1
|
Calcino A, Cooke I, Cowman P, Higgie M, Massault C, Schmitz U, Whittaker M, Field MA. Harnessing genomic technologies for one health solutions in the tropics. Global Health 2024; 20:78. [PMID: 39543642 PMCID: PMC11566161 DOI: 10.1186/s12992-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The targeted application of cutting-edge high-throughput molecular data technologies provides an enormous opportunity to address key health, economic and environmental issues in the tropics within the One Health framework. The Earth's tropical regions are projected to contain > 50% of the world's population by 2050 coupled with 80% of its biodiversity however these regions are relatively less developed economically, with agricultural productivity substantially lower than temperate zones, a large percentage of its population having limited health care options and much of its biodiversity understudied and undescribed. The generation of high-throughput molecular data and bespoke bioinformatics capability to address these unique challenges offers an enormous opportunity for people living in the tropics. MAIN: In this review we discuss in depth solutions to challenges to populations living in tropical zones across three critical One Health areas: human health, biodiversity and food production. This review will examine how some of the challenges in the tropics can be addressed through the targeted application of advanced omics and bioinformatics and will discuss how local populations can embrace these technologies through strategic outreach and education ensuring the benefits of the One Health approach is fully realised through local engagement. CONCLUSION Within the context of the One Health framework, we will demonstrate how genomic technologies can be utilised to improve the overall quality of life for half the world's population.
Collapse
Affiliation(s)
- Andrew Calcino
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Pete Cowman
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Queensland Museum, Townsville, QLD, Australia
| | - Megan Higgie
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Cecile Massault
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University, Townsville, QLD, Australia
| | - Ulf Schmitz
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maxine Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
2
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
3
|
Mu Y, Zhang J, Yang J, Wu J, Zhang Y, Yu H, Zhang X. Enhancing amphibian biomonitoring through eDNA metabarcoding. Mol Ecol Resour 2024; 24:e13931. [PMID: 38345249 DOI: 10.1111/1755-0998.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Surveying biodiversity has taken a quantum leap with environmental DNA (eDNA) metabarcoding, an immensely powerful approach lauded for its efficiency, sensitivity, and non-invasiveness. This approach emerges as a game-changer for the elusive realm of endangered and rare species-think nocturnal, environmentally elusive amphibians. Here, we have established a framework for constructing a reliable metabarcoding pipeline for amphibians, covering primer design, performance evaluation, laboratory validation, and field validation processes. The Am250 primer, located on the mitochondrial 16S gene, was optimal for the eDNA monitoring of amphibians, which demonstrated higher taxonomic resolution, smaller species amplification bias, and more extraordinary detection ability compared to the other primers tested. Am250 primer exhibit an 83.8% species amplification rate and 75.4% accurate species identification rate for Chinese amphibians in the in silico PCR and successfully amplified all tested species of the standard samples in the in vitro assay. Furthermore, the field-based mesocosm experiment showed that DNA can still be detected by metabarcoding even days to weeks after organisms have been removed from the mesocosm. Moreover, field mesocosm findings indicate that eDNA metabarcoding primers exhibit different read abundances, which can affect the relative biomass of species. Thus, appropriate primers should be screened and evaluated by three experimental approaches: in silico PCR simulation, target DNA amplification, and mesocosm eDNA validation. The selection of a single primer set or multiple primers' combination should be based on the monitoring groups to improve the species detection rate and the credibility of results.
Collapse
Affiliation(s)
- Yawen Mu
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
- Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Jingwen Zhang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jun Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Yong Zhang
- Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Berger L, Skerratt LF, Kosch TA, Brannelly LA, Webb RJ, Waddle AW. Advances in Managing Chytridiomycosis for Australian Frogs: Gradarius Firmus Victoria. Annu Rev Anim Biosci 2024; 12:113-133. [PMID: 38358840 DOI: 10.1146/annurev-animal-021122-100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.
Collapse
Affiliation(s)
- Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Laura A Brannelly
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Rebecca J Webb
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Anthony W Waddle
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
- Applied Biosciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
5
|
Farquharson KA, McLennan EA, Belov K, Hogg CJ. The genome sequence of the critically endangered Kroombit tinkerfrog ( Taudactylus pleione). F1000Res 2023; 12:845. [PMID: 37663197 PMCID: PMC10474343 DOI: 10.12688/f1000research.138571.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 08/07/2024] Open
Abstract
The Kroombit tinkerfrog ( Taudactylus pleione) is a stream-dwelling amphibian of the Myobatrachidae family. It is listed as Critically Endangered and is at high risk of extinction due to chytridiomycosis. Here, we provide the first genome assembly of the evolutionarily distinct Taudactylus genus. We sequenced PacBio HiFi reads to assemble a high-quality long-read genome and identified the mitochondrial genome. We also generated a global transcriptome from a tadpole to improve gene annotation. The genome was 5.52 Gb in length and consisted of 4,196 contigs with a contig N50 of 8.853 Mb and an L50 of 153. This study provides the first genomic resources for the Kroombit tinkerfrog to assist in future phylogenetic, environmental DNA, conservation breeding, and disease susceptibility studies.
Collapse
Affiliation(s)
- Katherine A. Farquharson
- The University of Sydney, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, New South Wales, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Elspeth A. McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- The University of Sydney, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, New South Wales, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carolyn J. Hogg
- The University of Sydney, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, New South Wales, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Farquharson KA, McLennan EA, Belov K, Hogg CJ. The genome sequence of the critically endangered Kroombit tinkerfrog ( Taudactylus pleione). F1000Res 2023; 12:845. [PMID: 37663197 PMCID: PMC10474343 DOI: 10.12688/f1000research.138571.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 09/05/2023] Open
Abstract
The Kroombit tinkerfrog ( Taudactylus pleione) is a stream-dwelling amphibian of the Myobatrachidae family. It is listed as Critically Endangered and is at high risk of extinction due to chytridiomycosis. Here, we provide the first genome assembly of the evolutionarily distinct Taudactylus genus. We sequenced PacBio HiFi reads to assemble a high-quality long-read genome and identified the mitochondrial genome. We also generated a global transcriptome from a tadpole to improve gene annotation. The genome was 5.52 Gb in length and consisted of 4,196 contigs with a contig N50 of 8.853 Mb and an L50 of 153. This study provides the first genomic resources for the Kroombit tinkerfrog to assist in future phylogenetic, environmental DNA, conservation breeding, and disease susceptibility studies.
Collapse
Affiliation(s)
- Katherine A. Farquharson
- The University of Sydney, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, New South Wales, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Elspeth A. McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- The University of Sydney, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, New South Wales, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carolyn J. Hogg
- The University of Sydney, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, New South Wales, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
7
|
Reji Chacko M, Altermatt F, Fopp F, Guisan A, Keggin T, Lyet A, Rey PL, Richards E, Valentini A, Waldock C, Pellissier L. Catchment-based sampling of river eDNA integrates terrestrial and aquatic biodiversity of alpine landscapes. Oecologia 2023; 202:699-713. [PMID: 37558733 PMCID: PMC10475001 DOI: 10.1007/s00442-023-05428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Monitoring of terrestrial and aquatic species assemblages at large spatial scales based on environmental DNA (eDNA) has the potential to enable evidence-based environmental policymaking. The spatial coverage of eDNA-based studies varies substantially, and the ability of eDNA metabarcoding to capture regional biodiversity remains to be assessed; thus, questions about best practices in the sampling design of entire landscapes remain open. We tested the extent to which eDNA sampling can capture the diversity of a region with highly heterogeneous habitat patches across a wide elevation gradient for five days through multiple hydrological catchments of the Swiss Alps. Using peristaltic pumps, we filtered 60 L of water at five sites per catchment for a total volume of 1800 L. Using an eDNA metabarcoding approach focusing on vertebrates and plants, we detected 86 vertebrate taxa spanning 41 families and 263 plant taxa spanning 79 families across ten catchments. For mammals, fishes, amphibians and plants, the detected taxa covered some of the most common species in the region according to long-term records while including a few more rare taxa. We found marked turnover among samples from distinct elevational classes indicating that the biological signal in alpine rivers remains relatively localised and is not aggregated downstream. Accordingly, species compositions differed between catchments and correlated with catchment-level forest and grassland cover. Biomonitoring schemes based on capturing eDNA across rivers within biologically integrated catchments may pave the way toward a spatially comprehensive estimation of biodiversity.
Collapse
Affiliation(s)
- Merin Reji Chacko
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland.
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Fabian Fopp
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Thomas Keggin
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Arnaud Lyet
- World Wildlife Fund, Wildlife Conservation Team, Washington, DC, USA
| | - Pierre-Louis Rey
- Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Eilísh Richards
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | | | - Conor Waldock
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Loïc Pellissier
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
8
|
Adcock ZC, Adcock ME, Forstner MRJ. Development and validation of an environmental DNA assay to detect federally threatened groundwater salamanders in central Texas. PLoS One 2023; 18:e0288282. [PMID: 37428788 DOI: 10.1371/journal.pone.0288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The molecular detection of DNA fragments that are shed into the environment (eDNA) has become an increasingly applied tool used to inventory biological communities and to perform targeted species surveys. This method is particularly useful in habitats where it is difficult or not practical to visually detect or trap the target organisms. Central Texas Eurycea salamanders inhabit both surface and subterranean aquatic environments. Subterranean surveys are challenging or infeasible, and the detection of salamander eDNA in water samples is an appealing survey technique for these situations. Here, we develop and validate an eDNA assay using quantitative PCR for E. chisholmensis, E. naufragia, and E. tonkawae. These three species are federally threatened and constitute the Septentriomolge clade that occurs in the northern segment of the Edwards Aquifer. First, we validated the specificity of the assay in silico and with DNA extracted from tissue samples of both target Septentriomolge and non-target amphibians that overlap in distribution. Then, we evaluated the sensitivity of the assay in two controls, one with salamander-positive water and one at field sites known to be occupied by Septentriomolge. For the salamander-positive control, the estimated probability of eDNA occurrence (ψ) was 0.981 (SE = 0.019), and the estimated probability of detecting eDNA in a qPCR replicate (p) was 0.981 (SE = 0.011). For the field control, the estimated probability of eDNA occurring at a site (ψ) was 0.938 (95% CRI: 0.714-0.998). The estimated probability of collecting eDNA in a water sample (θ) was positively correlated with salamander relative density and ranged from 0.371 (95% CRI: 0.201-0.561) to 0.999 (95% CRI: 0.850- > 0.999) among sampled sites. Therefore, sites with low salamander density require more water samples for eDNA evaluation, and we determined that our site with the lowest estimated θ would require seven water samples for the cumulative collection probability to exceed 0.95. The estimated probability of detecting eDNA in a qPCR replicate (p) was 0.882 (95% CRI: 0.807-0.936), and our assay required two qPCR replicates for the cumulative detection probability to exceed 0.95. In complementary visual encounter surveys, the estimated probability of salamanders occurring at a known-occupied site was 0.905 (SE = 0.096), and the estimated probability of detecting salamanders in a visual encounter survey was 0.925 (SE = 0.052). We additionally discuss future research needed to refine this method and understand its limitations before practical application and incorporation into formal survey protocols for these taxa.
Collapse
Affiliation(s)
- Zachary C Adcock
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- Cambrian Environmental, Austin, Texas, United States of America
| | - Michelle E Adcock
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Michael R J Forstner
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| |
Collapse
|
9
|
Villacorta-Rath C, Lach L, Andrade-Rodriguez N, Burrows D, Gleeson D, Trujillo-González A. Invasive terrestrial invertebrate detection in water and soil using a targeted eDNA approach. NEOBIOTA 2023. [DOI: 10.3897/neobiota.83.98898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Terrestrial invasive invertebrates can rapidly colonise new areas, causing detrimental effects on biodiversity, economy and lifestyle. Targeted environmental DNA (eDNA) methods could constitute an early detection tool given their sensitivity to small numbers of individuals. We hypothesised that terrestrial runoff would transport eDNA from the land into adjacent waterbodies and used the invasive yellow crazy ant (Anoplolepis gracilipes) as a model species to test this hypothesis. We collected water samples from four waterbodies adjacent (< 10 m from the creek edge) to infestations following rainfall events for eDNA analysis. We also collected soil samples from areas of known infestations and tested five eDNA extraction methods to determine their efficiency to extract eDNA from soil. Water samples resulted in positive yellow crazy ant eDNA amplification (20–100% field replicates across all sites), even at one site located 300 m away from where ants had been detected visually. Soil samples resulted in a higher percentage of false negatives when sampled from ant transit areas than from nest entrances. Unpurified DNA extracts from soil also resulted in false negative detections and only after applying a purification step of DNA extracts, did we detect yellow crazy ant eDNA in 40–100% of field replicates across all methods and sites. This is the first study to empirically show that eDNA from a terrestrial invertebrate can be successfully isolated and amplified from adjacent or downstream waterbodies. Our results indicate that eDNA has the potential to be a useful method for detecting terrestrial invertebrates from soil and water.
Collapse
|
10
|
Villacorta-Rath C, Espinoza T, Cockayne B, Schaffer J, Burrows D. Environmental DNA analysis confirms extant populations of the cryptic Irwin’s turtle within its historical range. BMC Ecol Evol 2022; 22:57. [PMID: 35501685 PMCID: PMC9059348 DOI: 10.1186/s12862-022-02009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Approximately 50% of freshwater turtles worldwide are currently threatened by habitat loss, rural development and altered stream flows. Paradoxically, reptiles are understudied organisms, with many species lacking basic geographic distribution and abundance data. The iconic Irwin’s turtle, Elseya irwini, belongs to a unique group of Australian endemic freshwater turtles capable of cloacal respiration. Water resource development, increased presence of saltwater crocodiles and its cryptic behaviour, have made sampling for Irwin’s turtle in parts of its range problematic, resulting in no confirmed detections across much of its known range for > 25 years. Here, we used environmental DNA (eDNA) analysis for E. irwini detection along its historical and contemporary distribution in the Burdekin, Bowen and Broken River catchments and tributaries. Five replicate water samples were collected at 37 sites across those three river catchments. Environmental DNA was extracted using a glycogen-aided precipitation method and screened for the presence of E. irwini through an eDNA assay targeting a 127 base pair-long fragment of the NADH dehydrogenase 4 (ND4) mitochondrial gene. Results Elseya irwini eDNA was detected at sites within its historic distribution in the lower Burdekin River, where the species had not been formally recorded for > 25 years, indicating the species still inhabits the lower Burdekin area. We also found higher levels of E. iriwni eDNA within its contemporary distribution in the Bowen and Broken Rivers, matching the prevailing scientific view that these areas host larger populations of E. irwini. Conclusions This study constitutes the first scientific evidence of E. irwini presence in the lower Burdekin since the original type specimens were collected as part of its formal description, shortly after the construction of the Burdekin Falls Dam. From the higher percentage of positive detections in the upper reaches of the Broken River (Urannah Creek), we conclude that this area constitutes the core habitat area for the species. Our field protocol comprises a user-friendly, time-effective sampling method. Finally, due to safety risks associated with traditional turtle sampling methods in the Burdekin River (e.g., estuarine crocodiles) we propose eDNA sampling as the most pragmatic detection method available for E. irwini. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02009-6.
Collapse
|