1
|
Vauquelin R, Juillard-Condat L, Joly N, Jullian N, Choque E, Martin P. Study of Woad ( Isatis tinctoria L.)-Extracted Indoxyl Precursors Conversion into Dyes: Influence of the Oxidative Media on Indigo Recovery Yields and Indigotin/Indirubin Ratio Measured by HPLC-DAD Method. Molecules 2024; 29:4804. [PMID: 39459173 PMCID: PMC11510166 DOI: 10.3390/molecules29204804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The production of indigo, primarily used by the denim industry, increases year by year, and is mainly of synthetic origin. The textile industry, on which its production depends, is responsible for 10% of greenhouse gases and 20% of water pollution. However, the source of this pigment/colorant, mainly based on petrochemistry, remains a key issue today. Extracting indigo from plants is becoming a popular answer and requires an understanding and evaluation of the entire process, from raw material to pigment recovery. In this study, the indigotin precursor, indoxyl, derived from the hydrolysis of O-glycosides biomass extracted in water, was oxidized to obtain the desired pigment. This step is the most sensitive, as variations have been observed during this phase. Consequently, the standardization of the oxidation process was established to determine the extract capacity to consistently produce the blue dye pigment. Partial hydrolysis of the O-glycosides, the indoxyl precursors, was identified as a factor causing this yield variability in the obtained extracts. Once the precursors were fully chemically hydrolyzed, plants harvested during summer and during a freezing period showed a similar capacity to produce indigotin, with values of 412 ± 25 ppm and 379 ± 0 ppm, respectively. This result showed that in freezing conditions, the enzymatic material was not available, resulting in the lack of indigotin formation. To address the use of oxidation in an alkaline medium, a spontaneous oxidation method was proposed. This method produced a purer indigotin pigment, with a 21.6% purity compared to 5.9% purity using air-mediated oxidation in an alkaline medium.
Collapse
Affiliation(s)
- Romain Vauquelin
- Unité Transformations & Agroressources, Université d’Artois—UniLaSalle, ULR7519, F-62408 Béthune, France; (R.V.); (P.M.)
- BioEcoAgro-Biologie des Plantes et Innovation, UMRT INRAe 1158 BioEcoAgro, Université de Picardie Jules Verne, F-80039 Amiens, France; (N.J.); (E.C.)
| | - Léa Juillard-Condat
- Unité Transformations & Agroressources, Université d’Artois—UniLaSalle, ULR7519, F-62408 Béthune, France; (R.V.); (P.M.)
| | - Nicolas Joly
- Unité Transformations & Agroressources, Université d’Artois—UniLaSalle, ULR7519, F-62408 Béthune, France; (R.V.); (P.M.)
| | - Nathalie Jullian
- BioEcoAgro-Biologie des Plantes et Innovation, UMRT INRAe 1158 BioEcoAgro, Université de Picardie Jules Verne, F-80039 Amiens, France; (N.J.); (E.C.)
| | - Elodie Choque
- BioEcoAgro-Biologie des Plantes et Innovation, UMRT INRAe 1158 BioEcoAgro, Université de Picardie Jules Verne, F-80039 Amiens, France; (N.J.); (E.C.)
| | - Patrick Martin
- Unité Transformations & Agroressources, Université d’Artois—UniLaSalle, ULR7519, F-62408 Béthune, France; (R.V.); (P.M.)
| |
Collapse
|
2
|
Tang C, Zhang Y, Liu X, Zhang B, Si J, Xia H, Fan S, Kong L. Nitrate Starvation Induces Lateral Root Organogenesis in Triticum aestivum via Auxin Signaling. Int J Mol Sci 2024; 25:9566. [PMID: 39273513 PMCID: PMC11395443 DOI: 10.3390/ijms25179566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3-) is an essential nutrient for plants. In this study, wheat plants were grown in 1/2 strength Hoagland's solution containing 5 mM NO3- (check; CK), 0.1 mM NO3- (low NO3-; LN), or 0.1 mM NO3- plus 60 mg/L 2,3,5-triiodobenzoic acid (TIBA) (LNT). The results showed that LN increased the LR number significantly at 48 h after treatment compared with CK, while not increasing the root biomass, and LNT significantly decreased the LR number and root biomass. The transcriptomic analysis showed that LN induced the expression of genes related to root IAA synthesis and transport and cell wall remodeling, and it was suppressed in the LNT conditions. A physiological assay revealed that the LN conditions increased the activity of IAA biosynthesis-related enzymes, the concentrations of tryptophan and IAA, and the activity of cell wall remodeling enzymes in the roots, whereas the content of polysaccharides in the LRP cell wall was significantly decreased compared with the control. Fourier-transform infrared spectroscopy and atomic microscopy revealed that the content of cell wall polysaccharides decreased and the cell wall elasticity of LR primordia (LRP) increased under the LN conditions. The effects of LN on IAA synthesis and polar transport, cell wall remodeling, and LR development were abolished when TIBA was applied. Our findings indicate that NO3- starvation may improve auxin homeostasis and the biological properties of the LRP cell wall and thus promote LR initiation, while TIBA addition dampens the effects of LN on auxin signaling, gene expression, physiological processes, and the root architecture.
Collapse
Affiliation(s)
- Chengming Tang
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiao Liu
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
3
|
Yu Y, Wu Y, Liu W, Liu J, Li P. Integration of Metabolome and Transcriptome Reveals the Major Metabolic Pathways and Potential Biomarkers in Response to Freeze-Stress Regulation in Apple ( Malus domestica). Metabolites 2023; 13:891. [PMID: 37623835 PMCID: PMC10456784 DOI: 10.3390/metabo13080891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Freezing stress is the main factor affecting the normal growth and distribution of plants. The safe overwintering of a perennial deciduous plant is a crucial link to ensuring its survival and yield. However, little is known about the molecular mechanism of its gene regulation metabolites as related to its freeze-tolerance. In order to enhance our comprehension of freeze-tolerance metabolites and gene expression in dormant apple trees, we examined the metabolic and transcriptomic differences between 'Ralls' and 'Fuji', two apple varieties with varying degrees of resistance to freezing. The results of the freezing treatment showed that 'Ralls' had stronger freeze-tolerance than 'Fuji'. We identified 302, 334, and 267 up-regulated differentially accumulated metabolites (DAMs) and 408, 387, and 497 down-regulated DAMs between 'Ralls' and 'Fuji' under -10, -15, and -20 °C treatment, respectively. A total of 359 shared metabolites were obtained in the upward trend modules, of which 62 metabolites were associated with 89 pathways. The number of up-regulated genes accounted for 50.2%, 45.6%, and 43.2% of the total number of differentially expressed genes (DEGs), respectively, at -10, -15, and -20 °C. Through combined transcriptome and metabolome analysis, we identified 12 pathways that included 16 DAMs and 65 DEGs. Meanwhile, we found that 20 DEGs were identified in the phenylpropanoid biosynthesis pathway and its related pathways, involving the metabolism of p-Coumaroyl-CoA, 7, 4'-Dihydroxyflavone, and scolymoside. These discoveries advance our comprehension of the molecular mechanism underlying apple freeze-tolerance and provide genetic material for breeding apple cultivars with enhanced freeze-tolerance.
Collapse
Affiliation(s)
- Yifei Yu
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang 050061, China
| | - YaJing Wu
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang 050061, China
| | - Wenfei Liu
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang 050061, China
| | - Jun Liu
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang 050061, China
| | - Ping Li
- College of Landscape and Tourism, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
4
|
Guo Z, Chen J, Lv Z, Huang Y, Tan H, Zhang L, Diao Y. Molecular cloning and functional characterization of BcTSA in the biosynthesis of indole alkaloids in Baphicacanthus cusia. FRONTIERS IN PLANT SCIENCE 2023; 14:1174582. [PMID: 37139111 PMCID: PMC10149986 DOI: 10.3389/fpls.2023.1174582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an essential traditional Chinese herb that is commonly used to treat colds, fever, and influenza. Indole alkaloids, such as indigo and indirubin, are the primary active constituents of B. cusia. The indole-producing reaction is crucial for regulating the flow of indole alkaloids metabolites along the pathways and coordinating primary and secondary product biosynthesis in plants. The tryptophan synthase alpha-subunit (TSA) can catalyse a process that produces indole, which is free to enter secondary metabolite pathways; however, the underlying potential mechanism of regulating indigo alkaloids synthesis remains unknown. Here, a BcTSA was cloned from the transcriptome of B. cusia. The BcTSA has a significant degree of similarity with other plant TSAs according to bioinformatics and phylogenetic analyses. Quantitative real-time PCR (RT-qPCR) research showed that BcTSA was dramatically enhanced in response to treatment with methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA), and was predominantly expressed in the stems as opposed to the leaves and rhizomes. Subcellular localization revealed that BcTSA is localized in chloroplasts, which is compatible with the fact that the conversion of indole-3-glycerol phosphate (IGP) to indole occurs in chloroplasts. The complementation assay results showed that BcTSA was functional, demonstrating that it was capable of catalyzing the conversion of IGP to indole. BcTSA was shown to stimulate the manufacture of indigo alkaloids including isatin, indigo, and indirubin when the gene was overexpressed in the hairy roots of Isatis indigotica. In conclusion, our research provides novel perspectives that might be applied to manipulating the indole alkaloid composition of B. cusia.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Junfeng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxiang Huang
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Hexin Tan
- School of Pharmacy, Navy Medical University, Shanghai, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| | - Lei Zhang
- School of Pharmacy, Navy Medical University, Shanghai, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| |
Collapse
|
5
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|