1
|
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, Varshney RK. Drought-tolerant wheat for enhancing global food security. Funct Integr Genomics 2024; 24:212. [PMID: 39535570 DOI: 10.1007/s10142-024-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU campus, Ludhiana, 141001, India
| | - Dion Bennett
- Australian Grain technologies (AGT), Northam, WA, 6401, Australia
| | - Rohit Joshi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Srinagar, 190025, Shalimar, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
2
|
Schierenbeck M, Alqudah AM, Thabet SG, Avogadro EG, Dietz JI, Simón MR, Börner A. Natural allelic variation confers diversity in the regulation of flag leaf traits in wheat. Sci Rep 2024; 14:13316. [PMID: 38858489 PMCID: PMC11164900 DOI: 10.1038/s41598-024-64161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Flag leaf (FL) dimension has been reported as a key ecophysiological aspect for boosting grain yield in wheat. A worldwide winter wheat panel consisting of 261 accessions was tested to examine the phenotypical variation and identify quantitative trait nucleotides (QTNs) with candidate genes influencing FL morphology. To this end, four FL traits were evaluated during the early milk stage under two growing seasons at the Leibniz Institute of Plant Genetics and Crop Plant Research. The results showed that all leaf traits (Flag leaf length, width, area, and length/width ratio) were significantly influenced by the environments, genotypes, and environments × genotypes interactions. Then, a genome-wide association analysis was performed using 17,093 SNPs that showed 10 novel QTNs that potentially play a role in modulating FL morphology in at least two environments. Further analysis revealed 8 high-confidence candidate genes likely involved in these traits and showing high expression values from flag leaf expansion until its senescence and also during grain development. An important QTN (wsnp_RFL_Contig2177_1500201) was associated with FL width and located inside TraesCS3B02G047300 at chromosome 3B. This gene encodes a major facilitator, sugar transporter-like, and showed the highest expression values among the candidate genes reported, suggesting their positive role in controlling flag leaf and potentially being involved in photosynthetic assimilation. Our study suggests that the detection of novel marker-trait associations and the subsequent elucidation of the genetic mechanism influencing FL morphology would be of interest for improving plant architecture, light capture, and photosynthetic efficiency during grain development.
Collapse
Affiliation(s)
- Matías Schierenbeck
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina.
- CONICET CCT La Plata, La Plata, Argentina.
| | - Ahmad Mohammad Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha, Qatar.
| | - Samar Gamal Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Evangelina Gabriela Avogadro
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Juan Ignacio Dietz
- CONICET CCT La Plata, La Plata, Argentina
- EEA INTA Bordenave, Ruta 76 km 36, Bordenave, Argentina
| | - María Rosa Simón
- Faculty of Agricultural Sciences and Forestry, National University of La Plata, La Plata, Argentina
- CONICET CCT La Plata, La Plata, Argentina
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| |
Collapse
|
3
|
Morgounov A, Babkenov A, Ben C, Chudinov V, Dolinny Y, Dreisigacker S, Fedorenko E, Gentzbittel L, Rasheed A, Savin T, Shepelev S, Zhapayev R, Shamanin V. Molecular Markers Help with Breeding for Agronomic Traits of Spring Wheat in Kazakhstan and Siberia. Genes (Basel) 2024; 15:86. [PMID: 38254975 PMCID: PMC10815559 DOI: 10.3390/genes15010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 01/24/2024] Open
Abstract
The Kazakhstan-Siberia Network for Spring Wheat Improvement (KASIB) was established in 2000, forming a collaboration between breeding and research programs through biannual yield trials. A core set of 142 genotypes from 15 breeding programs was selected, genotyped for 81 DNA functional markers and phenotyped for 10 agronomic traits at three sites in Kazakhstan (Karabalyk, Shortandy and Shagalaly) and one site in Russia (Omsk) in 2020-2022. The study aim was to identify markers demonstrating significant effects on agronomic traits. The average grain yield of individual trials varied from 118 to 569 g/m2. Grain yield was positively associated with the number of days to heading, plant height, number of grains per spike and 1000-kernel weight. Eight DNA markers demonstrated significant effects. The spring-type allele of the Vrn-A1 gene accelerated heading by two days (5.6%) and was present in 80% of the germplasm. The winter allele of the Vrn-A1 gene significantly increased grain yield by 2.7%. The late allele of the earliness marker per se, TaMOT1-D1, delayed development by 1.9% and increased yield by 4.5%. Translocation of 1B.1R was present in 21.8% of the material, which resulted in a 6.2% yield advantage compared to 1B.1B germplasm and a reduction in stem rust severity from 27.6 to 6.6%. The favorable allele of TaGS-D1 increased both kernel weight and yield by 2-3%. Four markers identified in ICARDA germplasm, ISBW2-GY (Kukri_c3243_1065, 3B), ISBW3-BM (TA004946-0577, 1B), ISBW10-SM2 (BS00076246_51, 5A), ISBW11-GY (wsnp_Ex_c12812_20324622, 4A), showed an improved yield in this study of 3-4%. The study recommends simultaneous validation and use of selected markers in KASIB's network.
Collapse
Affiliation(s)
- Alexey Morgounov
- Faculty of Agronomy, Kazakh Agrotechnical University Named after S. Seyfullin, Astana 010000, Kazakhstan
| | - Adylkhan Babkenov
- A.I. Barayev Research and Production Centre for Grain Farming, Shortandy 021601, Kazakhstan; (A.B.); (Y.D.); (T.S.)
| | - Cécile Ben
- Project Center for Agrotechnologies, Skolkovo Institute for Science and Technology, 121205 Moscow, Russia; (C.B.); (L.G.)
| | - Vladimir Chudinov
- Karabalyk Agricultural Experimental Station, Kostanay 110000, Kazakhstan;
| | - Yuriy Dolinny
- A.I. Barayev Research and Production Centre for Grain Farming, Shortandy 021601, Kazakhstan; (A.B.); (Y.D.); (T.S.)
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center, P.O. Box 041, Texcoco 100, Mexico;
| | - Elena Fedorenko
- North Kazakhstan Agricultural Experimental Station, Shagalaly 150311, Kazakhstan;
| | - Laurent Gentzbittel
- Project Center for Agrotechnologies, Skolkovo Institute for Science and Technology, 121205 Moscow, Russia; (C.B.); (L.G.)
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- International Maize and Wheat Improvement Center, Beijing 100081, China
| | - Timur Savin
- A.I. Barayev Research and Production Centre for Grain Farming, Shortandy 021601, Kazakhstan; (A.B.); (Y.D.); (T.S.)
| | - Sergey Shepelev
- Faculty of Agrotechnology, Omsk State Agrarian University, 644008 Omsk, Russia; (S.S.); (V.S.)
| | - Rauan Zhapayev
- Kazakh Scientific Research Institute of Agriculture and Plant Growing, Almaty 040909, Kazakhstan;
| | - Vladimir Shamanin
- Faculty of Agrotechnology, Omsk State Agrarian University, 644008 Omsk, Russia; (S.S.); (V.S.)
| |
Collapse
|
4
|
Reddy SS, Saini DK, Singh GM, Sharma S, Mishra VK, Joshi AK. Genome-wide association mapping of genomic regions associated with drought stress tolerance at seedling and reproductive stages in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1166439. [PMID: 37251775 PMCID: PMC10213333 DOI: 10.3389/fpls.2023.1166439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
Understanding the genetic architecture of drought stress tolerance in bread wheat at seedling and reproductive stages is crucial for developing drought-tolerant varieties. In the present study, 192 diverse wheat genotypes, a subset from the Wheat Associated Mapping Initiative (WAMI) panel, were evaluated at the seedling stage in a hydroponics system for chlorophyll content (CL), shoot length (SLT), shoot weight (SWT), root length (RLT), and root weight (RWT) under both drought and optimum conditions. Following that, a genome-wide association study (GWAS) was carried out using the phenotypic data recorded during the hydroponics experiment as well as data available from previously conducted multi-location field trials under optimal and drought stress conditions. The panel had previously been genotyped using the Infinium iSelect 90K SNP array with 26,814 polymorphic markers. Using single as well as multi-locus models, GWAS identified 94 significant marker-trait associations (MTAs) or SNPs associated with traits recorded at the seedling stage and 451 for traits recorded at the reproductive stage. The significant SNPs included several novel, significant, and promising MTAs for different traits. The average LD decay distance for the whole genome was approximately 0.48 Mbp, ranging from 0.07 Mbp (chromosome 6D) to 4.14 Mbp (chromosome 2A). Furthermore, several promising SNPs revealed significant differences among haplotypes for traits such as RLT, RWT, SLT, SWT, and GY under drought stress. Functional annotation and in silico expression analysis revealed important putative candidate genes underlying the identified stable genomic regions such as protein kinases, O-methyltransferases, GroES-like superfamily proteins, NAD-dependent dehydratases, etc. The findings of the present study may be useful for improving yield potential, and stability under drought stress conditions.
Collapse
Affiliation(s)
- S Srinatha Reddy
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - G Mahendra Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Joshi
- Borlaug Institute of South Asia (BISA), NASC Complex, DPS Marg, New Delhi, India
- CIMMYT, NASC Complex, DPS Marg, New Delhi, India
| |
Collapse
|
5
|
Amalova A, Yermekbayev K, Griffiths S, Abugalieva S, Babkenov A, Fedorenko E, Abugalieva A, Turuspekov Y. Identification of quantitative trait loci of agronomic traits in bread wheat using a Pamyati Azieva × Paragon mapping population harvested in three regions of Kazakhstan. PeerJ 2022; 10:e14324. [PMID: 36389412 PMCID: PMC9653069 DOI: 10.7717/peerj.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Although genome-wide association studies (GWAS) are an increasingly informative tool in the mining of new quantitative trait loci (QTLs), a classical biparental mapping approach is still a powerful, widely used method to search the unique genetic factors associated with important agronomic traits in bread wheat. Methods In this study, a newly constructed mapping population of Pamyati Azieva (Russian Federation) × Paragon (UK), consisting of 94 recombinant inbred lines (RILs), was tested in three different regions of Kazakhstan with the purpose of QTL identification for key agronomic traits. The RILs were tested in 11 environments of two northern breeding stations (Petropavlovsk, North Kazakhstan region, and Shortandy, Aqmola region) and one southeastern station (Almalybak, Almaty region). The following eight agronomic traits were studied: heading days, seed maturation days, plant height, spike length, number of productive spikes, number of kernels per spike, thousand kernel weight, and yield per square meter. The 94 RILs of the PAxP cross were genotyped using Illumina's iSelect 20K single nucleotide polymorphism (SNP) array and resulted in the identification of 4595 polymorphic SNP markers. Results The application of the QTL Cartographer statistical package allowed the identification of 53 stable QTLs for the studied traits. A survey of published studies related to common wheat QTL identification suggested that 28 of those 53 QTLs were presumably novel genetic factors. The SNP markers for the identified QTLs of the analyzed agronomic traits of common wheat can be efficiently applied in ongoing breeding activities in the wheat breeding community using a marker-assisted selection approach.
Collapse
Affiliation(s)
- Akerke Amalova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Kanat Yermekbayev
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- The John Innes Centre, Norwich, United Kingdom
| | | | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Adylkhan Babkenov
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Elena Fedorenko
- North Kazakhstan Agricultural Experimental Station, Petropavlovsk, Kazakhstan
| | - Aigul Abugalieva
- Kazakh Research Institute of Agriculture and Plant Industry, Almalybak, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
6
|
El Gataa Z, Samir K, Tadesse W. Genetic Dissection of Drought Tolerance of Elite Bread Wheat ( Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202705. [PMID: 36297729 PMCID: PMC9611990 DOI: 10.3390/plants11202705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
Drought is one of the most important yield-limiting factors in Morocco. Identification and deployment of drought-tolerant wheat varieties are important to cope with the challenge of terminal moisture stress and increase wheat productivity. A panel composed of 200 elite spring bread wheat genotypes was phenotyped for yield and agronomic traits for 2 years (2020 and 2021) in Morocco under rainfed and irrigated environments. The panel was genotyped using 20K SNPs and, after filtration, a total of 15,735 SNP markers were used for a genome-wide association study (GWAS) using a mixed linear model (MLM) to identify marker-trait associations (MTA) and putative genes associated with grain yield and yield-related traits under rainfed and irrigated conditions. Significant differences were observed among the elite genotypes for grain yield and yield-related traits. Grain yield performance ranged from 0.97 to 6.16 t/ha under rainfed conditions at Sidi Al-Aidi station and from 3.31 to 9.38 t/h under irrigated conditions at Sidi Al-Aidi station, while Grain yield at Merchouch station ranged from 2.32 to 6.16 t/h under rainfed condition. A total of 159 MTAs (p < 0.001) and 46 genes were discovered, with 67 MTAs recorded under rainfed conditions and 37 MTAs recorded under irrigated conditions at the Sidi Al-Aidi station, while 55 MTAs were recorded under rainfed conditions at Merchouch station. The marker ‘BobWhite_c2988_493’ on chromosome 2B was significantly correlated with grain yield under rainfed conditions. Under irrigated conditions, the marker ‘AX-94653560’ on chromosome 2D was significantly correlated with grain yield at Sidi Al-Aidi station. The maker ‘RAC875_c17918_321’ located on chromosome 4A, associated with grain yield was linked with the gene TraesCS4A02G322700, which encodes for F-box domain-containing protein. The markers and candidate genes discovered in this study should be further validated for their potential use in marker-assisted selection to generate high-yielding wheat genotypes with drought tolerance.
Collapse
Affiliation(s)
- Zakaria El Gataa
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10080, Morocco
- Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 7955, Morocco
| | - Karima Samir
- Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 7955, Morocco
| | - Wuletaw Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10080, Morocco
| |
Collapse
|
7
|
Zatybekov A, Genievskaya Y, Rsaliyev A, Maulenbay A, Yskakova G, Savin T, Turuspekov Y, Abugalieva S. Identification of Quantitative Trait Loci for Leaf Rust and Stem Rust Seedling Resistance in Bread Wheat Using a Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010074. [PMID: 35009078 PMCID: PMC8747073 DOI: 10.3390/plants11010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
In recent years, leaf rust (LR) and stem rust (SR) have become a serious threat to bread wheat production in Kazakhstan. Most local cultivars are susceptible to these rusts, which has affected their yield and quality. The development of new cultivars with high productivity and LR and SR disease resistance, including using marker-assisted selection, is becoming an important priority in local breeding projects. Therefore, the search for key genetic factors controlling resistance in all plant stages, including the seedling stage, is of great significance. In this work, we applied a genome-wide association study (GWAS) approach using 212 local bread wheat accessions that were phenotyped for resistance to specific races of Puccinia triticina Eriks. (Pt) and Puccinia graminis f. sp. tritici (Pgt) at the seedling stages. The collection was genotyped using a 20 K Illumina iSelect SNP assay, and 11,150 polymorphic SNP markers were selected for the association mapping. Using a mixed linear model, we identified 11 quantitative trait loci (QTLs) for five out of six specific races of Pt and Pgt. The comparison of the results from this GWAS with those from previously published work showed that nine out of eleven QTLs for LR and SR resistance had been previously reported in a GWAS study at the adult plant stages of wheat growth. Therefore, it was assumed that these nine common identified QTLs were effective for all-stage resistance to LR and SR, and the two other QTLs appear to be novel QTLs. In addition, five out of these nine QTLs that had been identified earlier were found to be associated with yield components, suggesting that they may directly influence the field performance of bread wheat. The identified QTLs, including novel QTLs found in this study, may play an essential role in the breeding process for improving wheat resistance to LR and SR.
Collapse
Affiliation(s)
- Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
| | - Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan; (A.R.); (A.M.); (G.Y.)
| | - Akerke Maulenbay
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan; (A.R.); (A.M.); (G.Y.)
| | - Gulbahar Yskakova
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan; (A.R.); (A.M.); (G.Y.)
| | - Timur Savin
- Department of Science, S. Seifullin Kazakh Agro Technical University, Nur-Sultan 010011, Kazakhstan;
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Correspondence:
| |
Collapse
|