1
|
Tian X, Li Z, Liu Y, Li W. Role of tillage measures in mitigating waterlogging damage in rapeseed. BMC PLANT BIOLOGY 2023; 23:231. [PMID: 37122012 PMCID: PMC10150469 DOI: 10.1186/s12870-023-04250-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Tillage measures have been effectively adopted for mitigating waterlogging damage in field crops, yet little is known about the role of tillage measures in crop responses to waterlogging. A field experiment was performed to investigate the effect of conventional planting (CK), small ridge planting (SR), big ridge planting (BR) and film side planting (FS) on soil available nutrients and enzymatic activity, chlorophyll contents, leaf nutrients, soluble protein, soluble sugar, nitrate reductase, antioxidant enzyme activity, lipid peroxidation, agronomic traits and yield of rapeseed under waterlogging stress conditions. RESULTS Tillage measures remarkably improved rapeseed growth and yield parameters under waterlogging stress conditions. Under waterlogging conditions, rapeseed yield was significantly increased by 33.09 and 22.70% in the SR and BR groups, respectively, compared with CK. Correlation analysis showed that NO3--N, NH4+-N, and urease in soils and malonaldehyde (MDA), superoxide dismutase (SOD), and nitrate reductase in roots were the key factors affecting rapeseed yield. The SR and BR groups had significantly increased NO3--N by 180.30 and 139.77%, NH4+-N by 115.78 and 66.59%, urease by 41.27 and 26.45%, SOD by 6.64 and 4.66%, nitrate reductase by 71.67 and 26.67%, and significantly decreased MDA content by 14.81 and 13.35% under waterlogging stress, respectively, compared with CK. In addition, chlorophyll and N content in leaves, soluble sugar and POD in roots, and most agronomic traits were also significantly enhanced in response to SR and BR under waterlogging conditions. CONCLUSION Overall, SR and BR mitigated the waterlogging damage in rapeseed mainly by reducing the loss of soil available nitrogen, decreasing the MDA content in roots, and promoting urease in soils and SOD and nitrate reductase in roots. Finally, thorough assessment of rapeseed parameters indicated that SR treatment was most effective followed by BR treatment, to alleviate the adverse effects of waterlogging stress.
Collapse
Affiliation(s)
- Xiaoqin Tian
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
| | - Zhuo Li
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China.
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China.
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China.
| | - Yonghong Liu
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
- Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
| | - Wei Li
- Sichuan Huabiao Testing Technology Co., Ltd., Chengdu, 611731, China
| |
Collapse
|
2
|
Hong B, Zhou B, Peng Z, Yao M, Wu J, Wu X, Guan C, Guan M. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Brassica napus to Waterlogging Stress. Int J Mol Sci 2023; 24:ijms24076015. [PMID: 37046988 PMCID: PMC10094381 DOI: 10.3390/ijms24076015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
During the growth period of rapeseed, if there is continuous rainfall, it will easily lead to waterlogging stress, which will seriously affect the growth of rapeseed. Currently, the mechanisms of rapeseed resistance to waterlogging stress are largely unknown. In this study, the rapeseed (Brassica napus) inbred lines G230 and G218 were identified as waterlogging-tolerant rapeseed and waterlogging-sensitive rapeseed, respectively, through a potted waterlogging stress simulation and field waterlogging stress experiments. After six days of waterlogging stress at the seedling stage, the degree of leaf aging and root damage of the waterlogging-tolerant rapeseed G230 were lower than those of the waterlogging-sensitive rapeseed G218. A physiological analysis showed that waterlogging stress significantly increased the contents of malondialdehyde, soluble sugar, and hydrogen peroxide in rape leaves and roots. The transcriptomic and metabolomic analysis showed that the differential genes and the differential metabolites of waterlogging-tolerant rapeseed G230 were mainly enriched in the metabolic pathways, biosynthesis of secondary metabolites, flavonoid biosynthesis, and vitamin B6 metabolism. Compared to G218, the expression levels of some genes associated with flavonoid biosynthesis and vitamin B metabolism were higher in G230, such as CHI, DRF, LDOX, PDX1.1, and PDX2. Furthermore, some metabolites involved in flavonoid biosynthesis and vitamin B6 metabolism, such as naringenin and epiafzelechin, were significantly up-regulated in leaves of G230, while pyridoxine phosphate was only significantly down-regulated in roots and leaves of G218. Furthermore, foliar spraying of vitamin B6 can effectively improve the tolerance to waterlogging of G218 in the short term. These results indicate that flavonoid biosynthesis and vitamin B6 metabolism pathways play a key role in the waterlogging tolerance and hypoxia stress resistance of Brassica napus and provide new insights for improving the waterlogging tolerance and cultivating waterlogging-tolerant rapeseed varieties.
Collapse
Affiliation(s)
- Bo Hong
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Bingqian Zhou
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Zechuan Peng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Mingyao Yao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Junjie Wu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Xuepeng Wu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Chunyun Guan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Mei Guan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| |
Collapse
|
3
|
Genome-Wide Analysis of AP2/ERF Gene Superfamily in Ramie ( Boehmeria nivea L.) Revealed Their Synergistic Roles in Regulating Abiotic Stress Resistance and Ramet Development. Int J Mol Sci 2022; 23:ijms232315117. [PMID: 36499437 PMCID: PMC9736067 DOI: 10.3390/ijms232315117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield.
Collapse
|
4
|
Langan P, Bernád V, Walsh J, Henchy J, Khodaeiaminjan M, Mangina E, Negrão S. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5149-5169. [PMID: 35642593 PMCID: PMC9440438 DOI: 10.1093/jxb/erac243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Yield losses to waterlogging are expected to become an increasingly costly and frequent issue in some regions of the world. Despite the extensive work that has been carried out examining the molecular and physiological responses to waterlogging, phenotyping for waterlogging tolerance has proven difficult. This difficulty is largely due to the high variability of waterlogging conditions such as duration, temperature, soil type, and growth stage of the crop. In this review, we highlight use of phenotyping to assess and improve waterlogging tolerance in temperate crop species. We start by outlining the experimental methods that have been utilized to impose waterlogging stress, ranging from highly controlled conditions of hydroponic systems to large-scale screenings in the field. We also describe the phenotyping traits used to assess tolerance ranging from survival rates and visual scoring to precise photosynthetic measurements. Finally, we present an overview of the challenges faced in attempting to improve waterlogging tolerance, the trade-offs associated with phenotyping in controlled conditions, limitations of classic phenotyping methods, and future trends using plant-imaging methods. If effectively utilized to increase crop resilience to changing climates, crop phenotyping has a major role to play in global food security.
Collapse
Affiliation(s)
- Patrick Langan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Villő Bernád
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jason Walsh
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- School of Computer Science and UCD Energy Institute, University College Dublin, Dublin, Ireland
| | - Joey Henchy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Eleni Mangina
- School of Computer Science and UCD Energy Institute, University College Dublin, Dublin, Ireland
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Zhou J, Tian L, Wang S, Li H, Zhao Y, Zhang M, Wang X, An P, Li C. Ovary Abortion Induced by Combined Waterlogging and Shading Stress at the Flowering Stage Involves Amino Acids and Flavonoid Metabolism in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:778717. [PMID: 34887895 PMCID: PMC8649655 DOI: 10.3389/fpls.2021.778717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Maize (Zea mays L.) crops on the North China Plain are often subject to continuous overcast rain at the flowering stage. This causes waterlogging and shading stresses simultaneously and leads to huge yield losses, but the causes of these yield losses remain largely unknown. To explore the factors contributing to yield loss caused by combined waterlogging and shading stress at the flowering stage, we performed phenotypic, physiological, and quasi-targeted metabolomics analyses of maize plants subjected to waterlogging, shading, and combined waterlogging and shading (WS) treatments. Analyses of phenotypic and physiological indexes showed that, compared with waterlogging or shading alone, WS resulted in lower source strength, more severe inhibition of ovary and silk growth at the ear tip, a reduced number of emerged silks, and a higher rate of ovary abortion. Changes in carbon content and enzyme activity could not explain the ovary abortion in our study. Metabolomic analyses showed that the events occurred in ovaries and silks were closely related to abortion, WS forced the ovary to allocate more resources to the synthesis of amino acids involved in the stress response, inhibited the energy metabolism, glutathione metabolism and methionine salvage pathway, and overaccumulation of H2O2. In silks, WS led to lower accumulation levels of specific flavonoid metabolites with antioxidant capacity, and to over accumulation of H2O2. Thus, compared with each single stress, WS more seriously disrupted the normal metabolic process, and resulted more serious oxidative stress in ovaries and silks. Amino acids involved in the stress response in ovaries and specific flavonoid metabolites with antioxidant capacity in silks play important roles during ovary abortion. These results identify novel traits for selection in breeding programs and targets for genome editing to increase maize yield under WS stress.
Collapse
|