215 3324Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Arjen Tilstra
- grid.7704.40000 0001 2297 4381Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Yusuf C. El-Khaled
- grid.7704.40000 0001 2297 4381Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Bianca Thobor
- grid.7704.40000 0001 2297 4381Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Christian Wild
- grid.7704.40000 0001 2297 4381Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
8
|
Kim S, Wild C, Tilstra A. Effective asexual reproduction of a widespread soft coral: comparative assessment of four different fragmentation methods. PeerJ 2022; 10:e12589. [PMID: 35111389 PMCID: PMC8783554 DOI: 10.7717/peerj.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Many coral reefs worldwide are experiencing declines in hard corals, resulting in other benthic organisms, e.g., soft corals, becoming more dominant. As such, more studies on the ecophysiology of soft corals are needed. Despite many methods for asexual reproduction of hard corals, effective methods for soft corals, i.e., without a hard skeleton, are scarce. This study, thus, assessed four fragmentation methods, the glue, rubber band, tunnel mesh, and plug mesh method for the pulsating soft coral Xenia umbellata that is widely distributed in the tropical Indo-Pacific. METHODS Methods were comparatively assessed by determining the required time and labor for the fragmentation plus the health status of the fragmented corals by measuring their oxygen fluxes and pulsation rates, i.e., a special feature of this soft coral that can be used as a proxy for its health. RESULTS There were no significant health status differences between methods. This was indicated by similar gross photosynthesis (between 7.4 to 9.7 μg O2 polyp-1 h-1) and pulsating rates (between 35 and 44 pulses min-1) among methods. In terms of time/labor intensity and success rates, i.e., the percentage of fragments attached to the desired surface, the plug mesh method was the most efficient method with a significantly higher success rate (95 ± 5%), while the others had a success rate between 5 ± 5 and 45 ± 15%. The time needed for fragmentation, though not significant, was also the shortest (78 ± 11 s fragment-1), while other methods required between 84 ± 14 and 126 ± 8 s frag-1. The plug mesh method may thus be a valuable tool related to the reproduction of soft corals for use in subsequent experimental work.
Collapse
|
9
|
Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol 2021; 88:e0188621. [PMID: 34788073 PMCID: PMC8788706 DOI: 10.1128/aem.01886-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutualistic nutrient cycling in the coral-algae symbiosis depends on limited nitrogen (N) availability for algal symbionts. Denitrifying prokaryotes capable of reducing nitrate or nitrite to dinitrogen could thus support coral holobiont functioning by limiting N availability. Octocorals show some of the highest denitrification rates among reef organisms; however, little is known about the community structures of associated denitrifiers and their response to environmental fluctuations. Combining 16S rRNA gene amplicon sequencing with nirS in-silico PCR and quantitative PCR, we found differences in bacterial community dynamics between two octocorals exposed to excess dissolved organic carbon (DOC) and concomitant warming. Although bacterial communities of the gorgonian Pinnigorgia flava remained largely unaffected by DOC and warming, the soft coral Xenia umbellata exhibited a pronounced shift toward Alphaproteobacteria dominance under excess DOC. Likewise, the relative abundance of denitrifiers was not altered in P. flava but decreased by 1 order of magnitude in X. umbellata under excess DOC, likely due to decreased proportions of Ruegeria spp. Given that holobiont C:N ratios remained stable in P. flava but showed a pronounced increase with excess DOC in X. umbellata, our results suggest that microbial community dynamics may reflect the nutritional status of the holobiont. Hence, denitrifier abundance may be directly linked to N availability. This suggests a passive regulation of N cycling microbes based on N availability, which could help stabilize nutrient limitation in the coral-algal symbiosis and thereby support holobiont functioning in a changing environment. IMPORTANCE Octocorals are important members of reef-associated benthic communities that can rapidly replace scleractinian corals as the dominant ecosystem engineers on degraded reefs. Considering the substantial change in the (a)biotic environment that is commonly driving reef degradation, maintaining a dynamic and metabolically diverse microbial community might contribute to octocoral acclimatization. Nitrogen (N) cycling microbes, in particular denitrifying prokaryotes, may support holobiont functioning by limiting internal N availability, but little is known about the identity and (a)biotic drivers of octocoral-associated denitrifiers. Here, we show contrasting dynamics of bacterial communities associated with two common octocoral species, the soft coral Xenia umbellata and the gorgonian Pinnigorgia flava after a 6-week exposure to excess dissolved organic carbon under concomitant warming conditions. The specific responses of denitrifier communities of the two octocoral species aligned with the nutritional status of holobiont members. This suggests a passive regulation based on N availability in the coral holobiont.
Collapse
|